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Extended abstract

An imprecise probability distribution is an instance of second-order uncer-
tainty, that is, uncertainty about uncertainty, or uncertainty for short. An-
other instance is an imprecise possibility distribution. Computation with
imprecise probabilities is not an academic exercise—it is a bridge to real-
ity. In the real world, imprecise probabilities are the norm rather than
exception. In large measure, real-world probabilities are perceptions of like-
lihood. Perceptions are intrinsically imprecise, reflecting the bounded abil-
ity of human sensory organs, and ultimately the brain, to resolve detail
and store information. Imprecision of perceptions is passed on to perceived
probabilities. This is why real-world probabilities are, for the most part,
imprecise.

Peter Walley’s seminal work “Statistical Reasoning with Imprecise Prob-
abilities,” published in 1991, sparked a rapid growth of interest in imprecise
probabilities. Today, we see a substantive literature, conferences, workshops
and summer schools. An exposition of mainstream approaches to imprecise
probabilities may be found in the 2002 special issue of the Journal of Sta-
tistical Planning and Inference (JSPI), edited by Jean-Marc Bernard. My
paper [3] is contained in this issue but is not a part of the mainstream. A
mathematically rigorous treatment of elicitation of imprecise probabilities
may be found in [1].

The approach which is outlined in the following is rooted in my 1975
paper [5] , and is in the spirit of [3]. The approach is a radical departure
from the mainstream. Its principal distinguishing features are: (a) imprecise
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probabilities are dealt with not in isolation, as in the mainstream approaches,
but in an environment of imprecision of events, relations and constraints; (b)
imprecise probabilities are assumed to be described in a natural language.
This assumption is consistent with the fact that a natural language is basi-
cally a system for describing perceptions. The capability to compute with
information described in natural language opens the door to consideration
of problems which are not well-posed mathematically. Following are very
simple examples of such problems.

1. X is a real-valued random variable. What is known about X is: (a)
usually X is much larger than approximately a; and (b) usually X
is much smaller than approximately b, with a < b. What is the
expected value of X?

2. X is a real-valued random variable. What is known is that
Prob(X is small) is low; Prob(X is medium) is high; Prob(X is large)
is low. What is the expected value of X?

3. A box contains approximately twenty balls of various sizes. Most are
small. There are many more small balls than large balls. What is the
probability that a ball drawn at random is neither large nor small?

4. I am checking in for my flight. I ask the ticket agent: What is the
probability that my flight will be delayed. He tells me: Usually most
flights leave on time. Rarely most flights are delayed. What is the
probability that my flight will be delayed?

To compute with information described in natural language we employ
the formalism of Computing with Words (CW) [2] or, more generally, NL-
Computation [6]. The formalism of Computing with Words in application
to computation with information described in natural language involves two
basic steps: (a) precisiation of meaning of propositions expressed in natural
language; and (b) computation with precisiated propositions. Precisiation of
meaning is achieved through the use of generalized-constraint-based seman-
tics, or GCS for short. The concept of a generalized constraint is the cen-
terpiece of GCS. Informally, generalized constraints, in contrast to standard
constraints, have elasticity. What this implies is that in GCS everything is
or is allowed to be graduated, that is, be a matter of degree. Furthermore, in
GCS everything is or is allowed to be granulated. Granulation involves par-
titioning of an object into granules, with a granule being a clump of elements
drawn together by indistinguishability, equivalence, similarity, proximity or
functionality.

A generalized constraint is an expression of the form XisrR, where X is
the constrained variable, R is the constraining relation and r is an indexical



variable which defines the modality of the constraint, that is, its seman-
tics. The principal modalities are: possibilistic (r = blank), probabilistic
(r = p), veristic (r = v), usuality (r = u) and group (r = g). The pri-
mary constraints are possibilistic, probabilistic and veristic. The standard
constraints are bivalent possibilistic, probabilistic and bivalent veristic. In
large measure, scientific theories are based on standard constraints.

Generalized constraints may be combined, projected, qualified, propa-
gated and counterpropagated. The set of all generalized constraints, to-
gether with the rules which govern generation of generalized constraints
from other generalized constraints, constitute the Generalized Constraint
Language (GCL). Actually, GCL is more than a language—it is a language
system. A language has descriptive capability. A language system has de-
scriptive capability as well as deductive capability. GCL has both capabili-
ties.

The concept of a generalized constraint plays a key role in GCS. Specif-
ically, it serves two major functions. First, as a means of representing the
meaning of a proposition p, as a generalized constraint; and second, through
representation of p as a generalized constraint it serves as a means of deal-
ing with p as an object of computation. Representing the meaning of p as
a generalized constraint is equivalent to precisiation of p through transla-
tion into GCL. In this sense, GCL plays the role of a meaning precisiation
language. More importantly, GCL provides a basis for computation with
information described in a natural language, CW or more generally, NL-
Computation.

A concept which plays an important role in computation with informa-
tion described in a natural language is that of a granular value. Specifically,
let X be a variable taking values in a space U . A granular value of X, ∗u,
is defined by a proposition, p, or more generally by a system of propositions
drawn from a natural language. Assume that the meaning of p is pre-
cisiated by representing it as a generalized constraint, GC(p). GC(p) may
be viewed as a definition of the granular value, ∗u. For example, granu-
lar values of probability may be approximately 0.1, . . . approximately 0.9,
approximately 1. A granular variable is a variable which takes granular
values. For example, young, middle-aged and old are granular values of
the granular variable Age. The probability distribution in Example 2 is
an instance of a granular probability distribution. In effect, computation
with imprecise probability distributions may be viewed as an instance of
computation with granular probability distributions.

In the CW-based approach to computation with imprecise probabilities,
computation with imprecise probabilities reduces to computation with gen-
eralized constraints. What is used for this purpose is the machinery of GCL.
More specifically, computation is carried out through the use of rules which



govern propagation and counterpropagation of generalized constraints. The
principal rule is the extension principle [4, 5]. In its general form, the ex-
tension principle is a computational schema which relates to the following
question. Assume that Y is a given function of X, Y = g(X). Let ∗g and
∗X be granular values of g and X, respectively. Compute ∗g(∗X).

In most computations involving imprecise probabilities what is needed
is a special case of the extension principle which applies to possibilistic
constraints. More specifically, assume that f is a given function and f(X)
is constrained by a possibility distribution, A. Assume that g is a given
function, g(X). The problem is to compute the possibility distribution of
g(X) given the possibility distribution of f(X). The extension principle
reduces the solution of this problem to solution of a variational problem [6].

In summary, the CW-based approach to computation with imprecise
probabilities opens the door to computation with probabilities, events, rela-
tions and constraints which are described in a natural language. Progression
from computation with precise probabilities, precise events, precise relations
and precise constraints to computation with imprecise probabilities, impre-
cise events, imprecise relations and imprecise constraints is an important
step forward—a step which has the potential for a significant enhancement
of the role of natural languages in human-centric fields such as economics,
decision analysis and operations research, law and medicine.
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