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Abstract

Granular computing initiated by
L.A.Zadeh aims at computing with
granules of knowledge i.e. with classes
of objects similar with respect to a
chosen representation of knowledge. It
is assumed that classes of sufficiently
similar objects behave satisfactorily
similarly in solutions of problems of
decision making, classification, fusion
of knowledge, approximate reasoning.
In this work, we support this assump-
tion with a study of classifiers based
on granular structures. Granules of
knowledge are defined here by means
of rough inclusions as proposed by
Polkowski and from granules computed
in this way in a data set, granular
reflections are produced which are basis
for inducing classifiers.

We demonstrate a few basic rough in-
clusions and we show that classifiers
obtained from granulated according to
them data sets yield results better than
the standard exhaustive rough set clas-
sifier.

Keywords rough sets, rough inclu-
sions, granules of knowledge, classifica-
tion of data

1 Motivations:Rough set analysis
of vagueness vs. mereology

Rough set analysis of vague concepts [6], be-
gins with the idea of saturation of concepts
by classes of indiscernibility: given an infor-
mation function Inf : U → V defined on
objects in a set U with values in a set V

which induces an indiscernibility relation Ind
on the set U × U with Ind(u, v) if and only
if Inf(u) = Inf(v), concepts X ⊆ U are di-
vided into two categories: the category of Inf–
definable concepts which are representable as
unions of classes [u]Ind = {v ∈ U : Ind(u, v)}
of the relation Ind, and the category of Inf–
non–definable (or, Inf–rough) concepts which
do not possess the definability property.

Definable concepts are the concepts which can
be described with certainty: for each object
u ∈ U , and a definable concept X, either u be-
longs in X or u does not belong in X; whereas
for a non–definable concept Y , there exist ob-
jects u, v such that Ind(u, v) and u belongs in
Y but v belongs in U \ Y .

Rough set theory solves the problem of how to
specify a non–definable concept with the idea
of an approximation: given a concept Y , there
exist by completeness of the containment rela-
tion ⊆, two definable concepts Y and Y such
that Y ⊆ Y ⊆ Y , Y is the largest definable
subset of Y and Y is the smallest definable
superset of Y .

The following points deserve attention in the
above presented scheme:

1. Definable concepts are unions of atomic
concepts: indiscernibility classes;

2. Non–definable concepts are approached
with definable ones by means of containment.

Both operations involved in 1., 2., above, are
particular cases of general constructs of mere-
ology: the union of sets is a particular class
operator and containment is a particular in-
gredient relation. It follows that setting the
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rough set context in the realm of mereology,
one obtains a more general and formally ade-
quate means of analysis.

The relation π of being a part is in mereology
theory of Lesniewski [3] constructed as a
non–reflexive and transitive relation on
entities, i.e.,

p1. π(u, u) for no entity u; p2. π(u, v)
and π(v, w) imply π(u,w).

An example is the proper containment
relation ⊂ on sets.

A standard usage of the Schroeder theorem
makes π into a partial order relation ing of an
ingredient: v ing u if and only if either π(v, u)
or v = u. Clearly, ing is reflexive, weakly–
antisymmetric and transitive. An example is
the containment relation ⊆ on sets.

The union of sets operator used in construc-
tions of approximations, has its counterpart
in the mereological class operator Cls [3]; it is
applied to any non–empty collection F of en-
tities to produce the entity ClsF ; the formal
definition is given in terms of the ingredient
relation: an entity X is the class ClsF if and
only if the two conditions are satisfied,

c1. u ing X for each u ∈ F ;

c2. u ing X implies the existence of entities
v, w with the properties:

i. v ing u;

ii. v ing w;

iii. w ∈ F .

It is easy to verify that in case π is ⊂, ing
is ⊆, F a non–empty collection of sets, the
ClsF is

⋃
F , the union of F . Class operator

will be the principal tool in the definition of
granules, see [10], [11], [12].

2 Rough mereology and rough
inclusions: Motivation

In the process of development of rough set
theory, it has turned out that indiscernibility
should be relaxed to similarity: in [16] atten-
tion was focused on tolerance relations, i.e.,

relations which are reflexive and symmetric
but need not be transitive. An example of
such relation was given in [7]: given a metric
ρ and a fixed small positive δ, one declares
points x, y in the relation sim(δ) if and only
if ρ(x, y) < δ. The relation sim(δ) is a tol-
erance relation but it is equivalence for non–
archimedean ρ’s only.

We continue this example by introducing a
graded version of sim(δ), viz., for a real num-
ber r ∈ [0, 1], we define the relation sim(δ, r)
by letting,

sim(δ, r)(x, y) iff ρ(x, y) ≤ 1− r. (1)

The collection sim(δ, r) of relations have the
following properties evident by the properties
of the metric ρ:

sim1. sim(δ, 1)(x, y) iff x = y;

sim2. sim(δ, 1)(x, y) and sim(δ, r)(z, x) imply
sim(δ, r)(z, y);

sim3. sim(δ, r)(x, y) and s < r imply
sim(δ, s)(x, y).

Properties sim1.–sim3. induced by the
metric ρ refer to the ingredient relation
= whose corresponding relation of part is
empty; a generalization can thus be obtained
by replacing the identity with an ingredient
relation ing in a mereological universe (U, π).

In consequence a relation µ(u, v, r) is defined
that satisfies the following conditions:

rm1. µ(u, v, 1) iff u ing v;

rm2. µ(u, v, 1) and µ(w, u, r) imply µ(w, v, r);

rm3. µ(u, v, r) and s < r imply µ(u, v, s).

Any relation µ which satisfies the conditions
rm1.–rm3. is called a rough inclusion, see
[9], [17]. This relation is a similarity relation
which is not necessarily symmetric, but it is
reflexive. It is read as ”the relation of a part
to a degree”.
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3 Granules of knowledge and
granular reflections of data sets

The issue of granulation of knowledge as
a problem on its own, has been posed by
L.A.Zadeh, see [28], [29]. The issue of granu-
lation has been a subject of intensive studies
within rough set community, as witnessed by
a number of papers, e.g., [4], [20], papers in
[21].

Rough set context offers a natural venue for
granulation, and indiscernibility classes were
recognized as elementary granules whereas
their unions serve as granules of knowledge;
these granules and their direct generalizations
to various similarity classes induced by gen-
eral binary relations were subject to a re-
search, see, e.g., [4], [27].

Granulation of knowledge by means of rough
inclusions was studied in Polkowski and
Skowron [17], [18], [19], [20] and in Polkowski
[9], [10], [11].

The general scheme for inducing granules on
the basis of a rough inclusion is as follows.

For an information system I = (U,A) and a
rough inclusion µ on U , for each object u and
each real number r ∈ [0, 1], we define the gran-
ule gµ(u, r) about u of the radius r, relative
to µ.

gµ(u, r) is ClsF (u, r), (2)

where the property F (u, r) is satisfied with an
object v if and only if µ(v, u, r) holds and Cls
is the class operator of Mereology defined in
(??).

It was shown in Polkowski (2004; Thm. 4),
that in case of a transitive and symmetric µ,

v ing gµ(u, r)iff µ(v, u, r). (3)

Property (3) allows for representing the gran-
ule gµ(u, r) as the list or a set of those objects
v for which µ(v, u, r) holds.

For a given granulation radius r, and a rough
inclusion µ, we form the collection Gµr =
{gµ(u, r)} of all granules of the radius r rela-
tive to µ.

Granular data sets were proposed by

L.Polkowski in [10],[11], [13] as the following
constructions. Given r ∈ [0, 1], the set of
all granules Gµr = {gµ(u, r) : u ∈ U} is
defined. From this set, a covering Covrµh(G)
is chosen according to a strategy G. Granules
in Covµr (G) form a new universe of objects.
For each g ∈ Covµr (G), and each attribute
a ∈ A, a factored attribute af is defined as
af (g) = S({a(u) : u ∈ g}).

The new information system Iµr =
(Covµr (G), {af : a ∈ A}) is a granular
reflection of the original information system
I. The same procedure is applied to a
decision system D = (U,A, d) to form the
reflection Dµ

r = (Covµr (G), {af : a ∈ A}, df ).
The object o(g) defined for a granule g by
means of inf(o(g)) = {(af , af (g)) : a ∈ A}
according to a strategy S is called an S–
reflection of the granule g; clearly, o(g) need
not be a real object in the training or test
sets: clearly, one cannot prove the existence
or non–existence of such an object in reality.
Usage of these objects seems to be highly
justified by their auxiliary role; they vanish
in final effect playing the role of intermediary.

4 Classification of data by rough
set tools

Given a data set (a decision system), D =
(U,A, d) where attributes in the set A induce
on objects in the set U the information func-
tion InfA(u) = {(a, a(u)) : a ∈ A} and the
decision attribute d induced the information
Infd(u) = {(d, d(u))}, a classifier is a set of
judiciously chosen decision rules of the form
InfA(u) ⇒ Infd(u); we observe the duality
between rules and objects: in both cases for
each a ∈ A, the value a(u), is defined. Thus
each rule defines an object and each object
defines a rule. We will avail of this duality in
the sequel. Classification problem is to find a
set if rules on basis of a given training set and
to apply this set in finding decision classes for
objects in a given test set.

In most general terms, building a classifier
consists in searching in the pool of descrip-
tors for their conjuncts that describe suffi-
ciently well decision classes. As distinguished

1788 Proceedings of IPMU’08



in [23], there are three main kinds of classi-
fiers searched for: minimal, i.e., consisting of
minimum possible number of rules describing
decision classes in the universe, exhaustive,
i.e., consisting of all possible rules, satisfac-
tory, i.e., containing rules tailored to a specific
use. In our exemplary classification task, the
algorithm applied is the exhaustive algorithm
supplied with the system RSES [22].

Classifiers are evaluated globally with respect
to their ability to properly classify objects,
usually by error which is the ratio of the num-
ber of correctly classified objects to the num-
ber of test objects, total accuracy being the ra-
tio of the number of correctly classified cases
to the number of recognized cases, and total
coverage, i.e, the ratio of the number of rec-
ognized test cases to the number of test cases.

An important class of methods for classi-
fier induction are those based on similarity
or analogy reasoning; most generally, this
method of reasoning assigns to an object u
the value of an attribute a from the knowl-
edge of values of a on a set N(u) of objects
whose elements are selected on the basis of
a similarity relation, usually but not always
based on an appropriate metric.

A study of algorithms based on similarity re-
lations is [5]. The main tool in inducing simi-
larity relations are generalized templates, i.e.,
propositional formulas built from generalized
descriptors of the form (a ∈Wa) where Wa is
a subset of the value set Va as well as metrics
like the Manhattan, Hamming, Euclidean, are
used.

A realization of analogy–based reasoning idea
is the k–nearest neighbors (k-nn) method in
which for a fixed number k, values of a at k
nearest to u objects in the training set. Find-
ing nearest objects is based on some similar-
ity measure among objects that in practice is
a metric. Metrics to this end are built on the
two basic metrics: the Manhattan metric for
numerical values and the Hamming metric for
nominal values, see, e.g., [25].

Our approach based on granulation can be
also placed in similarity based reasoning as
rough inclusions are measures of similarity de-

Table 1: Best results for Australian credit by some rough set

based algorithms; in case ∗, reduction in object size is 40.6 percent,

reduction in rule number is 43.6 percent; in case ∗∗, resp. 10.5, 5.9

so me acc cov
[2] SNAPM(0.9) error = 0.130 −
[5] simple.templates 0.929 0.623
[5] general.templates 0.886 0.905
[5] closest.simple.templates 0.821 .1.0
[5] closest.gen.templates 0.855 1.0
[5] tolerance.simple.templ. 0.842 1.0
[5]) tolerance.gen.templ. 0.875 1.0
[26] adaptive.classifier 0.863 −
[14] granular∗.r = 0.642857 0.867 1.0
[14] granular∗∗.r = 0.714826 0.875 1.0
[1] conceptdependent.r = 0.785714 0.9970 0.9995

gree among objects.

In [14], results of experiments are reported
with the data set Credit card application ap-
proval data set (Australian credit) [24] (UCI
repository).

In rough set literature there are results of tests
with other algorithms on Australian credit
data set; we recall best of them in Table 1
and we give also best granular cases.

This Table does witness that granulation of
knowledge applied in [14] as a new idea in data
classification can lead to better results than
the analysis based on individual objects. This
confirms the validity of granular approach and
reflects the fact that granularity is so impor-
tant in Natural Reasoning.

Granules in this example have been com-
puted with respect to the rough inclusion
µh, computed in turn according to (1) from
the reduced Hamming distance: h(u, v) =
|Infa(u)∩InfA(v)|

|A| ; thus µ(u, v, r) if and only if
|{a ∈ A : a(u) = a(v)}| ≥ r · |A| and the
granule ghr (v, r) = {u ∈ U : µh(u, v, r).

The last result in Table ?? refers to con-
cept dependent granulation, see [1]: in this
method granules are computed relative to de-
cision classes, i.e., for each v ∈ U , gh,cdr (v, r) =
ghr (v, r) ∩ {u : d(u) = d(v)}.

5 Parameterized variants of rough
inclusions µh in classification of
data

For the formula µh(v, u, r) an extension is pro-
posed which depends on a chosen metric ρ
bounded by 1 in the attribute value space V
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of (we assume for simplicity that ρ is suitable
for all attributes).

Then, given an ε ∈ [0, 1], we let µεh(v, u, r) if
and only if |{a ∈ A : ρ(a(v), a(u)) < ε}| ≥
r · |A|. It is manifest that µε is a rough
inclusion if ρ is a non–archimedean metric,
i.e., ρ(u,w) ≤ max{ρ(u, v), ρ(v, w)}; other-
wise the monotonicity condition rm2 of sect. 2
need not be satisfied and this takes place with
most popular metrics like Euclidean, Manhat-
tan etc.

In this case, a rough inclusion is µ∗ defined as
follows: µ∗h(v, u, r) if and only if there exists
an ε such that µεh(v, u, r). Then it is easy
to check that µ∗ is a rough inclusion. The
parameter r is called the catch radius.

Granules induced by the rough inclusion µ∗h
with r = 1 have a simple structure: a gran-
ule gεh(u, 1) consists of all v ∈ U such that
ρ(a(u), a(v)) ≤ ε.

The idea poses itself to use granules defined
in this way to assign a decision class to an
object u in the test set. The implementation
of this idea is as follows.

First on the training set, rules are induced
by an exhaustive algorithm. Then, given a
set Rul of these rules, and an object u in the
test set, a granule gεh(u, 1) is formed in the set
Rul: in this, the duality between objects and
rules is exploited as rules and objects can be
written down in a same format of information
sets. This also allows for using training ob-
jects instead of rules in forming granules and
voting for decision by majority voting.

Thus, gεh(u, 1) = {r ∈ Rul : ρ(a(u), a(r)) ≤
εfor each attribute a ∈ A where a(r) is the
value of the attribute a in the premise of the
rule.

Rules in the granule gεh(u, 1) are taking part in
a voting process: for each value c of a decision
class, the following factor is computed,

param(c) =
sum of supports of rules pointing to c

cardinality of c in the training set
.

(4)
cf. [2] for a discussion of various strategies of
voting for decision values.

The class cu assigned to u is decided by

param(cu) = maxcparam(c), (5)

with random resolution of ties.

In computing granules, the parameter ε is nor-
malized to the interval [0, 1] as follows: first,
for each attribute a ∈ A, the value train(a) =
maxtraining seta−mintraining seta is computed
and the real line (−∞,+∞) is contracted to
the interval [mintraining seta,maxtraining seta]
by the mapping fa,

fa(x) =


mintraining seta in case x ≤ mintraining seta
x in case x ∈ [mintraining seta,maxtraining seta]
maxtraining seta in case x ≥ maxtraining seta.

(6)

When the value a(u) for a test object u is off
the range [mintraining seta, maxtraining seta],
it is replaced with the value fa(a(u)) in the
range. For an object v, or a rule r with the
value a(v), resp., a(r) of a denoted a(v, r), the
parameter ε is computed as |a(v,r)−fa(a(u))|

train(a) .
The metric ρ was chosen as the metric |x− y|
in the real line. We show results of experi-
ments with rough inclusions discussed in this
work. Our data set was a subset of Australian
credit data in which training set had 100 ob-
jects from class 1 and 150 objects from class 0
(which approximately yields the distribution
of classes in the whole data set). The test
set had 100 objects, 50 from each class. The
RSES exhaustive classifier [22] applied to this
data set gave accuracy of 0.79 and coverage
of 1.0. In figures below this result of RSES is
shown with a horizontal line at 0.79.

5.1 Results of tests with granules of
training objects according to
µεh(v, u, 1) voting for decision

In Fig. 1 results of classification are given
in function of ε for accuracy as well as for
coverage.

5.2 Results of tests with granules of
training objects according to
µεh(v, u, r) voting for decision

We return to the rough inclusion µ∗h(v, u, r)
with general radius r. The procedure ap-
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Figure 1: Results for algorithm 1 v1, Best result for ε = 0.62: accuracy = 0.828283, coverage = 0.99

Table 2: (40%-60%)(1-0); Australian credit; Algorithm 1 v2.

r catch=catch radius, optimal eps=Best ε, acc= accuracy, cov=

coverage

r catch optimal eps acc cov
nil nil 0.79 1.0

0.071428 0 0.06 1.0
0.142857 0 0.66 1.0
0.214286 0.01 0.74 1.0
0.285714 0.02 0.83 1.0
0.357143 0.07 0.82 1.0
0.428571 0.05 0.82 1.0
0.500000 0 0.82 1.0
0.571429 0.08 0.84 1.0
0.642857 0.09 0.84 1.0
0.714286 0.16 0.85 1.0
0.785714 0.22 0.86 1.0
0.857143 0.39 0.84 1.0
0.928571 0.41 0.828283 0.99
1.000000 0.62 0.828283 0.99

plied in case of µεh(v, u, 1) can be repeated in
the general setting. The resulting classifier is
a function of two parameters ε, r. In Table
5.2 results are included where against values
of the catch radius r the best value for ε’s
marked by the optimal value optimal eps is
given for accuracy and coverage.

6 Rough inclusions and their
weaker variants obtained from
residual implications in
classification of data

Residual implications of continuous t–norms
can supply rough inclusions according to a
general formula,

µφ(v, u, r) iff φ(u)⇒t φ(v) ≥ r, (7)

where φ maps the set U of objects into [0, 1]
and φ(u) ≤ φ(v) if and only if u ing v (ing is

an ingredient relation of the underlying mere-
ology, ⇒t is the residual implication induced
by the t–norm , i.e., x⇒t y ≥ z if and only if
t(x, z) ≤ y, see [8].

A weak interesting variant of this class of
rough inclusions is indicated. This variant
uses sets

disε(u, v) = |{a∈A:ρ(a(u),a(v))≥ε}|
|A| , and

indε(u, v) = |{a∈A:ρ(a(u),a(v))<ε}|
|A| ,

for u, v ∈ U , ε ∈ [0, 1], where ρ is a metric
|x− y| on attribute value sets.

The resulting weak variant of the rough inclu-
sion µφ is,

µt(u, v, r) iff disε(u, v)→t indε(u, v) ≥ r.
(8)

Basic variants for three principal t–norms:
the  Lukasiewicz t–norm L = max{0, x + y −
1}, the product t–norm P (x, y) = x · y, and
min{x, y} are, (the value in all variants is 1
if and only if x ≤ y so we give values only in
the contrary case)

µt(u, v, r) iff


1− disε(u, v) + indε(u, v) ≥ r for L
indε(u,v)
disε(u,v)

≥ r for P
indε(u, v) ≥ r for min

(9)

Objects in the class c in the training set vote
for decision at the test object u according

to the formula: p(c)=
∑

v∈c
w(v,t)

|c| in the training set
where weight w(v, t) is disε(u, v) →t

indε(u, v); rules induced from the training set
pointing to the class c vote according to the
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Figure 2: Results for algorithm 5 v1, Best result for ε = 0.04,
accuracy = 0.82, coverage = 1

Figure 3: Results for algorithm 5 v2, Best result for ε = 0.01,
accuracy = 0.84, coverage = 1

formula p(c)=
∑

r
w(r,t)·support(r)

|c| in the training set . In either

case, the class c* with p(c*)=max p(c) is cho-
sen. We include here results of tests with
training objects and t=min (Fig.2)and rules
and t=min (Fig.3).

Similarly, we include in Figs. 4,5 results of
tests with granules of training objects and
rules for t=P, the product t–norm.

The results of tests in best cases for optimal
values of ε exceed results obtained with the
standard exhaustive algorithm.

Figure 4: Results for algorithm 6 v1, Best result for ε = 0.01,
accuracy = 0.81, coverage = 1

Figure 5: Results for algorithm 6 v2, Best result for
varepsilon = 0.01, accuracy = 0.84, coverage = 1

7 Conclusion

The results shown here do witness that the
proposed approach is a valid method for
building effective classifiers and validates the
hypothesis put forth in [10]. Highly dynami-
cal procedure involving parameters r, ε reveals
some tradeoffs between the size of a granule
ε and the radius r of catching, whose optimal
values depend as it may be conjectured on the
structure of data. Further analysis will be de-
voted also to this aspect of our approach.
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[3] S. Leśniewski, On the foundations of set
theory, Topoi 2, 1982, 7–52. A digest of
S. Lesniewski, On the Foundations of Set
Theory(in Polish), Moscow, 1916.

[4] Lin, T.Y., Granular computing: Exam-
ples,intuitions, and modeling, In: [21],
40–44.

[5] Nguyen Sinh Hoa, Regularity analysis
and its applications in Data Mining,

1792 Proceedings of IPMU’08



In: Rough Set Methods and Applications,
L.Polkowski, S.Tsumoto, T.Y.Lin (Eds.),
Physica Verlag, Heidelberg, 2000, 289–
378.

[6] Z. Pawlak, Rough Sets: Theoretical As-
pects of Reasoning about Data, Kluwer,
Dordrecht, 1991.

[7] H. Poincare, Science et Hypothese, Paris,
1905.

[8] L. Polkowski, Rough Sets. Mathematical
Foundations, Physica Verlag, Heidelberg,
2002.

[9] L. Polkowski, Toward rough set foun-
dations. Mereological approach (a ple-
nary lecture), in: Proceedings RSCTC04,
Uppsala, Sweden, 2004, LNAI vol.
3066,Springer Verlag, Berlin, 2004, 8–25.

[10] L. Polkowski, Formal granular calculi
based on rough inclusions (a feature
talk), In: [21], 57–62.

[11] L.Polkowski, Formal granular calculi
based on rough inclusions (a feature
talk), in: Proceedings 2006 IEEE Intern.
Conf. Granular Computing GrC’06, At-
lanta, USA, 2006, 57–62.

[12] L.Polkowski, The paradigm of granu-
lar rough computing, in: Proceedings
ICCI’07. 6th IEEE Intern. Conf. on Cog-
nitive Informatics, IEEE Computer Soci-
ety, Los Alamitos, CA, 2007, 145–163.

[13] L. Polkowski, Granulation of knowledge
in decision systems: The approach based
on rough inclusions. The method and its
applications (a plenary talk), In: Pro-
ceedings RSEISP 07, Warsaw, Poland,
LNAI vol. 4585, Springer Verlag, Berlin,
2007.

[14] L. Polkowski, P.Artiemjew,, On granu-
lar rough computing: Factoring classi-
fiers through granulated structures. In:
Proceedings RSEISP07, LNAI vol. 4585,
Springer Verlag, Berlin, 280–289.

[15] L. Polkowski, P. Artiemjew, On granular
rough computing with missing values, In:

Proceedings RSEISP07, LNAI vol. 4585,
Springer Verlag, Berlin, 271–279.

[16] L. Polkowski, A.Skowron, J.Żytkow, Tol-
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