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Abstract

This paper focuses on clustering of tra-
jectories of temporal sequences of two
laboratory examinations. First, we map
a set of time series containing differ-
ent types of laboratory tests into di-
rected trajectories representing tempo-
ral change in patients’ status. Then
the trajectories for individual patients
are compared in multiscale and grouped
into similar cases by using clustering
methods.

Keywords: Trajectory Analysis, Tem-
poral Data Mining, .

1 Introduction

Hosptial information system (HIS) collects all the
data from all the branches of departments in a
hospital, including laboratory tests,physiological
tests, electronic patient records. Thus, HIS can be
viewed as a large heterogenous database, which
stores chronological changes in patients’ status.
Recent advances not only in informaiton technol-
ogy, but also other developments in devices en-
able us to collect huge amount of temporal data
automatically, one of whose advantage is that
we are able not only to analyze the data within
one patient, but also the data in a cross-sectoral
manner. It may reveal a underlying mechanism
in temporal evolution of (chronic) diseases with
some degree of evidence, which can be used to
predict or estimate a new case in the future. Es-
pecially, finding temporally covariant variables
is very important for clinical practice because

we are able to obtain the measurements of some
examinations very easily, while it takes a long
time for us to measure other ones. Also, unex-
pected covariant patterns give us new knowledge
for temporal evolution of chronic diseases. How-
ever, despite of its importance, large-scale anal-
ysis of time-series medical databases has rarely
been reported due to the following problems: (1)
sampling intervals and lengths of data can be both
irregular, as they depend on the condition of each
patient. (2) a time series can include various
types of events such as acute changes and chronic
changes. When comparing the time series, one
is required to appropriately determine the corre-
spondence of data points to be compared taking
into account the above issues. Additionally, the
dimensionality of data can be usually high due
to the variety of medical examinations. These
fearures prevent us from using conventional time
series analysis methods.

This paper presents a novel cluster analysis
method for multivariate time-series data on med-
ical laboratory tests. Our method represents time
series of test results as trajectories in multidimen-
sional space, and compares their structural sim-
ilarity by using the multiscale comparison tech-
nique [1]. It enables us to find the part-to-part
correspondences between two trajectories, taking
into account the relationships between different
tests. The resultant dissimilarity can be further
used as input for clustering algorithms for finding
the groups of similar cases. In the experiments
we demonstrate the usefulness of our approach
through the grouping tasks of artificially gener-
ated digit stroke trajectories and medical test tra-
jectories on chronic hepatitis patients.
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The remainder of this paper is organized as fol-
lows. In Section 2 we describe the methodool-
ogy, including preprocessing of the data. In Sec-
tion 3 we show experimental results on a synthetic
data (digit strokes) and chronic hepatitis data
(albumin-platelet trajectories and cholinesterase-
platelet trajectories). Finally, Section 4 is a con-
clusion of this paper.

2 Methods

2.1 Overview

Figure 1 1 shows an overview of the whole pro-
cess of clustering of trajectories. First, we ap-
ply preprocessing of a raw temporal sequence
for each variable (Subsection 2.2). Secondly,
a trajectory of laboratory tests is calculated for
each patient, segmentation technique is applied to
each sequence for generation of a segmentation
hiearchy (Subsection 2.3). Third, we trace sege-
mented sequences and search for matching be-
tween two sequences in a hiearchical way (Sub-
section 2.4). Then, dissimilarities are calculated
for matched sequences (Subsection 2.5 and 2.6).
Finally, we apply clustering to the dissimilarities
obtained (Subsection 2.7).

Preprocessing

Segmentation and Generation of 
Multiscale Trajectories 

Segment Hierarchy Trace 
and Matching

Calculation of Dissimilarities

Clustering of Trajectories

Figure 1: Overview of Trajectory Clustering

2.2 Preprocessing

Time-series examination data is often represented
as a tuple of examination date and results. In-
terval of examinations is usually irregular, as it
depends on the condition of a patient. However,
in the process of multiscale matching, it is nec-
cessary to represent time-series as a set of data
points with a constant interval in order to repre-
sent the time span by the number of data points.
Therefore, we employed linear interpolation and
constructed new equi-interval data.

2.3 Multiscale Description of Trajectories by
the Modified Bessel Function

Let us consider examination data for one person,
consisting of I different time-series examinations.
Let us denote the time series of i-th examination
by exi(t), where i ∈ I . Then the trajectory of
examination results, c(t) is denoted by

c(t) = {ex1(t), ex2(t), . . . , exI(t)}
Next, let us denote an observation scale by σ and
denote a Gaussian function with scale parameter
σ2 by g(t, σ). Then the time-series of the i-th ex-
amination at scale σ, EXi(t, σ) is derived by con-
voluting exi(t) with g(t, σ) as follows.

EXi(t, σ) = exi(t)⊗ g(t, σ)

=
∫ +∞

−∞
exi(u)
σ
√

2π
e
−(t−u)2

2σ2 du

Applying the above convolution to all examina-
tions, we obtain the trajectory of examination re-
sults at scale σ, C(t, σ), as

C(t, σ)
= {EX1(t, σ), EX2(t, σ), . . . , EXI(t, σ)}

By changing the scale factor σ, we can represent
the trajectory of examination results at various ob-
servation scales. Figure 2 illustrates an example
of multiscale representation of trajectories where
I = 2. Increase of σ induces the decrease of con-
volution weights for neighbors. Therefore, more
flat trajectories with less inflection points will be
observed at higher scales.

Curvature of the trajectory at time point t is de-
fined by, for I = 2,

K(t, σ) =
EX ′

1EX ′′
2 + EX ′′

1 EX ′
2

(EX ′
1
2 + EX ′

2
2)3/2
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Figure 2: Multiscale representation and matching
scheme.

where EX ′
i and EX ′′

i denotes the first- and
second-order derivatives of EXi(t, σ) respec-
tively. The m-th order derivative of EXi(t, σ),
EX

(m)
i (t, σ), is defined by

EX
(m)
i (t, σ) =

∂mEXi(t, σ)
∂tm

= exi(t)⊗ g(m)(t, σ)

It should be noted that many of the real-world
time-series data, including medical data, can be
discrete in time domain. Thus, a sampled Gaus-
sian kernel is generally used for calculation of
EXi(t, σ), changing an integral to summation.
However, Lindeberg [2] pointed out that, a sam-
pled Gaussian may lose some of the properties
that a continuous Gaussian has, for example, non-
creation of local extrema with the increase of
scale. Additionally, in a sampled Gaussian ker-
nel, the center value can be relatively large and
imbalanced when the scale is very small. Ref. [2]
suggests the use of kernel based on the modified
Bessel function, as it is derived by incorporating
the discrete property. Since this influences the de-
scription ability about detailed structure of trajec-
tories, we employed the Lindeberg’s kernel and
derive EXi(t, σ) as follows.

EXi(t, σ) =
∞∑

n=−∞
e−σIn(σ)exi(t− n)

where In(σ) denotes the modified Bessel function
of order n. The first- and second-order derivatives

of EXi(t, σ) are obtained as follows.

EX
′
i(t, σ) =

∞∑
n=−∞

−n

σ
e−σIn(σ)exi(t− n)

EX
′′
i (t, σ) =

∞∑
n=−∞

1
σ

(
n2

σ
− 1)

×e−σIn(σ)exi(t− n)

2.4 Segment Hierarchy Trace and Matching

For each trajectory represented by multiscale de-
scription, we find the places of inflection points
according to the sign of curvature. Then we di-
vide each trajectory into a set of convex/concave
segments, where both ends of a segment corre-
spond to adjacent inflection points. Let A be
a trajectory at scale k composed of M (k) seg-
ments. Then A is represented by A(k) = {a(k)

i |
i = 1, 2, · · · , M (k)}, where a

(k)
i denotes i-th seg-

ment at scale k. Similarly, another trajectory B

at scale h is represented by B(h) = {b(h)
j | j =

1, 2, · · · , N (h)}.
Next, we chase the cross-scale correspondence of
inflection points from top scales to bottom scale.
It defines the hierarchy of segments and enables
us to guarantee the connectivity of segments rep-
resented at different scales. Details of the algo-
rithm for checking segment hierarchy is available
on ref. [1]. In order to apply the algorithm for
closed curve to open trajectory, we modified it to
allow replacement of odd number of segments at
sequence ends, since cyclic property of a set of
inflection points can be lost.

The main procedure of multiscale matching is to
search the best set of segment pairs that satisfies
both of the following conditions:

1. Complete Match: By concatenating all seg-
ments, the original trajectory must be com-
pletely formed without any gaps or overlaps.

2. Minimal Difference: The sum of segment
dissimilarities over all segment pairs should
be minimized.

The search is performed throughout all scales.
For example, in Figure 2, three contiguous seg-
ments a

(0)
3 −a

(0)
5 at the lowest scale of case A can
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be integrated into one segment a
(2)
1 at upper scale

2, and the replaced segment well matches to one
segment b

(0)
3 of case B at the lowest scale. Thus

the set of the three segments a
(0)
3 − a

(0)
5 and one

segment b
(0)
3 will be considered as a candidate for

corresponding segments. On the other hand, seg-
ments such as a

(0)
6 and b

(0)
4 are similar even at the

bottom scale without any replacement. Therefore
they will be also a candidate for corresponding
segments. In this way, if segments exhibit short-
term similarity, they are matched at a lower scale,
and if they present long-term similarity, they are
matched at a higher scale.

2.5 Local Segment Difference

In order to evaluate the structural (dis-)similarity
of segments, we first describe the structural fea-
ture of a segment by using shape parameters de-
fined below.

1. Gradient at starting point: g(a(k)
m )

2. Rotation angle: θ(a(k)
m )

3. Velocity: v(a(k)
m )

Figure 3 illustrates these parameters. Gradient
represents the direction of the trajectory at the be-
ginning of the segment. Rotation angle represents
the amount of change of direction along the seg-
ment. Velocity represents the speed of change in
the segment, which is calculated by dividing seg-
ment length by the number of points in the seg-
ment.
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Figure 3: Segment Parameters.

Next, we define the local dissimilarity of two seg-
ments, a

(k)
m and b

(h)
n , as shown in Fig. 4, where

cost() denotes a cost function used for suppress-
ing excessive replacement of segments, and γ is
the weight of costs. We define the cost function
using local segment dissimilarity as follows. For

a segment a
(k)
m that replaces p segments a

(0)
r −

a
(0)
r+p−1 at the bottom scale,

cost(a(k)
m ) =

r+p−1∑
q=r

d(a(0)
q , a

(0)
q+1)

2.6 Sequence Dissimilarity

After determining the best set of segment pairs,
we newly calculate value-based dissimilarity for
each pair of matched segments. The local seg-
ment dissimilarity defined in the previous sec-
tion reflects the structural difference of segments,
but does not reflect the difference of original se-
quence values; therefore, we calculate the value-
based dissimilarity that can be further used as a
metric for proximity in clustering.

Suppose we obtained L pairs of matched seg-
ments after multiscale matching of trajectories A
and B. The value-based dissimilarity between A
and B, Dval(A, B), is defined as follows.

Dval(A, B) =
L∑

l=1

dval(αl, βl)

where αl denotes a set of contiguous segments
of A at the lowest scale that constitutes the l-
th matched segment pair (l ∈ L), and βl de-
notes that of B. For example, suppose that seg-
ments a

(0)
3 ∼ a

(0)
5 of A and segment b

(0)
3 of B in

Figure 2 constitute the l-th matched pair. Then,
αl = a

(0)
3 ∼ a

(0)
5 and βl = b

(0)
3 , respectively.

dval(αl, βl) is the difference between αl and βl in
terms of data values at the peak and both ends of
the segments. For the i-th examination (i ∈ I),
dvali(αl, βl) is defined as

dvali(αl, βl) = peaki(αl)− peaki(βl)

+
1
2
{lefti(αl)− lefti(βl)}

+
1
2
{righti(αl)− righti(βl)}

where peaki(αl), lefti(αl), and righti(αl) de-
note data values of the i-th examination at the
peak, left end and right end of segment αl, respec-
tively. If αl or βl is composed of plural segments,
the centroid of the peak points of those segments
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d(a(k)
m , b(h)

n ) =

√(
g(a(k)

m )− g(b(h)
n )

)2
+

(
θ(a(k)

m )− θ(b(h)
n )

)2

+
∣∣∣v(a(k)

m )− v(b(h)
n )

∣∣∣ + γ
{

cost(a(k)
m ) + cost(b(h)

n )
}

Figure 4: Formula for Local Dissimilarity of Two Segments

is used as the peak of αl. Finally, dvali is inte-
grated over all examinations as follows.

dval(αl, βl) =
1
I

√∑
i

dvali(αl, βl)

2.7 Clustering

For clustering, we employ two methods: ag-
glomerative hierarchical clustering (AHC) [3] and
rough set-based clustering (RC) [4]. The se-
quence comparison part performs pairwise com-
parison for all possible pairs of time series, and
then produces a dissimilarity matrix. The cluster-
ing part performs grouping of trajectories accord-
ing to the given dissimilarity matrix.

3 Experimental Results

We applied our method to the chronic hep-
atitis dataset which was a common dataset in
ECML/PKDD discovery challenge 2002-2004
[5]. The dataset contained time series laboratory
examinations data collected from 771 patients of
chronic hepatitis B and C. In this work, we fo-
cused on analyzing the temporal relationships be-
tween platelet count (PLT), albumin (ALB) and
cholinesterase (CHE), that were generally used to
examine the status of liver function. Our goals
were set to: (1) find groups of trajectories that ex-
hibit interesting patterns, and (2) analyze the rela-
tionships between these patterns and the stage of
liver fibrosis.

We selected a total of 488 cases which had valid
examination results for all of PLT, ALB, CHE and
liver biopsy. Constitution of the subjects classi-
fied by virus types and administration of inter-
feron (IFN) was as follows. Type B: 193 cases,
Type C with IFN: 296 cases, Type C without IFN:
99 cases. In the following sections, we mainly de-
scribe the results about Type C without IFN cases,

which contained the natural courses of Type C vi-
ral hepatitis.

Experiments were conducted as follows. This
procedure was applied separately for CHE-PLT
trajectories.

1. Select a pair of cases (patients) and calcu-
late the dissimilarity by using the proposed
method. Apply this procedure for all pairs of
cases, and construct a dissimilarity matrix.

2. Create a dendrogram by using conventional
hierarchical clustering [3] and the dissimilar-
ity matrix. Then perform cluster analysis.

Parameters for multiscale matching were empir-
ically determined as follows: starting scale =
0.5, scale interval = 0,5, number of scales =
100, weight for segment replacement cost = 1.0.
We used group average as a linkage criterion for
hierarchical clustering. The experiments were
performed on a small PC cluster consisted of
8 DELL PowerEdge 1750 (Intel Xeon 2.4GHz
2way) workstations. It took about three minutes
to make the dissimilarity matrix for all cases.

3.1 Results on CHE-PLT trajectories

Figure 5 shows the dendrogram generated from
CHE-PLT trajectories of 99 Type C without IFN
cases. Similarly to the case of ALB-PLT trajecto-
ries, we split the data into 15 clusters where dis-
similarity increased largely at early stage. Table 1
provides cluster constitution stratified by fibrotic
stage. In Table 1, we could observe a clear feature
about the distribution of fibrotic stages over clus-
ters. Clusters such as 3, 4, 6, 7 and 8 contained
relatively large number of F3/F4 cases, whereas
clusters such as 9, 11, 12, 13, 14, 15 contained
no F3/F4 cases. These two types of clusters were
divided at the second branch on the dendrogram;
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Figure 5: Dendrogram for Type
C without IFN dataset (CHE-
PLT trajectories).

Table 1: Cluster constitutions of CHE-
PLT trajectories, stratified by fibrotic
stages. Small clusters of N < 2 were
omitted.
Cluster # of Cases / Fibrotic stage Total

F0,F1 F2 F3 F4

3 0 0 1 3 4
4 2 1 2 7 12
6 3 0 1 2 6
7 5 2 3 3 13
8 9 8 4 2 23
9 1 2 0 0 3

11 4 2 0 0 6
12 2 0 1 0 3
13 5 0 0 0 5
14 8 0 0 0 8
15 12 0 0 0 12

therefore it implied that, with respect to the simi-
larity of trajectories, the data can be globally split
into two categories, one contains the progressed
cases and another contained un-progressed cases.

Now let us examine the features of trajectories
grouped into each cluster. Figure 6 shows CHE-
PLT trajectories grouped into cluster 3. The bot-
tom part of the figure provides the legend. The
horizontal axis corresponds to CHE, and the ver-
tical axis corresponds to PLT. This cluster con-
tained four cases: one F3 and three F4. The tra-
jectories settled around the lower bounds of the
normal range for PLT (120× 103/ul), and below
the lower bounds of CHE (180 IU/l), with global
direction toward lower values. This meant that,
in these cases, CHE deviated from normal range
earlier than PLT.

Figure 7 shows trajectories grouped into cluster 4,
which contained nine F3/F4 cases and three other
cases. Trajectories in this cluster exhibited inter-
esting characteristics. First, they had very clear
descending shapes; in contrast to trajectories in
other clusters in which trajectories changed direc-
tions frequently and largely, they moved toward
the left corner with little directional changes. Sec-
ond, most of the trajectories settled below the
normal bound of PLT whereas their CHE values
ranged within normal range at early phase. This
meant that, in these cases, CHE deviated from
normal range later than PLT.

Figure 8 shows trajectories grouped into cluster 6,
which contained three F3/F4 cases and three other
cases. Trajectories in this cluster exhibited de-
scending shapes similarly to the cases in cluster 4.
The average levels of PLT were higher than those
in cluster 4, and did not largely deviated from the
normal range. CHE remained within the normal
range for most of the observations.

Figure 9 shows trajectories grouped into cluster
15, which contained twelve F0/F1 cases and no
other cases. In contrast to the high stage cases
mentioned above, trajectories settled within the
normal ranges for both CHE and PLT and did not
exhibit any remarkable features about their direc-
tions.

These results suggested the followings about the
CHE-PLT trajectories on type C without IFN
cases used in this experiment: (1) They could be
globally divided into two categories, one contain-
ing high-stage cases and another containing low-
stage cases, (2) trajectories in some high-stage
clusters exhibited very clear descending shapes.
(3) in a group containing descending trajectories,
PLT deviated from normal range faster than CHE,
however, in another group containing descending
trajectories, PLT deviated from normal range later
than CHE.

4 Conclusions

In this paper we propose a trajectory clustering
method as multivariate temporal data mining and
shows its application to data on chronic hepatits.
Our method consists of a two-stage approach.
Firstly, it compares two trajectories based on their
structural similarity and determines the best cor-

1784 Proceedings of IPMU’08



Cluster 3: N=4 (0/0/1/3)

CHE

PLT

t=0

t=T

Upper Normal
(350 x103/ul)

Lower Normal
(120 x103/ul)

Upper Normal
(430 IU/l)

Lower Normal
(180 IU/l)

<Legend>

Cluster 3: N=4 (0/0/1/3)

CHE

PLT

t=0

t=T

Upper Normal
(350 x103/ul)

Lower Normal
(120 x103/ul)

Upper Normal
(430 IU/l)

Lower Normal
(180 IU/l)

<Legend>

Figure 6: Trajectories in Cluster 3.
Cluster 4: N=12 (2/1/2/7)Cluster 4: N=12 (2/1/2/7)

Figure 7: Trajectories in Cluster 4.

respondence of partial trajectories. Next, it calcu-
lates the value-based dissimilarity for the all pairs
of matched segments and outputs the total sum as
dissimilarity of the two trajectories.

Clustering experiments on the chronic hepatitis
dataset yielded several interesting results. First,
the clusters constructed with respect to the simi-
larity of trajectories well matched with the distri-
bution of fibrotic stages, especially with the dis-
tribution of high-stage cases and low-stage cases,
for ALB-PLT, CHE-PLT and ALB-CHE trajec-
tories. Among three combinations, ALB-CHE
shows the highest degree of covariance, which
means that CHE can be used to evaluate the trends
of ALB.

Our next step is to extend bivariate trajectory
analysis into multivariate one. From the view-
point of medical application, our challenging is-
sue will be to find a variable whose chronological
trend is fitted to PLT.

Cluster 6: N=6 (3/0/1/2)Cluster 6: N=6 (3/0/1/2)

Figure 8: Trajectories in Cluster 6.
Cluster 15: N=12 (12/0/0/0)Cluster 15: N=12 (12/0/0/0)

Figure 9: Trajectories in Cluster 15.
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