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Abstract

In the paper, two families of lazy
classification algorithms of polyno-
mial time complexity are considered.
These algorithms are based on deter-
ministic (with a relation “attribute
= value” on the right hand side)
and inhibitory (with a relation “at-
tribute 6= value” on the right hand
side) rules, but the direct genera-
tion of rules is not required. In-
stead of this, the considered algo-
rithms extract efficiently for a new
object some information about the
set of rules which is next used by a
decision-making procedure. Results
of experiments show that the per-
formance of algorithms based on in-
hibitory rules is in many cases better
than the performance of algorithms
based on deterministic rules.

Keywords: Rough sets, Decision
tables, Information systems, Deter-
ministic rules, Inhibitory rules.

1 Introduction

Let S = (U,A) be an information system [9,
10], where U is a finite set of objects and A
is a finite set of attributes (functions defined
on U). We consider both deterministic and
inhibitory rules of the following form:

a1 = b1 ∧ . . . ∧ at = bt ⇒ at+1 = bt+1,

a1 = b1 ∧ . . . ∧ at = bt ⇒ at+1 6= bt+1,

respectively, where a1, . . . , , at+1 are at-
tributes from A and b1, . . . , , bt+1 are values of
these attributes. We consider only true and
realizable rules. True means that the rule is
true for any object from U . Realizable means
that the left hand side of the rule is true for
at least one object from U .

We identify objects from U with tuples of val-
ues of attributes from A on these objects. Let
V be the Cartesian product of ranges of at-
tributes from A. We say that the set U can be
described by deterministic (inhibitory) rules
if there exists a set Q of true and realizable
deterministic (inhibitory) rules such that the
set of objects from V , for which all rules from
Q are true, coincides with U . In [12, 14] it
was shown that there exist information sys-
tems S = (U,A) such that the set U can not
be described by deterministic rules. In [7] it
was shown that for any information system
S = (U,A) the set U can be described by
inhibitory rules. It means that the inhibitory
rules can express essentially more information
encoded in information systems than the de-
terministic rules. This fact is a motivation
for more wide use of inhibitory rules, in par-
ticular, in classification algorithms and in al-
gorithms for synthesis of concurrent systems
[12, 13]. There is an additional (intuitive)
motivation for the use of inhibitory rules in
classification algorithms: the support of in-
hibitory rules is very often larger than the
support of deterministic rules.

To compare the “classification power” of in-
hibitory and deterministic rules we developed
two analogous families of lazy classification
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algorithms based on deterministic and in-
hibitory rules respectively [6]. Results of ex-
periments from [6] show that the algorithms
based on inhibitory rules are noticeably bet-
ter than the algorithms based on determinis-
tic rules. In this paper, results of additional
experiments with these lazy classification al-
gorithms are reported.

In the paper, the following classification prob-
lem is considered: for a given decision table
T and a new object v generate a value of the
decision attribute on v using values of condi-
tional attributes on v.

To this end, we extract from the decision table
T a number of information systems Si, for i ∈
Vd, where Vd is the set of values of the decision
attribute d in T . For i ∈ Vd, the information
system Si contains only objects (rows) of T
with the value of the decision attribute equal
to i.

For each information system Si and a given
object v, it is constructed (using polynomial-
time algorithm) the so called characteristic ta-
ble. For any object u from Si and for any at-
tribute a from Si, the characteristic table con-
tains the entry encoding information if there
exist a rule which (i) is true for each object
from Si; (ii) is realizable for u, (iii) is not true
for v, and (iv) has the attribute a on the right
hand side. Based on the characteristic table
the decision on the “degree” to which v be-
longs to Si is computed, for any i, and a deci-
sion i with the maximal “degree” is selected.

Note that in [13] for classifying new objects
it was proposed to use deterministic rules de-
fined by conditional attributes in different de-
cision classes.

In this paper, we consider both deterministic
and inhibitory rules. Using these two kinds
of rules and different evaluation functions a
“degree” to which v belongs to Si is computed
by two families of classification algorithms.

In the literature, one can find a number of pa-
pers which are based on the analogous ideas:
instead of construction of huge sets of rules
it is possible to extract some information on
such sets using algorithms having polynomial

time complexity.

In [2, 3, 4] it is considered an approach based
on decision rules (with decision attribute on
the right hand side). These rules are obtained
from the whole decision table T . The consid-
ered algorithms find, for a new object v and
any decision i, the number of objects u from
the information system Si such that there ex-
ists a decision rule r satisfying the following
conditions: (i) r is true for the decision table
T , (ii) r is realizable for u and v, and (iii) r
has the equality d = i on the right hand side,
where d is the decision attribute.

This approach was generalized by A. Wojna
[15] to the case of decision tables with not only
nominal but also numerical attributes.

Note that such algorithms can be considered
as a kind of lazy learning algorithms [1].

The paper consists of five sections. In Sect.
2 the notions of deterministic and inhibitory
characteristic tables, as well as the notion of
evaluation function are introduced. Defini-
tions of two families of lazy classification al-
gorithms are included in Sect. 3. In Sect. 4
results of experiments are reported. Sect. 5
contains short conclusions.

2 Characteristic Tables

2.1 Information Systems

Let S = (U,A) be an information system,
where U = {u1, . . . , un} is a finite nonempty
set of objects and A = {a1, . . . , am} is a finite
nonempty set of attributes (functions defined
on U). We assume that for each ui ∈ U and
each aj ∈ A the value aj(ui) belongs to ω,
where ω = {0, 1, 2, . . .} is the set of nonnega-
tive integers.

The information system S = (U,A) can be
represented by a tabular representation, i.e., a
table with m columns and n rows. Columns of
the table are labeled by attributes a1, . . . , am.
At the intersection of i-th row and j-th col-
umn the value aj(ui) is included.

The set U(S) = ωm is called the universe for
the information system S. Besides objects
from U we consider also objects from U(S).
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For any object (tuple) v ∈ U(S) and any at-
tribute aj ∈ A the value aj(v) is equal to j-th
integer in v.

2.2 Deterministic Characteristic
Tables

Let us consider a rule

aj1 = b1 ∧ . . . ∧ ajt = bt ⇒ ak = bk, (1)

where t ≥ 0, aj1 , . . . , ajt , ak ∈ A,
b1, . . . , bt, bk ∈ ω, and numbers j1, . . . , jt, k
are pairwise different. Such rules are called
deterministic rules. The rule (1) is realiz-
able for an object u ∈ U(S) if aj1(u) =
b1, . . . , ajt(u) = bt or t = 0. The rule (1) is
true for an object u ∈ U(S) if ak(u) = bk or
(1) is not realizable for u. The rule (1) is true
for S if it is true for any object from U . The
rule (1) is realizable for S if it is realizable
for at least one object from U . By Det(S) we
denote the set of all deterministic rules each
of which is true for S and realizable for S.

Let ui ∈ U , v ∈ U(S), ak ∈ A and ak(ui) 6=
ak(v). We say that a rule (1) from Det(S)
contradicts v relative to ui and ak (or,
(ui, ak)-contradicts v, for short) if (1) is re-
alizable for ui but is not true for v. Our
aim is to recognize for given objects ui ∈ U
and v ∈ U(S), and given attribute ak such
that ak(ui) 6= ak(v) if there exist a rule from
Det(S) which (ui, ak)-contradicts v.

Let M(ui, v) = {aj : aj ∈ A, aj(ui) = aj(v)}
and P (ui, v, ak) = {ak(u) : u ∈ U, aj(u) =
aj(v) for any aj ∈ M(ui, v)}. Note that
|P (ui, v, ak)| ≥ 1.

In [6] it is shown that in Det(S) there exists
a rule (ui, ak)-contradicting v if and only if
|P (ui, v, ak)| = 1.

Hence, it follows that there exists polynomial
algorithm recognizing, for a given information
system S = (U,A), given objects ui ∈ U and
v ∈ U(S), and a given attribute ak ∈ A such
that ak(ui) 6= ak(v), if there exist a rule from
Det(S), (ui, ak)-contradicting v.

This algorithm constructs the set M(ui, v)
and the set P (ui, v, ak). The considered rule
exists if and only if |P (ui, v, ak)| = 1.

We also use the notion of deterministic char-
acteristic table D(S, v), where v ∈ U(S). This
is a table with m columns and n rows. The en-
tries of this table are binary (i.e., from {0, 1}).
The number 0 is at the intersection of i-th row
and k-th column if and only if ak(ui) 6= ak(v)
and there exists a rule from Det(S), (ui, ak)-
contradicting v.

It is clear that there exists a polynomial al-
gorithm which for a given information system
S = (U,A) and a given object v ∈ U(S) con-
structs the deterministic characteristic table
D(S, v).

2.3 Inhibitory Characteristic Tables

Let us consider a rule

aj1 = b1 ∧ . . . ∧ ajt = bt ⇒ ak 6= bk, (2)

where t ≥ 0, aj1 , . . . , ajt , ak ∈ A,
b1, , . . . , bt, bk ∈ ω, and numbers j1, . . . , jt, k
are pairwise different. Such rules are called
inhibitory rules. The rule (2) is realiz-
able for an object u ∈ U(S) if aj1(u) =
b1, . . . , ajt(u) = bt or t = 0. The rule (2) is
true for an object u ∈ U(S) if ak(u) 6= bk or
(2) is not realizable for u. The rule (2) is true
for S if it is true for any object from U . The
rule (2) is realizable for S if it is realizable
for at least one object from U . By Inh(S) we
denote the set of all inhibitory rules each of
which is true for S and realizable for S.

Let ui ∈ U , v ∈ U(S), ak ∈ A and ak(ui) 6=
ak(v). We say that a rule (2) from Inh(S)
contradicts v relative to the object ui and
the attribute ak (or (ui, ak)-contradicts v, for
short) if (2) is realizable for ui but is not true
for v. Our aim is to recognize for given objects
ui ∈ U and v ∈ U(S), and given attribute ak

such that ak(ui) 6= ak(v) if there exist a rule
from Inh(S), (ui, ak)-contradicting v.

In [6] it is shown that in Inh(S) there is a rule
(ui, ak)-contradicting v if and only if ak(v) /∈
P (ui, v, ak).

Hence, it follows that there exists polynomial
algorithm recognizing for a given information
system S = (U,A), given objects ui ∈ U and
v ∈ U(S), and a given attribute ak ∈ A such
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that ak(ui) 6= ak(v) if there exist a rule from
Inh(S), (ui, ak)-contradicting v.

This algorithm constructs the set M(ui, v)
and the set P (ui, v, ak). The considered rule
exists if and only if ak(v) /∈ P (ui, v, ak).

In the sequel, we use the notion of inhibitory
characteristic table I(S, v), where v ∈ U(S).
This is a table with m columns and n rows.
The entries of this table are binary. The num-
ber 0 is at the intersection of i-th row and
k-th column if and only if ak(ui) 6= ak(v)
and there exists a rule from Inh(S), (ui, ak)-
contradicting v.

It is clear that there exists a polynomial al-
gorithm which for a given information sys-
tem S = (U,A) and a given object v ∈ U(S)
constructs the inhibitory characteristic table
I(S, v).

2.4 Evaluation Functions

Let us denote by T the set of binary tables,
i.e., tables with entries from {0, 1} and let us
consider a partial order ¹ on T . Let Q1, Q2 ∈
T . Then Q1 ¹ Q2 if and only if Q1 = Q2 or
Q1 can be obtained from Q2 by changing some
entries from 1 to 0.

An evaluation function is an arbitrary func-
tion W : T → [0, 1] such that W (Q1) ≤
W (Q2) for any Q1, Q2 ∈ T , Q1 ¹ Q2. Let
us consider five examples of evaluation func-
tions W1, W2, Wα

3 , W4, and Wα
5 , 0 < α ≤ 1.

Let Q be a table from T with m columns and
n rows. Let L1(Q) be equal to the number
of 1 in Q, L2(Q) be equal to the number of
columns in Q filled by 1 only, Lα

3 (Q) be equal
to the number of columns in Q with at least
α · 100% entries equal to 1, L4(Q) be equal to
the number of rows in Q filled by 1 only, and
Lα

5 (Q) be equal to the number of rows in Q
with at least α ·100% entries equal to 1. Then
W1(Q) = L1(Q)

mn , W2(Q) = L2(Q)
m , Wα

3 (Q) =
Lα

3 (Q)
m , W4(Q) = L4(Q)

n , and Wα
5 (Q) = Lα

5 (Q)
n .

Note that W2 = W 1
3 and W4 = W 1

5 .

3 Algorithms of Classification

A decision table T is a finite table filled by
nonnegative integers. Each column of this ta-
ble is labeled by a conditional attribute. Rows
of the table are interpreted as tuples of val-
ues of conditional attributes on some objects.
Each row is labeled by a nonnegative integer,
which is interpreted as the value of decision
attribute. Let T contain m columns labeled
by conditional attributes a1, . . . , am. The set
U(T ) = ωm will be called the universe for
the decision table T . For each object (tuple)
v ∈ U(T ) integers in v are interpreted as val-
ues of attributes a1, . . . , am for this object.

We consider the following classification prob-
lem: for any object v ∈ U(T ) it is required
to generate a value of decision attribute on v.
To this end, we use D-classification algorithms
and I-classification algorithms based on the
deterministic characteristic table and the in-
hibitory characteristic table.

Let Vd be the set of values of decision at-
tribute. For each i ∈ Vd, let us denote by
Si the information system which tabular rep-
resentation consists of all rows of T , that are
labeled by the decision i. Let W be an evalu-
ation function.

D-algorithm. For a given object v and i ∈ Vd

we construct the deterministic characteristic
table D(Si, v). Next, for each i ∈ Vd we
find the value of the evaluation function W
for D(Si, v). For each i ∈ Vd the value
W (D(Si, v)) is interpreted as the “degree” to
which v belongs to Si. As the value of de-
cision attribute for v we choose i ∈ Vd such
that W (D(Si, v)) has the maximal value. If
more than one such i exists then we choose
the minimal i for which W (D(Si, v)) has the
maximal value.

I-algorithm. For a given object v and i ∈ Vd

we construct the inhibitory characteristic ta-
ble I(Si, v). Next, for each i ∈ Vd we find
the value of the evaluation function W for
I(Si, v). For each i ∈ Vd the value W (I(Si, v))
is interpreted as the “degree” to which v be-
longs to Si. As the value of decision attribute
for v we choose i ∈ Vd such that W (I(Si, v))
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has the maximal value. If more than one such
i exists then we choose the minimal i for which
W (I(Si, v)) has the maximal value.

4 Results of Experiments

We have performed experiments with follow-
ing algorithms: D-algorithm with the evalu-
ation functions W1, W2, Wα

3 , W4 and Wα
5 ,

and I-algorithm with the evaluation func-
tions W1, W2, Wα

3 , W4 and Wα
5 , α ∈

{0.05, 0.10, . . . , 0.90, 0.95}. To evaluate er-
ror rate of an algorithm on a decision table,
we use either train-and-test method or cross-
validation method. For evaluation functions
Wα

3 and Wα
5 , we choose the minimal error rate

among all considered α.

In our experiments, we use decision tables
from [8] which were not considered in [6].
For each initial table, we choose a number of
many-valued (with at least three values) at-
tributes different from the decision attribute,
and consider each such attribute as a new de-
cision attribute. In this way, we obtain the
same number of new decision tables as the
number of chosen attributes.

The following decision tables from [8] were
used in our experiments: balance-scale (5 at-
tributes, 625 objects, 10-fold cross-validation,
4 new decision attributes), soybean-large (35
attributes, 307 objects in training set, 376
objects in testing set, 5 new decision at-
tributes), post-operative (9 attributes, 90 ob-
jects, 10-fold cross-validation, 8 new decision
attributes), hayes-roth (5 attributes, 132 ob-
jects in training set, 28 objects in testing set,
4 new decision attributes), lung-cancer (57 at-
tributes, 32 objects, 10-fold cross-validation,
7 new decision attributes), solar-flare (13 at-
tributes, 1066 objects in training set, 323 ob-
jects in testing set, 7 new decision attributes).
Missing values in decision tables were filled by
an algorithm from RSES2 [11]. We removed
attributes of the kind “name” that are injec-
tions on the set of objects. As a result we
obtained 41 decision tables (initial and new).

Table 1 includes the results of experiments.
The rows of this table correspond to the eval-
uation functions W1, W2, Wα

3 , W4 and Wα
5 .

The column labeled by “D < I” contains the
number of decision tables for which the er-
ror rate of D-algorithm is less than the error
rate of I-algorithm. The column labeled by
“I < D” contains the number of decision ta-
bles for which the error rate of I-algorithm is
less than the error rate of D-algorithm. The
column labeled by “D = I” contains the num-
ber of decision tables for which the error rate
of D-algorithm is equal to the error rate of
I-algorithm.

Table 1: Results of experiments.
Eval. func. D < I I < D D = I

W1 14 14 13
W2 13 12 16
Wα

3 6 23 12
W4 13 15 13
Wα

5 13 12 16∑
59 76 70

In particular (see Table 1), in 59 cases the
error rate of D-algorithm is less than the error
rate of I-algorithm, in 76 cases the error rate
of I-algorithm is less than the error rate of D-
algorithm, and in 70 cases D-algorithm and
I-algorithm have the same error rate.

In experiments the DMES system [5] was
used.

5 Conclusions

In the paper, two families of lazy classification
algorithms are considered which are based
on the evaluation of the number of types of
true and realizable deterministic or inhibitory
rules which give us arguments “against” some
decisions for new objects. The reported ex-
periments for algorithms based on inhibitory
rules are, often, better than the results for
algorithms based on deterministic rules. This
fact can be considered as an experimental con-
firmation of theoretical results from [12, 14, 7]
which show that the inhibitory rules can
sometimes represent more knowledge encoded
in information systems than the deterministic
rules.
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