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Abstract

This paper focuses on how statisti-
cal independence can be observed in
a contingency table when the table
is viewed as a matrix. Statistical in-
dependence in a contingency table is
represented as a special form of lin-
ear dependence, where all the rows
or columns are described by one row
or column, respectively.
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1 Introduction

Statistical independence between two at-
tributes is a very important concept in
data mining and statistics. The definition
P (A, B) = P (A)P (B) show that the joint
probability of A and B is the product of both
probabilities. This gives several useful for-
mula, such as P (A|B) = P (A), P (B|A) =
P (B). In a data mining context, these formu-
lae show that these two attributes may not
be correlated with each other. Thus, when A
or B is a classification target, the other at-
tribute may not play an important role in its
classification.

Although independence is a very important
concept, it has not been fully and formally
investigated as a relation between two at-
tributes.

In this paper, a statistical independence in a

contingency table is focused on from the view-
point of granular computing.

The first important observation is that a con-
tingency table compares two attributes with
respect to information granularity. It is shown
from the definition that statistifcal indepen-
dence in a contingency table is a special form
of linear depedence of two attributes. Espe-
cially, when the table is viewed as a matrix,
the above discussion shows that the rank of
the matrix is equal to 1.0. Also, the results
also show that partial statistical independence
can be observed.

The second important observation is that ma-
trix algebra is a key point of analysis of this
table. A contingency table can be viewed as
a matrix and several operations and ideas of
matrix theory are introduced into the analysis
of the contingency table.

The paper is organized as follows: Section
2 discusses the characteristics of contingency
tables. Section 3 shows the conditions on sta-
tistical independence for a 2 × 2 table. Sec-
tion 4 gives those for a 2 × n table. Section
5 extends these results into a multi-way con-
tingency table. Section 6 discusses statistical
independence from matrix theory. Section 7
and 8 show pseudo statistical independence.
Finally, Section 9 concludes this paper.
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2 Contingency Table from Rough
Sets

2.1 Rough Sets Notations

In the subsequent sections, the following no-
tations is adopted, which is introduced in [2].
Let U denote a nonempty, finite set called the
universe and A denote a nonempty, finite set
of attributes, i.e., a : U → Va for a ∈ A,
where Va is called the domain of a, respec-
tively. Then, a decision table is defined as an
information system, A = (U, A∪ {D}), where
{D} is a set of given decision attributes. The
atomic formulas over B ⊆ A∪{D} and V are
expressions of the form [a = v], called descrip-
tors over B, where a ∈ B and v ∈ Va. The
set F (B, V ) of formulas over B is the least
set containing all atomic formulas over B and
closed with respect to disjunction, conjunc-
tion and negation. For each f ∈ F (B, V ), fA

denote the meaning of f in A, i.e., the set
of all objects in U with property f , defined
inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈
U |a(s) = v}

2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA;
(¬f)A = U − fa

By using this framework, classification accu-
racy and coverage, or true positive rate is de-
fined as follows.

Definition 1
Let R and D denote a formula in F (B, V )
and a set of objects whose decision attribute
is given as 	, respectively. Classification ac-
curacy and coverage(true positive rate) for
R → D is defined as:

αR(D) =
|RA ∩D|
|RA| (= P (D|R)), and

κR(D) =
|RA ∩D|
|D| (= P (R|D)),

where |A| denotes the cardinality of a set A,
αR(D) denotes a classification accuracy of R
as to classification of D, and κR(D) denotes
a coverage, or a true positive rate of R to D,
respectively.

2.2 Two-way Contingency Table

From the viewpoint of information systems,
a contingency table summarizes the relation
between two attributes with respect to fre-
quencies. This viewpoint has already been
discussed in [3, 4]. However, this study fo-
cuses on more statistical interpretation of this
table.

Definition 2 Let R1 and R2 denote binary
attributes in an attribute space A. A contin-
gency table is a table of a set of the meaning
of the following formulas: |[R1 = 0]A|,|[R1 =
1]A|, |[R2 = 0]A|,|[R1 = 1]A|, |[R1 = 0 ∧R2 =
0]A|,|[R1 = 0 ∧ R2 = 1]A|, |[R1 = 1 ∧ R2 =
0]A|,|[R1 = 1 ∧ R2 = 1]A|, |[R1 = 0 ∨ R1 =
1]A|(= |U |). This table is arranged into the
form shown in Table 1, where: |[R1 = 0]A| =
x11 +x21 = x·1, |[R1 = 1]A| = x12 +x22 = x·2,
|[R2 = 0]A| = x11 + x12 = x1·, |[R2 = 1]A| =
x21 + x22 = x2·, |[R1 = 0 ∧ R2 = 0]A| = x11,
|[R1 = 0 ∧ R2 = 1]A| = x21, |[R1 = 1 ∧ R2 =
0]A| = x12, |[R1 = 1 ∧ R2 = 1]A| = x22,
|[R1 = 0 ∨R1 = 1]A| = x·1 + x·2 = x··(= |U |).

Table 1: Contingency Table (2× 2

R1 = 0 R1 = 1
R2 = 0 x11 x12 x1·
R2 = 1 x21 x22 x2·

x·1 x·2 x··
(= |U | = N)

From this table, accuracy and coverage for
[R1 = 0] → [R2 = 0] are defined as:

α[R1=0]([R2 = 0]) = |[R1 = 0 ∧R2 = 0]A|
|[R1 = 0]A| =

x11

x·1
,

and

κ[R1=0]([R2 = 0]) = |[R1 = 0 ∧R2 = 0]A|
|[R2 = 0]A| =

x11

x1·
.

2.3 Contingency Table(m× n)

Two-way contingency table can be extended
into a contingency table for multinominal at-
tributes.
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Definition 3 Let R1 and R2 denote multi-
nominal attributes in an attribute space A
which have m and n values. A contingency ta-
bles is a table of a set of the meaning of the fol-
lowing formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj ∧ R2 = Bi]A|, |[R1 = A1 ∧ R1 =
A2∧· · ·∧R1 = Am]A|, |[R2 = B1∧R2 = A2∧
· · · ∧ R2 = An]A| and |U | (i = 1, 2, 3, · · · , n
and j = 1, 2, 3, · · · , m). This table is ar-
ranged into the form shown in Table 1, where:
|[R1 = Aj ]A| =

∑m
i=1 x1i = x·j, |[R2 =

Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 =
Bi]A| = xij, |U | = N = x·· (i = 1, 2, 3, · · · , n
and j = 1, 2, 3, · · · , m).

Table 2: Contingency Table (m× n)

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
...

...
...

. . .
...

...
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

3 Statistical Independence in 2× 2
Contingency Table

Let us consider a contingency table shown in
Table 1. Statistical independence between R1

and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0])
×P ([R2 = 0])

P ([R1 = 0], [R2 = 1]) = P ([R1 = 0])
×P ([R2 = 1])

P ([R1 = 1], [R2 = 0]) = P ([R1 = 1])
×P ([R2 = 0])

P ([R1 = 1], [R2 = 1]) = P ([R1 = 1])
×P ([R2 = 1])

Since each probability is given as a ratio of
each cell to N , the above equations are calcu-

lated as:

x11

N
=

x11 + x12

N
× x11 + x21

N
x12

N
=

x11 + x12

N
× x12 + x22

N
x21

N
=

x21 + x22

N
× x11 + x21

N
x22

N
=

x21 + x22

N
× x12 + x22

N

Since N =
∑

i,j xij , the following formula will
be obtained from these four formulae.

x11x22 = x12x21 or x11x22 − x12x21 = 0

Thus,

Theorem 1 If two attributes in a contin-
gency table shown in Table 1 are statistical
indepedent, the following equation holds:

x11x22 − x12x21 = 0 (1)


�

It is notable that the above equation corre-
sponds to the fact that the determinant of a
matrix corresponding to this table is equal to
0. Also, when these four values are not equal
to 0, the equation 1 can be transformed into:

x11

x21
=

x12

x22
.

Let us assume that the above ratio is equal to
C(constant). Then, since x11 = Cx21 and
x12 = Cx22, the following equation is ob-
tained.

x11 + x12

x21 + x22
=

C(x21 + x22)
x21 + x22

= C =
x11

x21
=

x12

x22
.

This equation also holds when we extend this
discussion into a general case. Before getting
into it, let us cosndier a 2 × 3 contingency
table.

4 Statistical Independence in 2× 3
Contingency Table

Let us consider a 2 × 3 contingency table
shown in Table 3. Statistical independence
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Table 3: Contingency Table (2× 3)

R1 = 0 R1 = 1 R1 = 2
R2 = 0 x11 x12 x13 x1·
R2 = 1 x21 x22 x23 x2·

x·1 x·2 x···3 x··
(= |U | = N)

between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0])
×P ([R2 = 0])

P ([R1 = 0], [R2 = 1]) = P ([R1 = 0])
×P ([R2 = 1])

P ([R1 = 0], [R2 = 2]) = P ([R1 = 0])
×P ([R2 = 2])

P ([R1 = 1], [R2 = 0]) = P ([R1 = 1])
×P ([R2 = 0])

P ([R1 = 1], [R2 = 1]) = P ([R1 = 1])
×P ([R2 = 1])

P ([R1 = 1], [R2 = 2]) = P ([R1 = 1])
×P ([R2 = 2])

Since each probability is given as a ratio of
each cell to N , the above equations are calcu-
lated as:

x11

N
=

x11 + x12 + x13

N
× x11 + x21

N
(2)

x12

N
=

x11 + x12 + x13

N
× x12 + x22

N
(3)

x13

N
=

x11 + x12 + x13

N
× x13 + x23

N
(4)

x21

N
=

x21 + x22 + x23

N
× x11 + x21

N
(5)

x22

N
=

x21 + x22 + x23

N
× x12 + x22

N
(6)

x23

N
=

x21 + x22 + x23

N
× x13 + x23

N
(7)

From equation (2) and (5),

x11

x21
=

x11 + x12 + x13

x21 + x22 + x23

In the same way, the following equation will
be obtained:

x11

x21
=

x12

x22
=

x13

x23
=

x11 + x12 + x13

x21 + x22 + x23
(8)

Thus, we obtain the following theorem:

Theorem 2 If two attributes in a contin-
gency table shown in Table 3 are statistical
indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22

= x13x21 − x11x23 = 0


�

It is notable that this discussion can be easily
extended into a 2xn contingency table where
n > 3. The important equation 8 will be ex-
tended into

x11

x21
=

x12

x22
= · · · = x1n

x2n

=
x11 + x12 + · · ·+ x1n

x21 + x22 + · · ·+ x2n
=

∑n
k=1 x1k∑n
k=1 x2k

Thus,

Theorem 3 If two attributes in a contin-
gency table (2×k(k = 2, · · · , n)) are statistical
indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22 = · · ·
= x1nx21 − x11xn3 = 0


�

It is also notable that this equation is the
same as the equation on collinearity of pro-
jective geometry [1].

5 Statistical Independence in m× n
Contingency Table

Let us consider a m × n contingency table
shown in Table 2. Statistical independence
of R1 and R2 gives the following formulae:

P ([R1 = Ai, R2 = Bj ]) = P ([R1 = Ai])
×P ([R2 = Bj ])

(i = 1, · · · , m, j = 1, · · · , n).

According to the definition of the table,

xij

N
=

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (9)

Thus, we have obtained:

xij =
∑n

k=1 xik ×
∑m

l=1 xlj

N
. (10)
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Thus, for a fixed j,

xiaj

xibj
=

∑n
k=1 xiak∑n
k=1 xibk

In the same way, for a fixed i,

xija

xijb

=
∑m

l=1 xlja∑m
l=1 xljb

Since this relation will hold for any j, the fol-
lowing equation is obtained:

xia1

xib1
=

xia2

xib2
· · · = xian

xibn
=

∑n
k=1 xiak∑n
k=1 xibk

. (11)

Since the right hand side of the above equa-
tion will be constant, thus all the ratios are
constant. Thus,

Theorem 4 If two attributes in a contin-
gency table shown in Table 2 are statistical
indepedent, the following equations hold:

xia1

xib1
=

xia2

xib2
· · · = xian

xibn
= const. (12)

for all rows: ia and ib (ia, ib = 1, 2, · · · , m).


�

5.1 Three-way Table

Let “•” denote as the sum over the row or
column of a contingency matrix. That is ,

xi• =
n∑

j=1

xij (13)

x•j =
m∑

i=1

xij , (14)

where (13) and (14) shows marginal column
and row sums. Then, it is easy to see that

x•• = N,

where N denotes the sample size.

Then, Equation (10) is reformulated as:

xij

x••
=

xi•
x••

× x•j
x••

(15)

That is,

xij =
xi• × x•j

x••

Or
xijx•• = xi•x•j

Thus, statistical independence can be viewed
as the specific relations between assignments
of i,j and “·”. By use of the above relation,
Equation (12) can be rewritten as:

xi1j

xi2j
=

xi1•
xi2•

,

where the right hand side gives the ratio of
marginal column sums.

Equation (15) can be extended into multivari-
ate cases. Let us consider a three attribute
case.

Statistical independence with three attributes
is defined as:

xijk

x•••
=

xi••
x•••

× x•j•
x•••

× x••k
x•••

, (16)

Thus,
xijkx

2
••• = xi••x•j•x••k, (17)

which corresponds to:

P (A = a, B = b, C = c) =
P (A = a)P (B = b)P (C = c),

(18)

where A,B,C correspond to the names of at-
tributes for i,j,k, respectively.

In statistical context, statistical independence
requires hiearchical model. That is, statistical
independence of three attributes requires that
all the two pairs of three attributes should sat-
isfy the equations of statistical independence.
Thus, for Equation (18), the following equa-
tions should satisfy:

P (A = a, B = b) = P (A = a)P (B = b),
P (B = b, C = c) = P (B = b)P (C = c),

and

P (A = a, C = c) = P (A = a)P (C = c).

Thus,

xij•x••• = xi••x•j• (19)
xi•kx••• = xi••x••k (20)
x•jkx••• = x•j•x••k (21)
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From Equation (17) and Equation (19),

xijkx••• = xij•x••k,

Therefore,
xijk

xij•
=

x••k
x•••

(22)

In the same way, the following equations are
obtained:

xijk

xi•k
=

x•j•
x•••

(23)

xijk

x•jk
=

xi••
x•••

(24)

In summary, the following theorem is ob-
tained.

Theorem 5 If a three-way contingency table
satisfy statistical independence, then the fol-
lowing three equations should be satisfied:

xijk

xij•
=

x••k
x•••

xijk

xi•k
=

x•j•
x•••

xijk

x•jk
=

xi••
x•••


�

Thus, the equations corresponding to Theo-
rem 4 are obtained as follows.

Corollary 1 If three attributes in a contin-
gency table shown in Table 2 are statistical
indepedent, the following equations hold:

xijka

xijkb

=
x••ka

x••kb

xijak

xijbk
=

x•ja•
x•jb•

xiajk

xibjk
=

xia••
xib••

for all i,j, and k.


�

5.2 Multi-way Table

The above discussion can be easily extedned
into a multi-way contingency table.

Theorem 6 If a m-way contingency table
satisfy statistical independence, then the fol-
lowing equation should be satisfied for any k-
th attribute ik and jk (k = 1, 2, · · · , n) where
n is the number of attributes.

xi1i2···ik···in
xi1i2···jk···in

=
x••···ik···•
x••···jk···•

Also, the following equation should be satisfied
for any ik:

xi1i2···in × xn−1
••···•

= xi1•···•x•i2···•×· · ·×x••···ik···•×· · ·×x••···•in


�

6 Contingency Matrix

The meaning of the above discussions will be-
come much clearer when we view a contin-
gency table as a matrix.

Definition 4 A corresponding matrix CTa,b

is defined as a matrix the element of which are
equal to the value of the corresponding con-
tingency table Ta,b of two attributes a and b,
except for marginal values.

Definition 5 The rank of a table is defined
as the rank of its corresponding matrix. The
maximum value of the rank is equal to the size
of (square) matrix, denoted by r.

The contingency matrix of Ta-
ble 2(T (R1, R2)) is defined as CTR1,R2

as
below: ⎛⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠
6.1 Independence of 2× 2

Contingency Table

The results in Section 3 corresponds to the
degree of independence in matrix theory. Let
us assume that a contingency table is given
as Table 1. Then the corresponding matrix
(CTR1,R2

) is given as:(
x11 x12

x21 x22

)
,
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Then,

Proposition 1 The determinant of
det(CTR1,R2

) is equal to x11x22 − x12x21,

Proposition 2 The rank will be:

rank =

{
2, if det(CTR1,R2

) �= 0
1, if det(CTR1,R2

) = 0

From Theorem 1,

Theorem 7 If the rank of the corresponding
matrix of a 2times2 contingency table is 1,
then two attributes in a given contingency ta-
ble are statistically independent. Thus,

rank =

{
2, dependent

1, statistical independent

This discussion can be extended into 2 × n
tables. According to Theorem 3, the following
theorem is obtained.

Theorem 8 If the rank of the corresponding
matrix of a 2 × n contigency table is 1, then
two attributes in a given contingency table are
statistically independent. Thus,

rank =

{
2, dependent

1, statistical independent

6.2 Independence of 3× 3
Contingency Table

When the number of rows and columns are
larger than 3, then the situation is a little
changed. It is easy to see that the rank for sta-
tistical independence of a m× n contingency
table is equal 1.0 as shown in Theorem 4.
Also, when the rank is equal to min(m, n),
two attributes are dependent.

Then, what kind of structure will a contin-
gency matrix have when the rank is larger
than 1,0 and smaller than min(m, n) − 1 ?
For illustration, let us consider the following
3times3 contingecy table.

Example 1 Let us consider the following
corresponding matrix:

A =

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ .

The determinant of A is:

det(A) = 1× (−1)1+1det

(
5 6
8 9

)
+2× (−1)1+2det

(
4 6
7 9

)
+3× (−1)1+3det

(
4 5
7 8

)
= 1× (−3) + 2× 6 + 3× (−3) = 0

Thus, the rank of A is smaller than 2. On the
other hand, since (123) �= k(456) and (123) �=
k(789), the rank of A is not equal to 1.0 Thus,
the rank of A is equal to 2.0. Actually, one of
three rows can be represented by the other two
rows. For example,

(4 5 6) =
1
2
{(1 2 3) + (7 8 9)}.

Therefore, in this case, we can say that two
of three pairs of one attribute are dependent
to the other attribute, but one pair is sta-
tistically independent of the other attribute
with respect to the linear combination of two
pairs. It is easy to see that this case includes
the cases when two pairs are statistically in-
dependent of the other attribute, but the ta-
ble becomes statistically dependent with the
other attribute.

In other words, the corresponding matrix is
a mixure of statistical dependence and inde-
pendence. We call this case contextual inde-
pendent. From this illustration, the following
theorem is obtained:

Theorem 9 If the rank of the corresponding
matrix of a 3 × 3 contigency table is 1, then
two attributes in a given contingency table are
statistically independent. Thus,

rank =

⎧⎪⎨⎪⎩
3, dependent

2, contextual independent

1, statistical independent

It is easy to see that this discussion can be
extended into 3× n contingency tables.
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6.3 Independence of m× n
Contingency Table

Finally, the relation between rank and inde-
pendence in a multi-way contingency table is
obtained from Theorem 4.

Theorem 10 Let the corresponding matrix
of a given contingency table be a m×n matrix.
If the rank of the corresponding matrix is 1,
then two attributes in a given contingency ta-
ble are statistically independent. If the rank of
the corresponding matrix is min(m, n) , then
two attributes in a given contingency table are
dependent. Otherwise, two attributes are con-
textual dependent, which means that several
conditional probabilities can be represented by
a linear combination of conditional probabili-
ties. Thus,

rank =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min(m, n) dependent

2, · · · ,

min(m, n)− 1 contextual independent

1 statistical independent
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