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Abstract

This paper focuses on how statisti-
cal independence can be observed in
a contingency table when the table
is viewed as a matrix. Statistical in-
dependence in a contingency table is
represented as a special form of lin-
ear dependence, where all the rows
or columns are described by one row
or column, respectively.

Keywords: Statistical Indepen-
dence, Contingency Table, Matrix
Theory.

1 Introduction

Statistical independence between two at-
tributes is a very important concept in
data mining and statistics. The definition
P(A,B) = P(A)P(B) show that the joint
probability of A and B is the product of both
probabilities. This gives several useful for-
mula, such as P(A|B) = P(A), P(B|A) =
P(B). In a data mining context, these formu-
lae show that these two attributes may not
be correlated with each other. Thus, when A
or B is a classification target, the other at-
tribute may not play an important role in its
classification.

Although independence is a very important
concept, it has not been fully and formally
investigated as a relation between two at-
tributes.

In this paper, a statistical independence in a

contingency table is focused on from the view-
point of granular computing.

The first important observation is that a con-
tingency table compares two attributes with
respect to information granularity. It is shown
from the definition that statistifcal indepen-
dence in a contingency table is a special form
of linear depedence of two attributes. Espe-
cially, when the table is viewed as a matrix,
the above discussion shows that the rank of
the matrix is equal to 1.0. Also, the results
also show that partial statistical independence
can be observed.

The second important observation is that ma-
trix algebra is a key point of analysis of this
table. A contingency table can be viewed as
a matrix and several operations and ideas of
matrix theory are introduced into the analysis
of the contingency table.

The paper is organized as follows: Section
2 discusses the characteristics of contingency
tables. Section 3 shows the conditions on sta-
tistical independence for a 2 x 2 table. Sec-
tion 4 gives those for a 2 x n table. Section
5 extends these results into a multi-way con-
tingency table. Section 6 discusses statistical
independence from matrix theory. Section 7
and 8 show pseudo statistical independence.
Finally, Section 9 concludes this paper.
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2 Contingency Table from Rough
Sets

2.1 Rough Sets Notations

In the subsequent sections, the following no-
tations is adopted, which is introduced in [2].
Let U denote a nonempty, finite set called the
universe and A denote a nonempty, finite set
of attributes, i.e., a : U — V, for a € A,
where V, is called the domain of a, respec-
tively. Then, a decision table is defined as an
information system, A = (U, AU {D}), where
{D} is a set of given decision attributes. The
atomic formulas over B C AU{D} and V are
expressions of the form [a = v], called descrip-
tors over B, where a € B and v € V,. The
set F(B,V) of formulas over B is the least
set containing all atomic formulas over B and
closed with respect to disjunction, conjunc-
tion and negation. For each f € F(B,V), fa
denote the meaning of f in A, i.e., the set
of all objects in U with property f, defined
inductively as follows.

1. If f is of the form [a = v] then, fy = {s €
Ula(s) = v}

2. (fANg)a=fanga; (fVgla=faVga:
(ﬂf)A:U_fa

By using this framework, classification accu-
racy and coverage, or true positive rate is de-
fined as follows.

Definition 1

Let R and D denote a formula in F(B,V)
and a set of objects whose decision attribute
is given as [, respectively. Classification ac-

curacy and coverage(true positive rate) for
R — D is defined as:

an(D) = 'R,QDH:P(D\R)), and
Al
_ |Ran D] _

where |A| denotes the cardinality of a set A,
agr(D) denotes a classification accuracy of R
as to classification of D, and k(D) denotes
a coverage, or a true positive rate of R to D,
respectively.
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2.2 Two-way Contingency Table

From the viewpoint of information systems,
a contingency table summarizes the relation
between two attributes with respect to fre-
quencies. This viewpoint has already been
discussed in [3, 4]. However, this study fo-
cuses on more statistical interpretation of this
table.

Definition 2 Let R and Ro denote binary
attributes in an attribute space A. A contin-
gency table is a table of a set of the meaning
of the following formulas: |[R1 = 0]al,|[R1 =
1al, [[R2 = 0]al./[R1 = 1]al, [[RB1 =0A Ry =
O]A‘;HRl =0ARy = 1],4‘, HRl =1ANRy =
O]A‘;HRI =1ANRy = 1],4‘, ‘[Rl =0V R, =
1a|(= |U]). This table is arranged into the
form shown in Table 1, where: |[R; = 0]a] =
r11 4221 = 2.1, [[R1 = 1]a] = T12+ 222 = 2.9,
[R2 = 04| = 211 + 712 = 21, |[R2 = 1]4| =
T21 + To2 = X2, |[R1 =0A Ry = O]A’ = 11,
’[Rl =0A Ry = 1]A‘ = T91, |[R1 =1ARy =
0la|] = =12, [[R1 = 1 A Ry = 1]a| = x99,
[R1 =0V R =14l =21 +z2=0.(=]|U]).

Table 1: Contingency Table (2 x 2

Ri=0 Ri=1
R2 =0 T11 T12 1.
Ry =1 21 22 x3.
X.1 Z.9 T

(= U] = N)

From this table, accuracy and coverage for
[R1 = 0] — [Rg = 0] are defined as:

_|[R1:0/\R2:O]A| T11

R, o] ([R2 = 0])

Ry = 0] g
and
R1:O/\R2:OA 211
Rir=0)([R2 = 0]) = . [[R2 = 0]4] = E

2.3 Contingency Table(m x n)

Two-way contingency table can be extended
into a contingency table for multinominal at-
tributes.
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Definition 3 Let Ry and Ry denote multi-
nominal attributes in an attribute space A
which have m andn values. A contingency ta-
bles is a table of a set of the meaning of the fol-
lowing formulas: |[R1 = Ajlal, |[R2 = Bilal,
’[Rl = Aj A Ry = Bi]A’; |[R1 = A ANR; =
As N ARy :Am}A|, |[R2 =Bi1ARy = A3 A
ARy = Aplal and |U| (i = 1,2,3,---,n
and j = 1,2,3,---,m). This table is ar-
ranged into the form shown in Table 1, where:
By = Ajlal = X2 = o, |[Re =
BZ]A’ = Z?:lei = x;., HRI = Aj AN Ry =
Bilal| = x5, U/ =N =2. (i=1,2,3,--- ,n
and j =1,2,3,---,m).

Table 2: Contingency Table (m x n)

A A A, Sum
By i1 712 - ZIp 1.
By wo1 w2 -- Ty Z2.
B, ITml Tm2 - Tmn Tm-
Sum x4 zg2 - x, x.=|U=N

3 Statistical Independence in 2 x 2
Contingency Table

Let us consider a contingency table shown in
Table 1. Statistical independence between R;
and Ry gives:

P([Ry = 0], [Ry = 0]) = P([R1 = 0])
X P([R2 = 0])
P([R1 = 0], [Ry = 1]) = P([R1 = 0])
X P([R2 = 1])
P([R1 =1],[Ry = 0]) = P([R1 = 1])
x P([R2 = 0])
P([R1 =1],[Ry = 1]) = P([R1 = 1])
x P([Ry = 1])

Since each probability is given as a ratio of
each cell to N, the above equations are calcu-
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lated as:
Ti1 _ T11 T2 T + Z21
N N N
T2 _ T11 T2 5 T2 + T2
N N N
T21  _ T21t+ T2 o + T21
N N N
Za2 T2+ T2 o T12 + T22
N N N

Since N =, - @;j, the following formula will
be obtained from these four formulae.

T11T22 = T12%21 O T11%22 — L1221 = 0

Thus,

Theorem 1 If two attributes in a contin-
gency table shown in Table 1 are statistical
indepedent, the following equation holds:

T11T22 — T12%21 = 0 (1)

O

It is notable that the above equation corre-

sponds to the fact that the determinant of a

matrix corresponding to this table is equal to

0. Also, when these four values are not equal

to 0, the equation 1 can be transformed into:
T11 _ T12

T21 T22

Let us assume that the above ratio is equal to

C(constant). Then, since x;; = Czo; and
x193 = (x99, the following equation is ob-
tained.

ety Cleat+am)  _2u _ 212

T21 + T22 T21 + T22 T21 T2

This equation also holds when we extend this
discussion into a general case. Before getting
into it, let us cosndier a 2 x 3 contingency
table.

4 Statistical Independence in 2 x 3
Contingency Table

Let us consider a 2 x 3 contingency table
shown in Table 3. Statistical independence
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Table 3: Contingency Table (2 x 3)

Ri=0 R1=1 Ry =2
Ro=0 xn Z12 x13 x1.
Ry =1 Z21 22 23 x3.
T T T..3 T..
(=[Ul=N)

between R; and Ry gives:

P([R1=0],[Re =0]) =

P([R1 =0],[Ry =1]) =
P([R1 =0],[Ry = 2]) =
X
P([R1 =1],[Ry =0]) =
X
P([R1 =1],[Ry =1]) =
X
P([R1 =1],[Ry =2]) =
X

ERIEICEE
[ | | |

=oli~o Ry R~y
[N
| | R |
S N e e e e e N N N N

= =
= )
Il Il
N = = = O =N O =IO O O

&
I

Since each probability is given as a ratio of
each cell to NV, the above equations are calcu-

lated as:
Tu _ ZutZiztTiz L1t T 2)
N N N
Zi2 _ ZuF T2tz Ti2 + T2 (3)
N N N
T3 _ T2+ T3 T13 + Tog (4)
N N N
ZT2a1 _ %21+ T2+ To3 L1t Ta (5)
N N N
T2 _ %21 + T2+ To3  Ti2 + T2 (6)
N N N
Toz  _ T21 T2+ Tz Tig + T3 (7)
N N N

From equation (2) and (5),

T11 _ ZT11 + Z12 + T13

T21 T21 + T22 + T23

In the same way, the following equation will

be obtained:

Tl T2 T13

r11 +x12 + T13

T21 T22 23

To1 + X22 + T23

Thus, we obtain the following theorem:
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Theorem 2 If two attributes in a contin-

gency table shown in Table 3 are statistical

indepedent, the following equations hold:
T11T22 — T12T21 = X12T23 — T13T22

= 713%21 — 211223 =0

O

It is notable that this discussion can be easily
extended into a 2zn contingency table where
n > 3. The important equation 8 will be ex-
tended into

T11 T12

21 22 Top
n
T11 + T2+ -+ Tin Zkzl Tik
- n
Tot + T + -+ Top Y g Tok

_ Tin

Thus,

Theorem 3 If two attributes in a contin-
gency table 2xk(k =2,--- ,n)) are statistical
indepedent, the following equations hold:

L1122 — T12221 = T12223 — T13T22 = -+

= Z1p%21 — T11%n3 =0

O

It is also notable that this equation is the
same as the equation on collinearity of pro-
jective geometry [1].

5 Statistical Independence in m x n
Contingency Table

Let us consider a m X n contingency table
shown in Table 2. Statistical independence
of Ry and Ry gives the following formulae:

= P([R1 = 4i])
xP([R2 = Bj])

: 7m’]:1a"' 7”)'

P([R1 = A;, Ry = Bj])

According to the definition of the table,

Lij _ ZZ:l Lik Zﬁl Lij (9)
N N N

Thus, we have obtained:

D ket Tik X Doy Ty
N )

xij =

(10)
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Thus, for a fixed 7,

n

Tiyj  Dope1 Tigk
- n

Tiyj D p=1 Tiyk

In the same way, for a fixed 1,

Tija _ Diet Tlj

Tijy  Dim1 Ty
Since this relation will hold for any j, the fol-
lowing equation is obtained:

Tigl  Tjg2 .

xian . EZ:]_ xiak (11)

- n
Tyl Tip2 Tign D p=1 Tiyk

Since the right hand side of the above equa-
tion will be constant, thus all the ratios are
constant. Thus,

Theorem 4 If two attributes in a contin-
gency table shown in Table 2 are statistical
indepedent, the following equations hold:

Tigl T2 Tign

Tipl  Tip2 Tiyn

= const. (12)

for all rows: i, and iy (ig,ip =1,2,---,m).

O

5.1 Three-way Table

Let “o” denote as the sum over the row or
column of a contingency matrix. That is ,

Zl’ij (13)
j=1

m
i=1

LTie =

where (13) and (14) shows marginal column
and row sums. Then, it is easy to see that

Tee = IV,

where N denotes the sample size.
Then, Equation (10) is reformulated as:
Lij Zie Tej

=—x—= (15)

x.. x.. x..

That is,

Tie X Tej

l‘i]’ =
x..
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TjjTee = LieLej

Thus, statistical independence can be viewed
as the specific relations between assignments
of 7,7 and “”. By use of the above relation,
Equation (12) can be rewritten as:

Tiyj _ Tije

xizj Tige ’
where the right hand side gives the ratio of
marginal column sums.

Equation (15) can be extended into multivari-
ate cases. Let us consider a three attribute
case.

Statistical independence with three attributes
is defined as:

Lijk Tieo Teje Zeook

= X X , (16)

x... x... :B... :E...

Thus,
$ijkx%oo = TieeTejeLesk (17)

which corresponds to:

P(A=a,B=0,C=c¢)= (18)
P(A=a)P(B=b)P(C =c¢),

where A,B,C correspond to the names of at-

tributes for i,j,k, respectively.

In statistical context, statistical independence
requires hiearchical model. That is, statistical
independence of three attributes requires that
all the two pairs of three attributes should sat-
isfy the equations of statistical independence.
Thus, for Equation (18), the following equa-
tions should satisfy:

P(A=a,B=0b) = P(A=a)P(B="0),
P(B=b,C=c) = P(B=b)P(C=c),

Thus,
TijeLeoe TieeLeje (19)
LiekLooe TieoLook (20)
TejkLooe Tejelesk (21)
1769



From Equation (17) and Equation (19),
TijkTese = LijeLeek;

Therefore,

Tije Leooe
In the same way, the following equations are
obtained:

Ligk  _ Teje (23)
Liek Leooo
% _ Tiew (24)
Zeojk Tooe

In summary, the following theorem is ob-
tained.

Theorem 5 If a three-way contingency table
satisfy statistical independence, then the fol-
lowing three equations should be satisfied:

Tijk Teek
Tije Leoe
Lijk  Teje
Tiek Zooe
Lijk  Tiee
Lojk Leooo

O

Thus, the equations corresponding to Theo-
rem 4 are obtained as follows.

Corollary 1 If three attributes in a contin-
gency table shown in Table 2 are statistical
indepedent, the following equations hold:

Lijk, Teek,
Tijky, Tooky
Tijok  Tejge
Tijyk Tej,e
xiajk o Ti, 00
Liy ik Ti,ee

for alli,5, and k.

5.2 Multi-way Table

The above discussion can be easily extedned
into a multi-way contingency table.
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Theorem 6 If a m-way contingency table
satisfy statistical independence, then the fol-
lowing equation should be satisfied for any k-
th attribute iy and ji (k =1,2,--- ,n) where
n is the number of attributes.

Liyig-ifin - Loo---if---0

Liyig-jp--in Loo---jj,--®

Also, the following equation should be satisfied
for any iy:
Liig-in X :L':L._l.

= Zjje0---0Leiy--0 X" XTee...ijj--0 X' " XTeo---0i,

O

6 Contingency Matrix

The meaning of the above discussions will be-
come much clearer when we view a contin-
gency table as a matrix.

Definition 4 A corresponding matriz Cr,,
1s defined as a matrix the element of which are
equal to the value of the corresponding con-
tingency table T,y of two attributes a and b,
except for marginal values.

Definition 5 The rank of a table is defined
as the rank of its corresponding matriz. The
mazimum value of the rank is equal to the size
of (square) matriz, denoted by r.

The contingency matrix of Ta-
ble 2(T'(Ri,Rp)) is defined as Cry, ,  as
below:

T11 x12 o Tlin
21 x22 o Ton
ITml ITm2 " Tmn

6.1 Independence of 2 x 2
Contingency Table

The results in Section 3 corresponds to the
degree of independence in matrix theory. Let
us assume that a contingency table is given
as Table 1. Then the corresponding matrix
(Cry, r,) is given as:

11 T12
To1 T22)

Proceedings of IPMU'08



Then,

determinant of
det(CTRl’RQ) s equal to T11T22 — T12T21,

Proposition 1 The

Proposition 2 The rank will be:

vane |21 det(Cry 1) £0
1, if det(Cry, 5,) =0

From Theorem 1,

Theorem 7 If the rank of the corresponding
matriz of a 2times2 contingency table is 1,
then two attributes in a given contingency ta-
ble are statistically independent. Thus,

2
rank = { ’
1,

This discussion can be extended into 2 X n
tables. According to Theorem 3, the following
theorem is obtained.

dependent

statistical independent

Theorem 8 If the rank of the corresponding
matriz of a 2 X n contigency table is 1, then
two attributes in a given contingency table are
statistically independent. Thus,

2
rank = { ’
1,

6.2 Independence of 3 x 3
Contingency Table

dependent

statistical independent

When the number of rows and columns are
larger than 3, then the situation is a little
changed. It is easy to see that the rank for sta-
tistical independence of a m x n contingency
table is equal 1.0 as shown in Theorem 4.
Also, when the rank is equal to min(m,n),
two attributes are dependent.

Then, what kind of structure will a contin-
gency matrix have when the rank is larger
than 1,0 and smaller than min(m,n) — 1 ?
For illustration, let us consider the following
3times3 contingecy table.

Example 1 Let us consider the following
corresponding matric:

1 2
A=14 5
78

O Oy W
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The determinant of A is:

5 6
1yl
1x (=1)""det (8 9>

HXPW%MGG)

det(A) =

79

4 5
143
+3 x (—1)"""det <7 8)

= 1x(-3)42x6+3x(-3)=0

Thus, the rank of A is smaller than 2. On the
other hand, since (123) # k(456) and (123) #
k(789), the rank of A is not equal to 1.0 Thus,
the rank of A is equal to 2.0. Actually, one of
three rows can be represented by the other two
rows. For example,

(456) = %{(1 23) + (T89)}.

Therefore, in this case, we can say that two
of three pairs of one attribute are dependent
to the other attribute, but one pair is sta-
tistically independent of the other attribute
with respect to the linear combination of two
pairs. It is easy to see that this case includes
the cases when two pairs are statistically in-
dependent of the other attribute, but the ta-
ble becomes statistically dependent with the
other attribute.

In other words, the corresponding matrix is
a mixure of statistical dependence and inde-
pendence. We call this case contexrtual inde-
pendent. From this illustration, the following
theorem is obtained:

Theorem 9 If the rank of the corresponding
matriz of a 3 X 3 contigency table is 1, then
two attributes in a given contingency table are
statistically independent. Thus,

3, dependent
rank = < 2, contextual independent

1, statistical independent

It is easy to see that this discussion can be
extended into 3 x n contingency tables.
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6.3 Independence of m x n
Contingency Table

Finally, the relation between rank and inde-
pendence in a multi-way contingency table is
obtained from Theorem 4.

Theorem 10 Let the corresponding matriz
of a given contingency table be a m xn matriz.
If the rank of the corresponding matrix is 1,
then two attributes in a given contingency ta-
ble are statistically independent. If the rank of
the corresponding matriz is min(m,n) , then
two attributes in a given contingency table are
dependent. Otherwise, two attributes are con-
textual dependent, which means that several
conditional probabilities can be represented by
a linear combination of conditional probabili-

ties. Thus,
min(m,n) dependent
2,
rank = ) )
min(m,n) — 1 contextual independent
1 statistical independent
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