
A B+-tree Based Indexing Technique for Necessity Measured
Flexible Conditions on Fuzzy Numerical Data

Carlos D. Barranco
Division of Computer Science

School of Engineering
Pablo de Olavide University

Utrera Rd. Km. 1
41013 Sevilla (Spain)

cbarranco@upo.es
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Abstract

The paper proposes an indexing
technique for fuzzy numerical data
which increases the performance of
query processing when the query in-
volves an atomic necessity measured
flexible condition. The proposal is
based on a classical indexing tech-
nique for numerical crisp data, B+-
tree. Its efficiency is contrasted with
another indexing method for similar
data and queries. Results show that
the proposal performance is similar
to and more stable than the refer-
ence technique.

Keywords: Fuzzy numerical data
indexing, Fuzzy databases.

1 Introduction

Database world has taken advantage of fuzzy
set theory by using it as a way to manage im-
precise, uncertain and inapplicable data (gen-
erally called fuzzy data) and to model and pro-
cess flexible queries. As a result of this trend,
there is a significant number of proposals on
fuzzy database models, flexible querying and
implementations of fuzzy database manage-
ment systems (FDBMS).

Unfortunately, up to now FDBMSs are not
generally integrated into real-world environ-
ments as the existing implementations do not
provide the required performance. In fact, it
is not the fault of implementations. The flexi-
bility of fuzzy databases result in a increment

of query results and makes the classical in-
dexing techniques, which are the key for high
performance in databases, inapplicable. Al-
though a great deal of research has been car-
ried out into fuzzy database models, not so
much work has been done into indexing mech-
anisms for efficiently accessing fuzzy data.

This paper proposes an indexing technique
for fuzzy numerical data to improve query
processing when a particular kind of mono-
attribute flexible condition based on as the
necessity measure is involved. The data struc-
ture and search algorithm of the proposed in-
dexing mechanism is based on classical in-
dexing structures for numerical crisp data,
i.e. B+-trees. This underlying indexing tech-
nique is not specifically designed to index
fuzzy numerical data but it is a simple and
well-optimized technique which is available in
virtually every current DBMS. This near-to-
general availability of B+-tree indexing meth-
ods would result in a reduction of implemen-
tation, integration and optimization efforts to
incorporate the proposed indexing technique
to an FDBMS built on a crisp DBMS.

The paper is organized as follows. The con-
cept of fuzzy numerical data and necessity
measured flexible conditions in the context of
the paper are described in Section 2. Sec-
tion 3 briefly introduces related work on fuzzy
data indexing and outlines the indexing prin-
ciple on which the proposed and studied in-
dexing techniques rely. Section 4 describes
the proposed and considered indexing tech-
niques. Section 5 presents the measures and
procedures for evaluating the performance of
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the studied indexing techniques. Section 6 an-
alyzes the performance results. Finally, Sec-
tion 7 contains the concluding remarks and
future works.

2 Basic Concepts

This section defines these concepts in the con-
text of the paper.

A fuzzy numerical value is a convex possibil-
ity distribution on an underlying domain in
which a linear order relation is defined.

Also for the purposes of this paper, a fuzzy
condition is a restriction imposed on the val-
ues of an attribute which contains a fuzzy nu-
merical value for each row. This restriction is
specified as a fuzzy numerical value to which
the restricted attribute value must possibly or
necessarily be compatible. This paper only fo-
cuses on necessity measured conditions since
possibility measured conditions has been pre-
viously studied [1].

The necessity degree is called the fulfillment
degree of the condition in the rest of the pa-
per. This degree is computed as shown in
eq. 1, where D(A) is the underlying domain
associated to the fuzzy attribute A, ΠA(r)

is the possibility distribution which describes
the fuzzy value of the attribute A for the row
r, µC is the membership function defining
the fuzzy condition C and ∨ means for a t-
conorm.

N(C/r) = inf
d∈D(A)

[(1−ΠA(r)(d))∨µC(d)] (1)

A fuzzy condition is combined with a crisp
relational comparator to set a threshold for
its fulfillment degree. This threshold specifies
the degree of flexibility in which the fuzzy con-
dition is applied, from 1 (no flexibility) to 0
(maximum flexibility). The typical expression
for applying a threshold T is N(C/r) ≥ T ,
except when the threshold is 0. In the latter
case, N(C/r) > 0 is applied. The combina-
tion of a fuzzy condition with a threshold is
called an atomic flexible condition for the rest
of this paper and it is notated 〈C, T 〉.

3 Related Work

The works on fuzzy data indexing started, to
the best of our knowledge, with the seminal
paper [3]. It exposes the need for specific
indexing techniques for fuzzy databases, and
proposes two indexing principles for flexible
querying using possibility and necessity mea-
sures on fuzzy attributes described as possi-
bility distributions. For the sake of brevity
this section only describes the indexing prin-
ciple for necessity measured fuzzy conditions,
on which this paper is focused. The reader
is referred to [3, 1] for details on possibility
measured ones.

The indexing principle allows the rows which
do not satisfy an atomic flexible condition to
be filtered out of a table. For necessity mea-
sured flexible conditions the article [3] pro-
poses the one shown in Eq. 2, where, given a
fuzzy set F , S(F ) means for the support of F
and Sλ(F ) means for the λ-cut of F . It can be
applied by indexing the cores of the indexed
data.

N(C/r) > λ → S1(A(r)) ⊂ Sλ(C) (2)

Since the publication of Bosc’s seminal paper,
some fuzzy data indexing techniques are pro-
posed. The techniques [4, 9] and [10, 11, 12]
are not based in the previous indexing princi-
ples and are designed for applications where
the number of potential flexible conditions
which can be used to build queries is finite and
low. Whereas, [5] takes advantage of Bosc’s
indexing principles and supports any query
but it is designed for low cardinality fuzzy
data types. The limitations of the previous
techniques make them unsuitable for index-
ing fuzzy numerical values.

The paper [8] proposes an indexing technique
for convex possibility distributions defined on
an ordered domain that relies on a crisp mul-
tidimensional indexing method. This tech-
nique is suitable for numerical fuzzy data in-
dexing, on which this paper focuses, and it is
described in the next section.
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4 Considered and Proposed
Indexing Techniques

This paper contrasts the performance of two
fuzzy data indexing techniques based on the
previously described indexing principle. Both
tackle the problem of indexing the core of
fuzzy data, which in fact is a closed interval,
by mapping it to a point in a bidimensional
space. This way, for each interval [l, u] a point
(l, u) is inserted in the indexing structure.

Given a necessity measured flexible condi-
tion 〈C, T 〉, its preselection row set is ob-
tained by retrieving all entries (x, y) in the
index satisfying the range query lST (C) ≤ x ≤
uST (C), lST (C) ≤ y ≤ uST (C), where lST (C) and
uST (C) are the lower and upper bounds of the
interval corresponding with ST (C). For the
rest of the paper ST (C) is called the base of
the condition flexible condition 〈C, T 〉. This
range condition is a translation of the prese-
lection criteria of eq. 2 to the described two-
dimensional mapping scheme.

4.1 Fuzzy Data Indexing with a
G-tree

Based in the previous proposal, [8] makes use
of a G-tree [6] for indexing the bidimensional
points representing the core of the possibil-
ity distributions modeling the indexed fuzzy
data. A G-tree is a combination of a B+-tree
and a grid file for indexing multidimensional
data points. This index structure supports
single point queries as well as range queries.
For the rest of the paper, this technique is
called GT for the sake of conciseness.

4.2 Fuzzy Data Indexing with a
B+-tree

This paper proposes a technique that takes
advantage of classical B+-tree indexing struc-
tures [2] for indexing bidimensional points
representing the core of the indexed fuzzy nu-
merical data.

B+-trees are indexing structures designed for
one-dimensional data. In order to make them
suitable to index multidimensional data some
additional work is required. One possible so-

lution is to reduce multidimensional data to
a one-dimensional counterpart, and then use
a B+-tree to index it. This reduction can be
made with the help of a space-filling curve [7],
a kind of curve that induces a linear order for
multidimensional spaces. Among the variety
of space-filling curves, in this paper Hilbert
curve is chosen. The decision is motivated by
its good performance contrasted with other
popular possibilities.

Processing a multidimensional range query
using the combination of a B+-tree and
a space filling-curve is an iterative process
that comprises several one-dimensional range
queries on the B+-tree. Each iteration means
a one-dimensional range query for each seg-
ment of the space-filling curve that cross the
multidimensional query region. Figure 1 illus-
trates this process, where the center of each
square forming the gray grid represents one
point in a two-dimensional space, the order in-
duced by the Hilbert curve is represented by a
continuos black line and the two-dimensional
range query is represented by a dotted rect-
angle. In the figure it can be seen that the
Hilbert curve enters and leaves the query area
several times. In order to find the indexed
points included in the query area it is nec-
essary to perform a one-dimensional range
query on the B+-tree for each curve segment
inside the query region. For instance, for the
case of the query region shown in the figure
it is necessary to perform 4 one-dimensional
range queries on the B+-tree.

Figure 1: Number of query results and
database size correlation
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If the described method to solve multidi-
mensional queries is applied directly it is
unpredictably inefficient, as the number of
one-dimensional queries necessary to perform
varies for each multi-dimensional range query
and so the index efficiency. This decreases
as the number of necessary one-dimensional
queries increases. This efficiency decrement
is caused because each time a one-dimensional
query is performed most of the non-leaf nodes
of the B+-tree must be read again. In or-
der to solve this problem we propose to make
use of a non-leaf node cache that will main-
tain only one node for each non-leaf level of
the index. Taking into account that one-
dimensional queries are applied following the
order induced by the Hilbert curve, there is
no need for a bigger cache. For instance,
a 10,000,000 elements database of the same
characteristics of the ones used in the ex-
periments described later only requieres to
maintain 2 non-leaf nodes in the worst case.
Throughout the remainder of this paper this
proposed indexing technique is called HBPT.

5 Performance evaluation

As it is remarked previously, HBPT is based
on an one-dimensional indexing scheme, so
this should result in lower performance in con-
trast with GT, which uses an specific multi-
dimensional scheme. However, HBPT does
not suffer from the performance degradation
of GT due to low bucket usage caused by its
partitioning method, which is extremely sen-
sitive to data distribution. In fact, the stabil-
ity of bucket usage of HBPT may neutralize
the disadvantages due to its non multidimen-
sional specific indexing scheme. This might
enable the proposed fuzzy indexing technique
to perform as well as GT.

In order to assess HBPT and GT perfor-
mance, a quantitative performance evaluation
has been carried out. This section describes
the index performance measure used in this
evaluation, the influential factors on index
performance which has been taken into ac-
count, and the experiment designed to evalu-
ate performance.

5.1 Performance measurement

In order to measure the efficiency of the stud-
ied indexes independently of hardware and OS
dependent factors [1] the index efficiency mea-
sure in equation 3 is used, where d is the min-
imum number of data blocks in which the re-
sult set can be fitted, and i is the number of
blocks of index data accessed by the indexing
technique (i.e. the index overhead).

eff =
d

d + i
(3)

5.2 Influential factors for index
performance

Performance of indexing techniques for fuzzy
data are affected by a large number of fac-
tors. On one hand, a set of physical and log-
ical factors related to the classical indexing
techniques on which these indexes for fuzzy
data are based must be taken into account.
Even though the mentioned factors could in-
crease index efficiency when tuned, they are
basically hardware or particular case depen-
dent, so their study does not provide a good
insight into the general performance of the
considered indexing techniques under general
conditions. On the other hand, there is a set
of factors related to the indexed data and the
processed queries which would affect the index
performance. These factors can not be tuned
and would provide a good measure of index
performance under different usage conditions.

The indexing principle on which both stud-
ied techniques are based calculates the pres-
election set as the set of fuzzy data elements
whose core is contained inside the flexible con-
dition base. The extent of these intervals and
the amount of indexed data would affect to
the number of results for a query. Therefore,
this would relativize the index overhead and
affect the index efficiency.

Both, the extent of fuzzy data core and the
flexible condition base, are dependant of the
shape of the fuzzy set modeling the fuzzy data
element and flexible condition. This shape
can be described as the extent of the support
of the fuzzy set and the sharpness of its tran-
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sition from its support to its core. The extent
of the support means an upper bound for the
flexible condition base and also for the fuzzy
data core. The sharpness means the speed of
reduction of the extent of the base of a flex-
ible condition with respect to its threshold.
This highlights that flexible condition thresh-
old is also an influential factor. Additionally,
the sharpness combined with the extent of the
fuzzy set support determine the extent of the
fuzzy set core. In order to generally describe
these shape descriptors [1] imprecision and
fuzziness degrees are proposed.

To sum up, the following six influential fac-
tors on the fuzzy index performance have been
identified: the amount of indexed data, the
imprecision and fuzziness of the fuzzy data
and flexible queries, and the threshold of flex-
ible queries.

5.3 Experiments

The same experiments using the same set of
databases and queries have been conducted on
both fuzzy data indexing techniques in order
to asses their global performance and their
particular performance under different data
and query scenarios.

In order to isolate the experiment from phys-
ical and logical factors related to the underly-
ing indexing techniques, both share the same
fixed values chosen to generate worst case per-
formance measures.

A test have been conducted on different
randomly generated databases to evaluate
the global performance of the evaluated in-
dexes. The test data set is composed by 30
databases, each one randomly generated us-
ing a uniformly distributed random generator
within the interval [−1, 000, 000 , 1, 000, 000].
The size of these databases has been fixed to
10,000, 20,000, 40,000, 80,000 and 160,000 el-
ements.

The test query set is composed by 10,000
queries. Each flexible condition of the query
test set has also been randomly generated us-
ing a uniformly distributed random generator
within the interval [−1, 000, 000 , 1, 000, 000].

In order to evaluate the index efficiency un-
der different data and query scenarios, the
same previous test have been conducted sev-
eral times (once for a fixed value of each in-
fluential factor) on a modified test data set.

The original test data set has been modi-
fied by fixing the imprecision (in a first test)
and fuzziness (in a second test) degree of the
database elements. This way data elements
are randomly generated except for the fixed
factor.

For the first test, the imprecision degree has
been fixed to values ranging from 0 to 0.9 by
applying a 0.1 increment (i.e. 0, 0.1, 0.2, ...,
0.9). The imprecision degree 1 is ignored be-
cause it means that all the randomly gener-
ated data supports are the same as the ex-
tent of their support is equivalent to the ex-
tent of the underlying domain. A total of 10
test data sets composed by 30 databases (a
total 18,600,000 randomly generated data el-
ements) are considered in this test.

The same way, the fuzziness degree has been
fixed to values ranging from 0 to 1 by applying
a 0.1 increment for the second test. A total of
11 test data sets composed (a total 20,460,000
randomly generated data elements) are con-
sidered in this test.

In order to evaluate the influence of different
query scenarios on index efficiency, the same
global efficiency test has been carried out sev-
eral times by applying each time a modified
test query set.

In order to ensure that the influential param-
eter spectrum has been equably considered,
the modified test query set has been gener-
ated by fixing the value of an influential fac-
tor, one factor for each modified test query
set. This way, all the fuzzy sets modeling the
restrictions of the applied flexible conditions
of a test query set are randomly generated en-
suring a fixed imprecision or fuzziness degree
ranging from 0 to 1 by applying an increment
of 0.1. Similarly, the spectrum of threshold
values is explored by fixing threshold values
ranging from 0 to 1 and an increase of 0.1.

As a result, 33 modified test query sets are
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Figure 2: Comparison of efficiency under dif-
ferent database sizes

randomly generated. Each query test is then
applied on the randomly generated test data
set to measure the average efficiency of each
index.

The described tests consider a total of 330,000
randomly generated queries and 9,900,000
query evaluations when they are applied to
the 30 databases included in the test data set.

6 Experiment results

Results from the previously described exper-
iment yield an average efficiency of the in-
dexing techniques of 0.45 with a 0.04 stan-
dard deviation for HBPT, and 0.44 with a
0.04 standard deviation for GT. The mini-
mum difference, which is within the standard
deviation range, practically means a similar
performance of both indexing techniques.

6.1 Influence of data related factors

The first considered influential factor is the
database size which results in bigger index
structures and may result in an increase in
the cardinality of the results. Figure 2 shows
the average efficiency of the compared tech-
niques for different database sizes. The fig-
ures shows a similar performance for both in-
dexing techniques, where HBPT slightly over-
performs GT.

At first glance, it can be concluded that the
larger the database size the greater the per-
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Figure 3: Comparison of efficiency under dif-
ferent data imprecision and fuzziness degrees

formance. This conclusion is counterintuitive
as the larger the database size the greater the
index overhead due to directory reads. Ac-
tually, a deep study reveals that the perfor-
mance increment shown in fig. 2 is caused by
an increase of the numbers of query results.
The number of query results is directly related
with the database size as the proposed test
generates the test data set by randomly select-
ing values inside [−1, 000, 000 , 1, 000, 000]
whatever the database size is. This makes
that the larger the database the greater the
number of data elements inside a given inter-
val (i.e. the greater the data density).

In conclusion, the results show that data den-
sity, not the database size, is an influential
factor on index efficiency of both evaluated
indexing methods. This is explained by the
fact that a high data density means a greater
number of query results that significatively re-
duces the impact of index overhead.

The results obtained by the previously de-
scribed test for evaluating the influence of
data imprecision on index efficiency are shown
in fig. 3. In it, it can be seen that both index-
ing methods have a similar tendency, but also
it can be noticed that HBPT is more stable
than BT under data imprecision changes.

From the observed tendency, it can be con-
cluded that the greater the data imprecision
the smaller the efficiency. This is an expected
behavior as the greater the support of data
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elements, the greater can be its core. Large
cores of data elements reduce the number of
query results, as it is less probable given a
query to found data elements whose core is
contained in the condition base. Finally, less
query results means a greater impact of in-
dex overhead that results in a smaller index
efficiency.

The aforementioned efficiency fluctuation of
GT is directly caused by the fluctuation of
its block usage. The block usage of GT is
strongly data distribution dependent, as this
indexing technique does not ensure a mini-
mum block usage value. In contrast, HBPT
ensures a minimum block usage of 0.5. Figure
4 shows the fluctuation of block usage in GT
in contrast with the stability of HBPT block
usage.

As previous results show a significative influ-
ence of the imprecision degree of the data, and
taking into account the imprecision degree of
data only influences indirectly on the extent of
the core of data elements, it is expected that
fuzziness degree would be also significantly in-
fluential.

The results shown in fig. 3 confirm this con-
jecture. Results show for both indexing tech-
niques that the greater the fuzziness degree,
the greater the efficiency. This is explained by
the increment of query results related to an in-
crement of the fuzziness degree, which causes
smaller cores for data elements and thus in-
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Figure 5: Comparison of efficiency under dif-
ferent query imprecision and fuzziness degrees

crement the number of data elements whose
core is contained is the condition base of a
given query.

One more time, a fluctuation of GT efficiency
can be observed. This fluctuation is the re-
sult of a fluctuation of the block usage of GT,
shown in fig. 4, that makes evident its sen-
sibility to data distribution in contrast with
HBPT stability.

6.2 Influence of query related factors

With regards to the set of influential query
factors, fig. 5 shows the relation between
query imprecision and index efficiency. It can
be seen that both indexing techniques are af-
fected by this factor, as it is the lower bound
of condition base extent, and so drastically de-
termine the average number of query results.
The efficiency is particularly low for the ex-
treme case of a query imprecision of 0, which
means a crisp condition. It can also be ob-
served that the efficiency of GT does not grow
at the rate of HBPT efficiency when query im-
precision is high.

Query fuzziness is another considered influen-
tial factor on index efficiency. Figure 5 shows
the comparison of the efficiency of GT and
HBPT under different query fuzziness condi-
tions. As the fuzziness degree indirectly de-
termines the extent of the core of conditions,
and given that the extent of the core of con-
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ditions means an upper bound for its con-
dition base, the higher the imprecision the
smaller the number of query results, and so
the smaller the efficiency. Additionally, in the
figure it can be seen that this factor is more
influential for GT than for HBPT, specially
for low fuzziness degrees where the difference
of efficiency is larger.

Finally, the observed results and influence of
query threshold is the same as the influence
of fuzziness degree (Not included in fig. 5 for
the sake of clarity). In fact, both factors indi-
rectly determine the average number of query
results by reducing the average extent of the
base of conditions.

7 Concluding remarks and future
works

In this paper, a new indexing technique,
HBPT, has been proposed and evaluated. Ex-
perimental results reveal a similar average ef-
ficiency for both GT and HBPT. HBPT has
proved to be a more stable indexing method
than GT, which present instability issues re-
lating to data distribution. It makes GT more
affected by data related factors. Moreover,
HBPT is less affected by the studied query
related factors.

Future work will focus on providing and
studying indexing mechanisms (with low im-
plementation cost if possible) for other impre-
cise, uncertain and inapplicable data types,
such as scalar fuzzy data, fuzzy objects and
fuzzy collections.
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