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Abstract

In current research, a possibilistic,
hierarchical approach for identifi-
cation of co-referent objects (also
called object matching) has been
proposed as a generalisation of the
record linkage problem. This ap-
proach offers a natural view to the
matching of co-referent objects and
uses logical possibilistic operators to
calculate a final result. The develop-
ment of evaluation operators, to de-
liver basic possibilistic statements is,
up till now, still in it’s infancy. This
paper introduces a formal basic defi-
nition of such operators and presents
data type specific evaluation opera-
tors for sets.

Keywords: Possibilistic truth val-
ues, object co-reference, evaluators

1 Introduction

Detection of duplicate objects, for exam-
ple database records or XML-documents, has
been the source of many research in the past
decades. In applications of data(base) mer-
ging, it is of vital importance to avoid dupli-
cate storage and inconsistencies, which both
imply inefficiency. In recent work, a hierar-
chical framework for object matching was in-
troduced [6], which is a generic framework in
the sense that the domain in which results are
expressed, is left unspecified. In [2], a simi-
lar idea is introduced by defining hierarchical

fuzzy sets, which are fuzzy sets defined over
a subset of the elements of a finite hierarchy
partially ordered by the “kind of” relation.
The framework in [6] exploits the existence of
an implicit entity structure, even when this
structure is not reflected in the object sto-
rage model (e.g.: employee records are stored
flat, but one can identify ‘name’ as a sub-
object, which in turn is constructed from a
first and last name). Based on this frame-
work, a possibilistic model for object match-
ing can be constructed, which is further ela-
borated in [1] where the focus is mainly on
aggregation and preference modeling. Such a
model requires possibilistic evaluation opera-
tors for low-level comparison, i.e. attribute
comparison. The development of such opera-
tors within the mentioned framework is still
not well developed. Therefore, this work of-
fers a prototype for such attribute evaluation
operators in a possibilistic setting and illus-
trates it for the comparison of sets. The pa-
per is structured as follows. In Section 2,
some basic concepts are introduced. Section 3
defines a general possibilistic evaluation ope-
rator and summarizes interesting properties,
which leads to an evaluation operator for sets
in Section 4. Finally, the main contributions
of this work are summarized in Section 5.

2 Preliminaries

A possibilistic truth value (PTV) is a possi-
bility distribution (i.e. a fuzzy set) defined
over the set of boolean values I = {T, F},
where T represents true and F represents false
[9, 12]. They are used to express the uncer-
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tainty about the boolean value of a proposi-
tion. Let P denote the set of all propositions,
then each p ∈ P can be associated with a PTV
p̃:

p̃ = {(T, µp̃ (T )) , (F, µp̃ (F ))}
where µp̃(T ) represents the possibility that p
is true and µp̃(F ) represents the possibility
that p is false. The set of all PTVs is de-
noted by ℘̃(I). In this work it is assumed
that max (µp̃(T ), µp̃(F )) = 1, which supports
the assumption that the universe {T, F} is
large enough to express the truth value of any
proposition. It is possible to define generaliza-
tions R̃ of order relations R as follows:

p̃1 R̃ p̃2 ⇔{
µp̃2(F ) R µp̃1(F ), µp̃1(T ) = µp̃2(T ) = 1
µp̃1(T ) R µp̃2(T ), else

3 Possibilistic evaluation

As mentioned before, this paper contributes
to a possibilistic approach for object match-
ing. The term ‘object’ should be interpreted
quite general in the sense that an object is
an arbitrarily complex description of some en-
tity. It is assumed here that such descriptions
reflect the natural structure of entities in a
hierarchical way, more specific by using a tree
structure. The scope of this paper lies on ob-
jects that share such a predefined structure.
However, even when the structure is prede-
fined, an entity can still be described in dif-
ferent ways. Descriptions that refer to the
same entity are called co-referent. The goal
of object matching is to detect co-referent ob-
jects. A possibilistic solution for this problem
is inferred as follows. Given two objects we
have the following affirmative proposition p:

p = “o1 and o2 are co-referent”

which can be evaluated to a boolean value.
Now as non-equal objects can be co-referent,
there is an implicit uncertainty about the
boolean value of p, which can be modeled by
a possibilistic truth value (Section 2). Hence,
the problem of object matching is to provide
the membership grades of the PTV associ-
ated with proposition p. Such a calculation

is obtained by comparing the sub-objects de-
fined in the object structure shared by both
objects. The most basic sub-objects are called
attributes and comparing the values of n at-
tributes results in n propositions pi:

pi = “the ith attribute has co-referent
values”

These attributes are sometimes assumed to
be atomic, but in this work this assumption
is omitted for the sake of generality. For ex-
ample, when storing data on employees, the
set of languages spoken by an employee is
a non-atomic attribute. The operators that
formulate possibilistic statements about such
propositions are called possibilistic compara-
tive evaluators or evaluators for short. The
statements provided by evaluators are com-
bined by using logical aggregation operators
for PTVs, exploiting the implicit structure of
objects. The above introduction about the

Figure 1: Possibilistic comparison scheme

hierarchical possibilistic framework for object
matching is summerized in Figure 1, show-
ing an example of a hierarchical possibilistic
comparison scheme, where A is an aggrega-
tion operator for PTVs and E is an evaluation
operator. Little work has been done on the
development of evaluation operators that di-
rectly estimate the possibilities of the boolean
value of pi. For that purpose, we first define
a generic form of such an operator.
Definition 1 (Evaluator). Assume a universe
U . For each couple of values (u, u′) ∈ U2 we
can state an affirmative proposition p:

p = “u and u’ are co-referent”

The uncertainty about the boolean value of
p is given by a possibilistic evaluator for U ,
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formally defined as:

EU : U2 → ℘̃(I) : (u, u′) 7→ EU (u, u′)

with

EU (u, u′) = {(T, µp̃(T )) , (F, µp̃(F ))}

and
EU (u, u′) = EU (u′, u)

It was chosen to limit the number of axioms
in Definition 1 to keep the class of evaluators
as general as possible. However, symmetry
is axiomatically required because uncertainty
concerning equality of entities should always
be symmetrical from a semantical point of
view. Some examples of evaluators are:

EL({Dutch}, {French,Danish}) = {(F, 1)}

ES(“J Lennon′′, “Lennon John′′) = {(T, 1)}

EIR(37.5, 37.9) = {(T, 1)(F, 0.2)}

where L represents the set of all possible lan-
guages combinations, S the set of strings and
IR the set of real numbers. Looking at the
examples, it becomes clear that, depending
on the specific application, it is interesting to
specify additional properties for evaluators. If
one uses the equality relation on U , the follow-
ing semantical constraint must be satisfied:

∀(u, u′) ∈ U2 : u = u′ ⇒ EU (u, u′) = {(T, 1)}

This condition, called reflexivity, states that
when two values from U are equal, they are
co-referent. A more strict constraint would be
to assume that as soon as two values are not
equal, it is to some extent possible that they
are not co-referent:

∀(u, u′) ∈ U2 : u = u′ ⇔ EU (u, u′) = {(T, 1)}

This latter property is called strong reflexi-
vity. A clear distinction is made between
both properties, which both have their use
in practical applications. In the scope of

this paper, strong reflexivity is preferred be-
cause non-equality always introduces some
uncertainty. Reflexivity describes a seman-
tical connection between equality of values
and their co-reference. However, the connec-
tion between difference of values and their co-
reference is left unspecified up till now. One
could argue that, in a strict sense, as soon
as two values are different under the equa-
lity relation, the possibility that they are not
co-referent should be 1 and the uncertainty
should be reflected in the extent to which
it is possible that the values are co-referent.
Following such a reasoning leads to a very
conservative approach. However, possibilities
should not be interpreted absolute, but ref-
erential, which is why the following approach
is more suitable. Initially we do not know
anything about the co-reference of two values.
This complete uncertainty is modeled by p̃ =
{(T, 1) , (F, 1)}. Next, evidence is searched
about the co-reference and if it is more pos-
sible that the values are co-referent than the
opposite case, µp̃(F ) should be smaller than 1.
So the framework of PTVs for object match-
ing states that when two values are not equal
under some predefined equality relation, it
still might be more possible that the values
are co-referent. In the following, it is assumed
that the evaluators are strong reflexive.

In some cases, it is possible to identify re-
lations between propositions concerning co-
reference. For instance, assume we have a
proposition stating the co-reference of a and
b, say pa,b and a proposition stating the same
about b and c, say pb,c. The uncertainty about
the boolean truth values of these propositions
is given by the PTVs p̃a,b and p̃b,c. An inter-
esting problem is what we know about pa,c,
the proposition stating that a and c are co-
referent. In literature concerning similarity
metrics, these relations are often referred to
as transitivity, which is an implicit property of
a similarity metric. In the possibilistic model
for co-reference, such a direct transitivity is
not present. Nevertheless, for a given evalua-
tor, it might be possible and useful to derive
a conditional possibility distribution over the
domain I = {T, F}, say p̃a,c|p̃a,b, p̃b,c repre-
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senting the uncertainty about the boolean
value of pa,c, given p̃a,b and p̃b,c. Let us begin
by describing the relations that we have. If
we have a (strong) indication that a and b are
co-referent and (strong) indication that b and
c are co-referent, then both indications com-
bined are an indication for the co-reference of
a and c. Now, an indication that a and b (resp.
b and c) are co-referent combined with an in-
dication that b and c (resp. a and b) are not
co-referent, yields an indication that a and c
are not co-referent. Finally, an indication that
a and b are not co-referent combined with an
indication that b and c are not co-referent,
tells us nothing about the co-reference of a
and c. As an indicative measure we consider
necessity, which reflects certainty rather than
possibility and is derived as follows:

Necp(T ) = 1− µp̃(F )
Necp(F ) = 1− µp̃(T )

Based on these transformations and the fol-
lowing notations of conditional necessity:

Npa,c(T ) =
(
Necpa,c(T )|p̃a,b, p̃b,c

)
Npa,c(F ) =

(
Necpa,c(F )|p̃a,b, p̃b,c

)

the above descriptions of the (un)certainty re-
lations between propositions are formalised:

Npa,c(T ) ≥ (
Necpa,b

(T ) ∧Necpb,c
(T )

)
Npa,c(F ) ≥ (

Necpa,b
(T ) ∧Necpb,c

(F )
)

∨ (
Necpa,b

(F ) ∧Necpb,c
(T )

)

where the conjunction operator ∧ is min
and the disjunction operator ∨ is max. By
adding the normalisation condition of neces-
sities Npa,c(T ) · Npa,c(F ) = 0, we can de-
termine the conditional necessities and hence
the conditional possibilities by using the in-
verse transformations. Table 3 contains some
examples of derived conditional possibilistic
truth values. The examples show how un-
certainty about the basic propositions is con-
tained in the conditional distribution. When

Table 1: Examples of conditional PTVs
p̃a,b p̃b,c p̃a,c|p̃a,b, p̃b,c

{(T,1)} {(T,1)} {(T,1)}
{(T,1)} {(F,1)} {(F,1)}
{(F,1)} {(T,1)} {(F,1)}
{((F,1)} {(F,1)} {(T,1),(F,1)}
{(T,1)} {(T,1),(F,1)} {(T,1),(F,1)}
{(F,1)} {(T,1),(F,1)} {(T,1),(F,1)}
{(T,1)} {(T,1),(F,0.1)} {(T,1),(F,0.1)}

{(T,1),(F,0.3)} {(T,1),(F,0.1)} {(T,1),(F,0.3)}
{(T,0.5),(F,1)} {(T,1),(F,0.1)} {(T,0.5),(F,1)}
{(T,0.5),(F,1)} {(T,0.3),(F,1)} {(T,1),(F,1)}
{(T,1),(F,0.9)} {(T,1)} {(T,1),(F,0.9)}
{(T,1),(F,1)} {(T,1),(F,1)} {(T,1),(F,1)}

there are indications that both basic pro-
perties are false, the conditional distribu-
tion will reflect complete uncertainty, just as
is required. The conditional PTV provides
an upper bound for the uncertainty about
proposition pa,c, meaning that if additional
information about this proposition becomes
available, the resulting uncertainty must be
smaller than or equal to the conditional un-
certainty we had before the addition of in-
formation. However, adding new information
that results in strictly less uncertainty than
the conditional uncertainty, but implies an in-
dication toward a different truth value signi-
fies a contradiction. The occurrence of such
contradictions depends on both the evaluator
and the specific problem domain. For exam-
ple, when the evaluator is not strong reflexive
and we compare sets, such contradictions can
occur. An evaluator for which the inferred
conditional possibility distribution is never in
contradiction with additional information de-
livered by the evaluator, is called a consis-
tent evaluator. In other words, using a con-
sistent evaluator E implies that p̃a,c|p̃a,b, p̃b,c

and E(a, c) both agree on the truth value
that is most possible. The determination of a
conditional possibility distribution has impor-
tant practical applications, for example with
a highly complex evaluator used in an ob-
ject matching environment, it can save com-
putational resources. As a final remark to
conclude this section, note that both esti-
mators of possibility are completely indepen-
dent of any notion of similarity. Possibili-
ties can be linked to similarities in the sense
that when values are very similar, the pos-
sibility that they are co-referent should be
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high. Nevertheless one should always be care-
ful not to confuse possibilities with degrees of
(dis)similarity. In what follows, Definition 1
will be specified for the set data type, thereby
using some principles introduced by Dubois
and Prade on set comparison [5].

4 Set evaluation

As mentioned in Section 3 attributes can be
non-atomic and sets are a first example to il-
lustrate the relevance of this assumption. The
set datatype is used on attribute level in dif-
ferent situations, for example to denote a col-
lection of items or to model the seperate words
in a sentence such as done in several string
comparison systems [8]. It is explicitly stated
that when set comparison is discussed, we do
not refer to a set of constraints (which is actu-
ally the topic of object matching), but rather
some separate collection of items for which
the co-referential uncertainty should be esti-
mated. In the following, two approaches for
set evaluation, respectively hard set evalua-
tion and soft set evaluation, are discussed.

4.1 Hard set evaluation

The first approach for set evaluation extends
some regular comparison techniques for sets
to ℘̃(I). These comparison strategies calcu-
late a result based on (well known) set func-
tions [3]. After deriving sets by using such
functions, an important step is the mapping
of the derived sets to the unit interval. Dubois
and Prade use fuzzy measures in this step of
the comparison ([5]). Such measures are de-
fined as follows. Assume a universe U and two
subsets of U , A and B. A fuzzy measure [10]
is a mapping from ℘(U) to [0, 1] satisfying:

γ(∅) = 0
γ(U) = 1

A ⊂ B ⇒ γ(A) ≤ γ(B)

Our approach requires an estimation of the
possibilities that two given sets are (not) co-
referent. To do so, a couple of bipolar fuzzy
measures is used to make a distinction be-
tween positive and negative information de-
livered by the results of set functions. In

the context of sets, the positive information is
contained in the elements shared by the sets
and the negative information is contained by
the elements that do not occur in both sets.
Hence, a formal way of defining a set evalua-
tor is:
Definition 2 (Hard Set Evaluator). Assume
a universe U . A hard set evaluator Eh

℘(U) is
an evaluator as defined in Definition 1 where:

µp̃(T ) = s
γT (A ∩B)
γT (A ∪B)

µp̃(F ) = s
γF (A∆B)
γF (A ∪B)

where A∆B = (A∪B)∩(A∪B) is the symme-
trical difference of two sets and s is a scaling
factor to ensure normality.

The fuzzy measures evaluate the relevance of
the elements in a set. The estimation for T
expresses the ratio of relevance of elements
in the intersection and in the union. Simi-
larly, the estimation for F expresses the ra-
tio of relevance of elements in the symmetri-
cal difference and the union. The relevance
of an element being in the intersection might
differ strongly from the relevance of that ele-
ment being in the symmetric difference. More
specific, x ∈ (A ∩B) might have low rele-
vance for the possibility that A and B are
co-referent, while x ∈ (A∆B) might be very
relevant for the possibility that A and B are
not co-referent. For both γ’s, a simple exam-
ple is:

γ(A) =
|A|
|U |

4.2 Soft set evaluation

The approach presented above is based on
set functions that use an equality relation
‘=’ on the universe of discourse. A more
flexible approach avoids the strict equality
of elements. Instead, it states that elements
themselves can be co-referent without being
equal. More specific, the evaluation of sets
relies on lower level evaluations of it’s ele-
ments. Using such a low-level evaluator pro-
duces a sequence of PTVs representing uncer-
tainty about boolean values of propositions
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concerning the co-reference of elements from
U . Aggregation of these PTVs results in a sin-
gle PTV representing the uncertainty about
the co-reference of the sets. In what follows,
it is assumed that an evaluator is present to
estimate the uncertainty about propositions
like “a and b are co-referent” with a, b ∈ U .
This evaluator is referred to as EU and must
satisfy Definition 1 and the assumptions made
in Section 3, more specific the assumption of
strong reflexivity. Assume next two subsets of
U , say A and B with |A| ≤ |B|. The key idea
is to create an injective mapping ι from ele-
ment of A to elements of B. During the con-
struction of ι, element couples that are more
possible to be co-referent are given higher pre-
ference to be element of ι. Elements that are
mapped to each other are used to create af-
firmative propositions about co-reference on
element level. The procedure can be split
up into some basic steps. First, Algorithm
1 creates a matrix of PTVs expressing un-
certainty about the co-reference of elements
from A and B that are not equal. The inter-
section A ∩ B is treated separately because,
due to the strong reflexivity, equal elements
are certainly co-referent, which is why Algo-
rithm 1 maps the elements of A∩B to them-
selves. The functions r(.) and c(.) provide

Algorithm 1 Matrix generation
Require: A,B ⊂ U ∧ |A| ≤ |B|
Ensure: A matrix M of PTVs

C ← A ∩B
∀x ∈ C : ι(x) = x
A← A\C
B ← B\C
∀a ∈ A, b ∈ B : M [r(a), c(b)] = EU (a, b)

one-to-one mappings of elements from A and
B to row and column indexes which are na-
tural numbers. Note that in Algorithm 1 the
variables A and B are overwritten. Hence, in
what follows it is assumed that, after execu-
tion of Algorithm 1, A∩B = ∅, which simpli-
fies our notations. Having the matrix M , we
want to iteratively find the largest PTVs, add
it’s location to the mapping and then remove
the row and column of that location. This
process is equivalent to Algorithm 2 which

Figure 2: Example of element mapping

is explained as follows. For each row in M ,
the largest PTV is located with the under-
standing that comparison of PTVs is based
on generalized order relations as explained in
Section 2. If two rows, say r1 and r2 exist with
the same location of the largest PTV, a con-
flict is present. These conflicts are resolved
one at a time as follows. If the PTVs are
different, a subprocedure called search dis-
ables the position of the current maximum on
the row with the smallest current maximum
and searches a new maximum for that row.
In doing so, disabled maxima are not taken
into account. If the PTVs are equal on both
rows, a subprocedure called choose will iden-
tify which row should be passed to procedure
search for relocation of it’s maximum. The
procedure selects the remaining PTVs from
each row (i.e. enabled positions on the row)
which results in two multisets of PTVs, say
M1 and M2. Now, if M1 = M2, both rows
contain the same PTVs on enabled positions.
By convention, in this case we choose r1. If
M1 ⊂M2 or M2 ⊂M1, obviously the row cor-
responding with largest multiset is chosen be-
cause it contains all information captured by
the smaller multiset. If neither of these cases
yield, we subtract M1 ∩M2 from both mul-
tisets and the multiset containing the largest
PTV after subtraction is chosen. This way the
largest possible PTVs are left for future maxi-
mum relocation. An example of the element
mapping described by Algorithm 2 is shown
in Figure 2. For simplification, the PTVs are
shown in a shorter notation with first the pos-
sibility of T and second the possibility of F .
Hence, p̃ = {(T, µp̃(T )), (F, µp̃(F ))} is repre-
sented as (µp̃(T ), µp̃(F )). Further on, the cur-
rent maxima are marked as the location where
the PTV is underlined and when a position is
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disabled, the corresponding PTV is deleted.
From step (a) to (b) the conflicts between the
three rows are resolved. Because row 1 con-
tains the largest PTV, the maxima on row 2
and 3 are relocated. From step (b) to (c) the
conflict between row 2 and 3 is resolved on col-
umn 2. Both PTVs are equal so choose will
select row 2 for maximum relocation because
(1, 0.4)>̃(1, 0.8). In step (c) no conflicts occur
and the algorithm stops. Algorithm 2 pro-

Algorithm 2 Element mapping
Require: (|A| × |B|)-matrix M of PTVs
Ensure: Injective mapping ι

for all a ∈ A do
m[r(a)]← arg maxb∈B M [r(a), c(b)]

end for
while ∃x 6= y ∧m[r(x)] = m[r(y)] do

p̃1 ←M [r(x)][c(m[r(x)])]
p̃2 ←M [r(y)][c(m[r(y)])]
if p̃1 = p̃2 then

d←choose(M [r(x)],M [r(y)])
end if
if p̃1<̃p̃2 ∨ d = r(x) then

m[r(x)]←search(M [r(x)])
else

m[r(y)]←search(M [r(y)])
end if

end while
∀a ∈ A : ι(a) = c−1(m[r(a)])

duces the final injective mapping ι from ele-
ments of the smallest set (A) to the largest set
(B). Each couple of elements from the final
mapping is linked with one PTV expressing
uncertainty about their co-reference, which
induces a sequence seq of PTVs. In addi-
tion, |B|− |A| elements from B will not occur
in the mapping, so {(F, 1)} should be added
|B|−|A| times to seq. The generated sequence
seq represents the uncertainty about the co-
reference of elements form B with elements
from A. The final step requires an aggrega-
tion operator, such as (weighted) conjunctive
and disjunctive operators for PTVs [4, 7], to
infer one PTV expressing uncertainty about
the co-reference of the sets. When using such
operators it should be emphasized that the
algorithm provided ensures only uniqueness
of seq, not the uniqueness of the mapping

of elements implying this sequence. Hence,
if there is a difference in preference amongst
elements, the element mapping itself becomes
important and can be chosen to optimize a
predefined criterion. However, such a map-
ping optimisation is outside the scope of this
paper. The foregoing discussions lead to the
following definition of soft set evaluation.

Definition 3 (Soft Set Evaluator). Assume
a universe U and two subsets A and B with
|A| ≤ |B|. The soft set evaluator is an evalu-
ator satisfying:

Es
℘(U)(A,B) = F (p̃1, ..., p̃|B|)

where the first |A| PTVs are produced under
ι and EU and the last |B| − |A| PTVs are
{F, 1}. F is an arbitrary aggregation function
for PTVs.

The relevance of investigating set evaluation is
emphasized due to it’s important applications
in for example multiset evaluation and string
evaluation. Both topics will be investigated
in future research.

5 Conclusion

A generalization of the record linkage prob-
lem know as the object matching problem, has
been tackled from a possibilistic point of view
in current research. In order to further elabo-
rate this model, we have introduced a formal
definition of so called evaluation operators in
the domain of possibilistic truth values, which
estimate possibilities concerning co-reference
on a low level. As an application, we have
presented evaluation operators for sets. A
first approach is an extension of past research
on set comparison, while the second approach
benefits from the implicit non-atomicity of
sets.
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