General form of M-probabilities on IF-events

Beloslav Riečan
Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40
974 01 Banská Bystrica, Slovakia
and
Mathematical Institute of Slovak Acad. of Sciences
Štefánikova 49
SK–81473 Bratislava
riečan@fpv.umb.sk

Abstract

In M-probability theory the additivity is considered with respect to the Gödel operations (maximum, minimum). The representation theorem is proved under the assumption that the M-probability depends on the integrals of the membership function and the nonmembership function.

Keywords: IF-events, t-norms, probability.

1 IF-events

Consider a classical probability space \((\Omega, \mathcal{S}, P)\). An IF-event is a pair \(A = (\mu_A, \nu_A)\) of \(\mathcal{S}\)-measurable real functions \(\mu_A, \nu_A : \Omega \to [0, 1]\) such that

\[\mu_A + \nu_A \leq 1. \]

There is a very suitable terminology: \(\mu_A\) is called the membership function, \(\nu_A\) the nonmembership function. If \(f : \Omega \to [0, 1]\) is an \(\mathcal{S}\)-measurable fuzzy set, then the pair \((f, 1 - f)\) is an IF-event, of course IF-events present a larger family.

Denote by \(\mathcal{F}\) the family of all IF-events. There are many possibilities how to define a state \(m : \mathcal{F} \to [0, 1]\). First in [3 - 5] the additivity was studied with respect to Łukasiewicz connectives. In [4] general form of states (with respect to the connectives) was presented and in [5] the theory was imbedded to the MV-algebra probability theory [7].

Of course, in [2] the Gödel connectives were introduced instead of Łukasiewicz ones. Some basic results in M-probability theory (using the Gödel connectives) has been summarized in [1] and [6]. In this communication we present a general form of M-states.

The Gödel connectives are defined in the following way:

\[A \lor B = (\mu_A \lor \mu_B, \nu_A \land \nu_B), \]
\[A \land B = (\mu_A \land \mu_B, \nu_A \lor \nu_B), \]

where

\[f \lor g = \max(f, g), f \land g = \min(f, g) \]

Recall that

\[A \leq B \iff \mu_A \leq \mu_B, \nu_A \geq \nu_B. \]

An additive M-state is a mapping \(m : \mathcal{F} \to [0, 1]\) such that

(i) \(m((0, 1)) = 0, m((1, 0)) = 1, \)

(ii) \(m(A) + m(B) = m(A \lor B) + m(A \land B)\)

for any \(A, B \in \mathcal{F}\).

An additive M-state is called an M-state, if it is continuous, i.e.

(iii) \(A_n \nearrow A, B_n \searrow B \implies m(A_n) \nearrow m(A), m(B_n) \searrow m(B).\)

2 Representation theorem

Theorem. Let \(m : \mathcal{F} \to [0, 1]\) be an additive state, \(m(A) = f(\int_{\Omega} \mu_A dP, \int_{\Omega} \nu_A dP)\).
Then there are functions
\[\varphi : [0,1] \to [0,1], \psi : [0,1] \to [0,1] \]
such that \(\varphi \) is non-decreasing, \(\psi \) is non-increasing,
\[\varphi(0) = \psi(0) = 1, \varphi(0) + \psi(1) = 1, \]
and
\[m(A) = \varphi(\int_{\Omega} \mu_A dP) + \psi(\int_{\Omega} \nu_A dP) - 1. \]

If \(m : \mathcal{F} \to [0,1] \) is an \(M \)-state, then \(\varphi, \psi \) are continuous.

Example 1. Choose \(\alpha \in [0,1] \) and put \(\varphi(x) = (1-\alpha)x + \alpha, \psi(y) = -\alpha y + 1. \) Then
\[m(A) = (1-\alpha) \int_{\Omega} \mu_A dP + \alpha(1 - \int_{\Omega} \nu_A dP), \]
hence by [4] (see also [6]), any \(L \)-state is an \(M \)-state.

Example 2. Put \(\varphi(x) = \frac{x^2}{2} + \frac{1}{2}, \psi(y) = 1 - \frac{y^2}{2}. \) Then
\[m(A) = \frac{1}{2} (\int_{\Omega} \mu_A^2 dP + 1 - \int_{\Omega} \nu_A^2 dP). \]
The mapping \(m : \mathcal{F} \to [0,1] \) is an example of an \(M \)-state that is not an \(L \)-state.

Proof of Theorem. First by the formula
\[\bar{m}((\mu_A, \nu_A)) = m((\mu_A,0)) + m((0,\nu_A)) - m((0,0)) \]
an extension \(\bar{m} : \mathcal{M} \to [0,1] \) can be constructed, where
\[\mathcal{M} = \{(\mu_A, \nu_A) : \mu_A, \nu_A : \Omega \to [0,1], \mu_A, \nu_A \text{ are S-measurable } \}. \]

It is easy to see that \(\bar{m} \) is an additive \(M \)-probability, and \(\bar{m} \) is continuous, if \(m \) is continuous. Moreover, if \((\mu_A, \nu_A) \in \mathcal{F} \), then
\[(0,0) \lor (\mu_A, \nu_A) = (\mu_A \lor 0, \nu_A \lor 0) = (\mu_A, 0), \]
\[(0,0) \land (\mu_A, \nu_A) = (\mu_A \land 0, \nu_A \land 1) = (0, \nu_A), \]
hence
\[m((0,0)) + m((\mu_A, \nu_A)) = m((\mu_A, 0)) + m((0, \nu_A)), \]
and therefore
\[m((\mu_A, \nu_A)) = m((\mu_A, 0)) + m((0, \nu_A)) - m((0,0)) = \bar{m}((\mu_A, \nu_A)). \]
\(\bar{m} \) is an extension of \(m \). It is unique, because if \(s \) is any extension of \(m \), then again
\[s((\mu_A, \nu_A)) = s((\mu_A, 0)) + s((0, \nu_B)) - s((0,0)) = m((\mu_A, 0)) + m((0, \nu_A)) - m((0,0)) = \bar{m}((\mu_A, \nu_A)). \]

Put now
\[x = \int_{\Omega} \mu_A dP, y = \int_{\Omega} \nu_A dP, \]
hence
\[m(A) = f(x,y). \]

Define
\[\varphi(x) = f(x,0) = m(\int_{\Omega} \mu_A dP), \]
\[\psi(y) = f(1,y) = m(1, \int_{\Omega} \nu_A dP), \]
hence \(\varphi : [0,1] \to [0,1] \) is non-decreasing, \(\psi : [0,1] \to [0,1] \) is non-increasing. Since
\[(\mu_A, 0) \lor (1, \nu_A) = (1, 0), \]
\[(\mu_A, 0) \land (1, \nu_A) = (\mu_A, \nu_A), \]
we have
\[m((\mu_A, \nu_A)) + m((0, \nu_A)) = m((\mu_A, 0)) + m((1, 0)), \]
\[f(x,0) + f(1,y) = f(x,y) + f(1,0), \]
\[\varphi(x) + \psi(y) = f(x,y) + 1, \]
\[f(x,y) = \varphi(x) + \psi(y) - 1. \]

We have
\[m(A) = f \left(\int_{\Omega} dP, \int_{\Omega} \nu_A dP \right) = \varphi \left(\int_{\Omega} \mu_A dP \right) + \psi \left(\int_{\Omega} \nu_A dP \right) - 1. \]

Since
\[(0,0) \lor (1,1) = (1,0), \]
\[(0,1) \land (1,1) = (0,1) \]
we have
\[f(0,0) + f(1,1) = f(1,0) + f(0,1) = 1, \]
\[\varphi(0) + \psi(1) = 1. \]

Acknowledgements

Supported by Grant VEGA 1/0539/08.
References

