General form of M-probabilities on IF-events

Beloslav Riečan
Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40
97401 Banská Bystrica, Slovakia
and
Mathematical Institute of Slovak Acad. of Sciences
Štefánikova 49
SK-81473 Bratislava
riecan@fpv.umb.sk

Abstract

In M-probability theory the additivity is considered with respect to the Gödel operations (maximum, minimum). The representation theorem is proved under the assumption that the M-probability depends on the integrals of the membership function and the nonmembership function.

Keywords: IF-events, t-norms, probability.

1 IF-events

Consider a classical probability space (Ω, \mathcal{S}, P). An IF-event is a pair $A=\left(\mu_{A}, \nu_{A}\right)$ of \mathcal{S}-measurable real functions $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$ such that

$$
\mu_{A}+\nu_{A} \leq 1 .
$$

There is a very suitable terminology: μ_{A} is called the membership function, ν_{A} the nonmembership function. If $f: \Omega \rightarrow[0,1]$ is an \mathcal{S}-measurable fuzzy set, then the pair $(f, 1-f)$ is an IF-event, of course IF-events present a larger family.
Denote by \mathcal{F} the family of all IF-events. There are many possibilities how to define a state $m: \mathcal{F} \rightarrow[0,1]$. First in [3-5] the additivity was studied with respect to Lukasiewicz connectives. In [4] general form of states (with respect to the connectives) was presented and in [5] the theory was imbedded to the MValgebra probability theory [7].

Of course, in [2] the Gödel connectives were introduced instead of Lukasiewicz ones. Some basic results in M-probability theory (using the Gödel connectives) has been summarized in [1] and [6]. In this communication we present a general form of M-states.
The Gödel connectives are defined in the following way:

$$
\begin{aligned}
& A \vee B=\left(\mu_{A} \vee \mu_{B}, \nu_{A} \wedge \nu_{B}\right), \\
& A \wedge B=\left(\mu_{A} \wedge \mu_{B}, \nu_{A} \vee \nu_{B}\right),
\end{aligned}
$$

where

$$
f \vee g=\max (f, g), f \wedge g=\min (f, g)
$$

Recall that

$$
A \leq B \Longleftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B}
$$

An additive M-state is a mapping $m: \mathcal{F} \rightarrow$ $[0,1]$ such that
(i) $m((0,1))=0, m((1,0))=1$,
(ii) $m(A)+m(B)=m(A \vee B)+m(A \wedge B)$ for any $A, B \in \mathcal{F}$.

An additive M-state is called an M-state, if it is continuous, i.e.
(iii) $A_{n} \nearrow A, B_{n} \searrow B \Longrightarrow$

$$
m\left(A_{n}\right) \nearrow m(A), m\left(B_{n}\right) \searrow m(B)
$$

2 Representation theorem

Theorem. Let $m: \mathcal{F} \rightarrow[0,1]$ be an additive state, $m(A)=f\left(\int_{\Omega} \mu_{A} d P, \int_{\Omega} \nu_{A} d P\right)$.

Then there are functions

$$
\varphi:[0,1] \rightarrow[0,1], \psi:[0,1] \rightarrow[0,1]
$$

such that φ is non-decreasing, ψ is nonincreasing,

$$
\varphi(1)=\psi(0)=1, \varphi(0)+\psi(1)=1
$$

and

$$
m(A)=\varphi\left(\int_{\Omega} \mu_{A} d P\right)+\psi\left(\int_{\Omega} \nu_{A} d P\right)-1
$$

If $m: \mathcal{F} \rightarrow[0,1]$ is an M-state, then φ, ψ are continuous.

Example 1. Choose $\alpha \in[0,1]$ and put $\varphi(x)=(1-\alpha) x+\alpha, \psi(y)=-\alpha y+1$. Then $m(A)=(1-\alpha) \int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega} \nu_{A} d P\right)$, hence by [4] (see also [6]), any L-state is an M-state.
Example 2. Put $\varphi(x)=\frac{x^{2}}{2}+\frac{1}{2}, \psi(y)=$ $1-\frac{y^{2}}{2}$. Then

$$
m(A)=\frac{1}{2}\left(\int_{\Omega} \mu_{A}^{2} d P+1-\int_{\Omega} \nu_{A}^{2} d P\right)
$$

The mapping $m: \mathcal{F} \rightarrow[0,1]$ is an example of an M-state that is not an L-state.

Proof of Theorem. First by the formula

$$
\begin{aligned}
\bar{m}\left(\left(\mu_{A}, \nu_{A}\right)\right)= & m\left(\left(\mu_{A}, 0\right)\right)+ \\
& m\left(\left(0, \nu_{A}\right)\right)-m((0,0))
\end{aligned}
$$

an extension $\bar{m}: \mathcal{M} \rightarrow[0,1]$ can be constructed, where
$\mathcal{M}=\left\{\left(\mu_{A}, \nu_{A}\right) ; \mu_{A}, \nu_{A}: \Omega \rightarrow[0,1], \mu_{A}, \nu_{A}\right.$ are \mathcal{S}-measurable $\}$.

It is easy to see that \bar{m} is an additive M probability, and \bar{m} is continuous, if m is continuous. Moreover, if $\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}$, then $(0,0) \vee\left(\mu_{A}, \nu_{A}\right)=\left(\mu_{A} \vee 0, \nu_{A} \wedge 0\right)=\left(\mu_{A}, 0\right)$, $(0,0) \wedge\left(\mu_{A}, \nu_{A}\right)=\left(\mu_{A} \wedge 0, \nu_{A} \vee 1\right)=\left(0, \nu_{A}\right)$, hence $m((0,0))+m\left(\left(\mu_{A}, \nu_{A}\right)\right)=m\left(\left(\mu_{A}, 0\right)\right)+m((0,0))$,
and therefore

$$
\begin{aligned}
m\left(\left(\mu_{A}, \nu_{A}\right)\right) & =m\left(\left(\mu_{A}, 0\right)\right)+m\left(\left(0, \nu_{A}\right)\right) \\
& -m((0,0))=\bar{m}\left(\left(\mu_{A}, \nu_{A}\right)\right)
\end{aligned}
$$

\bar{m} is an extension of m. It is unique, because if s is any extension of m, then again

$$
\begin{aligned}
& s\left(\left(\mu_{A}, \nu_{A}\right)\right)=s\left(\left(\mu_{A}, 0\right)\right)+s\left(\left(0, \nu_{B}\right)\right) \\
& -s((0,0))=m\left(\left(\mu_{A}, 0\right)\right)+m\left(\left(0, \nu_{A}\right)\right) \\
& \quad-m((0,0))=\bar{m}\left(\left(\mu_{A}, \nu_{A}\right)\right)
\end{aligned}
$$

Put now

$$
x=\int_{\Omega} \mu_{A} d P, y=\int_{\Omega} \nu_{A} d P
$$

hence

$$
m(A)=f(x, y)
$$

Define

$$
\begin{gathered}
\varphi(x)=f(x, 0)=m\left(\int_{\Omega} \mu_{A}, 0\right) \\
\psi(y)=f(1, y)=m\left(1, \int_{\Omega} \nu_{A} d P\right)
\end{gathered}
$$

hence $\varphi:[0,1] \rightarrow[0,1]$ is non-decreasing, $\psi:[0,1] \rightarrow[0,1]$ is non-increasing. Since

$$
\begin{aligned}
\left(\mu_{A}, 0\right) \vee\left(1, \nu_{A}\right) & =(1,0) \\
\left(\mu_{A}, 0\right) \wedge\left(1, \nu_{A}\right) & =\left(\mu_{A}, \nu_{A}\right)
\end{aligned}
$$

we have

$$
\begin{gathered}
m\left(\mu_{A}, 0\right)+m\left(1, \nu_{A}\right)=m\left(\mu_{A}, \nu_{A}\right)+m(1,0) \\
f(x, 0)+f(1, y)=f(x, y)+f(1,0) \\
\varphi(x)+\psi(y)=f(x, y)+1 \\
f(x, y)=\varphi(x)+\psi(y)-1
\end{gathered}
$$

We have

$$
\begin{gathered}
m(A)=f\left(\int_{\Omega} d P, \int_{\Omega} \nu_{A} d P\right)= \\
=\varphi\left(\int_{\Omega} \mu_{A} d P\right)+\psi\left(\int_{\Omega} \nu_{A} d P\right)-1
\end{gathered}
$$

Since

$$
\begin{aligned}
& (0,0) \vee(1,1)=(1,0) \\
& (0,1) \wedge(1,1)=(0,1)
\end{aligned}
$$

we have

$$
\begin{gathered}
f(0,0)+f(1,1)=f(1,0)+f(0,1)=1 \\
\varphi(0)+\psi(1)=1
\end{gathered}
$$

Acknowledgements

Supported by Grant VEGA 1/0539/08.

References

[1] K. Čunderlíková, B. Riečan. Intuitionistic fuzzy probability theory. In: Intuitionistic Fuzzy Sets, Springer, to appear.
[2] M. Krachounoff (2006). Intuitionistic probability and intuitionistic fuzzy sets. In: First Intern. Workshop on IFS (ElDarzi et al. eds.), pages 714-717.
[3] B. Riečan (2003). A descriptive definition of the probability on intuitionistic fuzzy sets. In: EUSFLAT'2003 (M.Wagenecht, R. Hampel eds.), pages 263-266.
[4] B. Riečan (2006). On a problem of Radko Mesiar: general form of IF-probabilities. Fuzzy Sets and Systems, 152, pages 14851490.
[5] B. Riečan (2005). On the probability on IF-sets and MV-algebras. Notes on IFS, 11 , pages 21-25.
[6] B. Riečan (2007). Probability theory on intuitionistic fuzzy sets. A volume in honor of Daniele Munidici's 60th birthday. Lecture Notes in Computer Science 2007.
[7] B. Riečan, D. Mundici (2002). Probability on MV-algebras. Handbook of measure theory (E.Pap ed.), North-Holland 2002.

