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Abstract

In M-probability theory the additiv-
ity is considered with respect to the
Gödel operations (maximum, mini-
mum). The representation theorem
is proved under the assumption that
the M-probability depends on the in-
tegrals of the membership function
and the nonmembership function.
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1 IF-events

Consider a classical probability space
(Ω,S, P ). An IF-event is a pair
A = (µA, νA) of S-measurable real func-
tions µA, νA : Ω→ [0, 1] such that

µA + νA ≤ 1.

There is a very suitable terminology: µA is
called the membership function, νA the non-
membership function. If f : Ω → [0, 1] is an
S-measurable fuzzy set, then the pair (f, 1−f)
is an IF-event, of course IF-events present a
larger family.

Denote by F the family of all IF-events.
There are many possibilities how to define a
state m : F → [0, 1]. First in [3 - 5] the addi-
tivity was studied with respect to Lukasiewicz
connectives. In [4] general form of states (with
respect to the connectives) was presented and
in [5] the theory was imbedded to the MV-
algebra probability theory [7].

Of course, in [2] the Gödel connectives were
introduced instead of Lukasiewicz ones. Some
basic results in M-probability theory (using
the Gödel connectives) has been summarized
in [1] and [6]. In this communication we
present a general form of M-states.

The Gödel connectives are defined in the fol-
lowing way:

A ∨B = (µA ∨ µB, νA ∧ νB),
A ∧B = (µA ∧ µB, νA ∨ νB),

where

f ∨ g = max(f, g), f ∧ g = min(f, g)

Recall that

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB.

An additive M -state is a mapping m : F →
[0, 1] such that

(i) m((0, 1)) = 0,m((1, 0)) = 1,

(ii) m(A) + m(B) = m(A ∨ B) + m(A ∧ B)
for any A,B ∈ F .

An additive M-state is called an M-state, if it
is continuous, i.e.

(iii) An ↗ A,Bn ↘ B =⇒
m(An)↗ m(A),m(Bn)↘ m(B).

2 Representation theorem

Theorem. Let m : F → [0, 1] be an ad-
ditive state, m(A) = f(

∫
Ω µAdP,

∫
Ω νAdP ).
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Then there are functions

ϕ : [0, 1]→ [0, 1], ψ : [0, 1]→ [0, 1]

such that ϕ is non-decreasing, ψ is non-
increasing,

ϕ(1) = ψ(0) = 1, ϕ(0) + ψ(1) = 1,

and

m(A) = ϕ(
∫

Ω
µAdP ) + ψ(

∫
Ω
νAdP )− 1.

If m : F → [0, 1] is an M -state, then ϕ,ψ are
continuous.

Example 1. Choose α ∈ [0, 1] and put
ϕ(x) = (1− α)x+ α,ψ(y) = −αy + 1. Then

m(A) = (1− α)
∫

Ω
µAdP + α(1−

∫
Ω
νAdP ),

hence by [4] (see also [6]), any L-state is an
M-state.

Example 2. Put ϕ(x) = x2

2 + 1
2 , ψ(y) =

1− y2

2 . Then

m(A) =
1
2

(
∫

Ω
µ2

AdP + 1−
∫

Ω
ν2

AdP ).

The mapping m : F → [0, 1] is an example of
an M-state that is not an L-state.

Proof of Theorem. First by the formula

m̄((µA, νA)) = m((µA, 0)) +
m((0, νA))−m((0, 0))

an extension m̄ : M → [0, 1] can be con-
structed, where

M = {(µA, νA);µA, νA : Ω → [0, 1], µA, νA

are S-measurable }.
It is easy to see that m̄ is an additive M -
probability, and m̄ is continuous, if m is con-
tinuous. Moreover, if (µA, νA) ∈ F , then

(0, 0) ∨ (µA, νA) = (µA ∨ 0, νA ∧ 0) = (µA, 0),

(0, 0) ∧ (µA, νA) = (µA ∧ 0, νA ∨ 1) = (0, νA),

hence

m((0, 0))+m((µA, νA)) = m((µA, 0))+m((0, 0)),

and therefore

m((µA, νA)) = m((µA, 0)) +m((0, νA))
−m((0, 0)) = m̄((µA, νA)),

m̄ is an extension of m. It is unique, because
if s is any extension of m, then again

s((µA, νA)) = s((µA, 0)) + s((0, νB))
−s((0, 0)) = m((µA, 0)) +m((0, νA))

−m((0, 0)) = m̄((µA, νA)).

Put now

x =
∫

Ω
µAdP, y =

∫
Ω
νAdP,

hence
m(A) = f(x, y).

Define

ϕ(x) = f(x, 0) = m(
∫

Ω
µA, 0),

ψ(y) = f(1, y) = m(1,
∫

Ω
νAdP ),

hence ϕ : [0, 1]→ [0, 1] is non-decreasing,
ψ : [0, 1]→ [0, 1] is non-increasing. Since

(µA, 0) ∨ (1, νA) = (1, 0),
(µA, 0) ∧ (1, νA) = (µA, νA),

we have

m(µA, 0) +m(1, νA) = m(µA, νA) +m(1, 0),

f(x, 0) + f(1, y) = f(x, y) + f(1, 0),

ϕ(x) + ψ(y) = f(x, y) + 1,

f(x, y) = ϕ(x) + ψ(y)− 1.

We have

m(A) = f

(∫
Ω
dP,

∫
Ω
νAdP

)
=

= ϕ

(∫
Ω
µAdP

)
+ ψ

(∫
Ω
νAdP

)
− 1.

Since

(0, 0) ∨ (1, 1) = (1, 0),
(0, 1) ∧ (1, 1) = (0, 1)

we have

f(0, 0) + f(1, 1) = f(1, 0) + f(0, 1) = 1,

ϕ(0) + ψ(1) = 1.
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