General form of strongly additive φ-probability

Magdaléna Renčová
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia rencova@fpv.umb.sk

Abstract

In the paper the notion of strongly additive φ-probability is introduced. This notion is stronger than the notion od the φ probability studied in [6]. The main result of this article is the general form of strongly additive φ-probabilities.

Keywords: strongly additive φ-probability, strongly additive φ-state, general form.

1 Introduction

After some construction of probability theory on IF-sets [1], [2], [3], [6], [7], an axiomatic theory has been constructed. This theory was based on the Łukasiewicz connectives $a \oplus b=$ $(a+b) \wedge 1$ and $a \odot b=(a+b-1) \vee 0$, or on the min - max connectives $a \oplus b=\max (a, b)$, $a \odot b=\min (a, b)$. In [?] there are another two new types of probability on IF - sets, where instead of the Łukasiewicz sum $a \oplus b=(a+b) \wedge 1$ the sum $a \widehat{+} b=\sqrt{\left(a^{2}+b^{2}\right)} \wedge 1$ is considered. There we can find some notions useful in probability theory on IF-events. Recall that IF-event is a pair $A=\left(\mu_{A}, \nu_{A}\right)$ of measurable functions $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$ such that $\mu_{A}+\nu_{A} \leq 1$. In this paper we examine another generalized pair of connectives on a family of all IF-events \mathcal{F}

$$
\begin{gathered}
A \widehat{\oplus} B= \\
\left(\varphi^{-1}\left(\varphi\left(\mu_{A}\right)+\varphi\left(\mu_{B}\right)\right) \wedge 1,\right.
\end{gathered}
$$

$$
\left.1-\left(\varphi^{-1}\left(\varphi\left(1-\nu_{A}\right)+\varphi\left(1-\nu_{B}\right)\right) \wedge 1\right)\right)
$$

$$
\begin{gathered}
A \widehat{\odot} B= \\
\left(\left(\varphi\left(\mu_{A}\right)+\varphi\left(\mu_{B}\right)-1\right) \vee 0,\right. \\
\left.\left(1-\varphi\left(1-\nu_{A}\right)+1-\varphi\left(1-\nu_{B}\right)\right) \wedge 1\right),
\end{gathered}
$$

where $A, B \in \mathcal{F}, A=\left(\mu_{A}, \nu_{A}\right), B=\left(\mu_{B}, \nu_{B}\right)$ and $\varphi:[0,1] \rightarrow[0,1]$ is an increasing bijection such that $\varphi(u) \leq u$ for any $u \in[0,1]$.

Example 1.1 As an example we can show two following pairs of operations, where: $\varphi_{1}(x)=x^{n}, \varphi_{2}(x)=2^{x}-1$, i.e.
$A \widehat{\oplus}_{1} B=\left(\sqrt[n]{\mu_{A}{ }^{n}+\mu_{B}{ }^{n}} \wedge 1 ;(1-\right.$ $\left.\sqrt[n]{\left.\left(1-\nu_{A}\right)^{n}+\left(1-\nu_{B}\right)^{n}\right)} \wedge 1\right)$
$A \widehat{\odot}_{1} B=\left(\left(\mu_{A}{ }^{n}+\mu_{B}{ }^{n}-1\right) \vee 0,(1-(1-\right.$ $\left.\left.\left.\nu_{A}\right)^{n}+1-\left(1-\nu_{B}\right)^{n}\right) \wedge 1\right)$
$A \widehat{\oplus}_{2} B=\left(\log _{2}\left(2^{\mu_{A}}+2^{\mu_{B}}-2\right) \wedge 1 ;(1-\right.$ $\left.\left.\log _{2}\left(2^{\left(1-\nu_{A}\right)}+2^{\left(1-\nu_{B}\right)}-2\right)\right) \wedge 1\right)$
$A \widehat{\odot}_{2} B=\left(\left(2^{\mu_{A}}+2^{\mu_{B}}-3\right) \vee 0,\left(4-2^{1-\nu_{A}}-\right.\right.$ $\left.\left.2^{1-\nu_{B}}\right) \wedge 1\right)$

In this contribution we present a general form of strongly additive φ-probability on the family \mathcal{F} of all IF-events.

2 General form of strongly additive φ - probability

We are going to work with a probability space (Ω, \mathcal{S}, p) and with the family \mathcal{F} of all IFevents, i.e. pairs $\left(\mu_{A}, \nu_{A}\right)$ of measurable functions $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$, such that $\mu_{A}+\nu_{A} \leq$ 1. In this family \mathcal{F} there is already given partial ordering \leq by this prescription $A \leq B \Leftrightarrow$ $\mu_{A} \leq \mu_{B} ; \nu_{A} \geq \nu_{B}$, and we study two binary
operations $\widehat{\oplus}, \widehat{\odot}$, which has been mentioned in introduction, $\varphi:[0,1] \rightarrow[0,1]$ is an increasing bijection, such that $\varphi(u) \leq u$ for any $u \in[0,1]$.

Let us define some notions and propositions, first.

Definition 2.1 Let \mathcal{F} be the family of all IF-events, \mathcal{J} be the family of all compact subintervals of the unit interval $[0,1]$. By a strongly additive φ-probability we understand any mapping $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$ satisfying the following conditions:
(i) $\mathcal{P}((\boldsymbol{1}, \boldsymbol{O}))=[1,1], \mathcal{P}((\boldsymbol{O}, \boldsymbol{1}))=[0,0]$;
(ii) $A \widehat{\odot} B=(0,1)$

$$
\Rightarrow \mathcal{P}(A \widehat{\oplus} B)=\mathcal{P}(A)+\mathcal{P}(B)
$$

(iii) $A_{n} \nearrow A \Rightarrow \mathcal{P}\left(A_{n}\right) \nearrow \mathcal{P}(A)$.
(Here $\left[a_{n}, b_{n}\right] \nearrow[a, b]$, if $\left.a_{n} \nearrow a, b_{n} \nearrow b.\right)$
Definition 2.2 A mapping $m: \mathcal{F} \rightarrow[0,1]$ is called a strongly additive φ-state, if the following conditions are satisfied:
(i) $m((\mathbf{1}, \boldsymbol{0}))=1, m((\boldsymbol{0}, \mathbf{1}))=0$;
(ii) $A \widehat{\odot} B=(0,1)$

$$
\Rightarrow m(A \widehat{\oplus} B)=m(A)+m(B)
$$

(iii) $A_{n} \nearrow A \Rightarrow m\left(A_{n}\right) \nearrow m(A)$.

Remark 2.3 If instead of $A \widehat{\odot} B$ the operation $A \odot B=\left(\left(\mu_{A}+\mu_{B}-1\right) \vee 0,\left(1-\nu_{A}+1-\nu_{B}\right) \wedge 1\right)$ is considered, then we obtain the notion of a φ-probability, φ-state. Since $A \odot B=(0,1)$ implies $A \widehat{\odot} B=(0,1)$ then any strongly additive φ-state is a φ-state. Also if \oplus is considered instead of $\widehat{\oplus}$, then we obtain the notion of IF-state.

Example 2.4 We show some examples of strongly additive φ-states in probability space (Ω, \mathcal{S}, p) :
(i) $m_{1}\left(\left(\mu_{A}, \nu_{A}\right)\right)=\int_{\Omega} \mu_{A}^{n} d p$, for fixed $n \in N$,
(ii) $m_{2}\left(\left(\mu_{A}, \nu_{A}\right)\right)=\int_{\Omega}\left(a^{\mu_{A}}-1\right) d p$, for fixed $a \in R, a>0$.
(iii) $m_{3}\left(\left(\mu_{a}, \nu_{A}\right)\right)=\int_{\Omega} \log \mu_{A} d p$.

Sincerely as in [5], [8] we shall present also the representation theorem for φ - state.

Theorem 2.5 To any strongly additive φ state $m: \mathcal{F} \rightarrow[0,1]$ there exists $\alpha \in[0,1]$ and a probability measure $p: \mathcal{S} \rightarrow[0,1]$ such that
$m(A)=(1-\alpha) \int_{\Omega} \varphi\left(\mu_{A}\right) d p+\alpha \int_{\Omega} \varphi\left(1-\nu_{A}\right) d p$
for any $A=\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}$.
Proof. Let m be a given strongly additive φ-state. We should define a new function $\widehat{m}: \mathcal{F} \rightarrow[0,1]$ by the formula

$$
\widehat{m}((\mu, \nu))=m\left(\left(\varphi^{-1}(\mu), 1-\varphi^{-1}(1-\nu)\right)\right)
$$

i.e.

$$
m((f, g))=\widehat{m}((\varphi(f), 1-\varphi(g)))
$$

We should show, that this new \widehat{m} is an IFstate. So we should show all 3 conditions from Definition 2.2.
Let

$$
\begin{gathered}
C=\left(\mu_{C}, \nu_{C}\right), D=\left(\mu_{D}, \nu_{D}\right) \in \mathcal{F} \\
C \odot D=(0,1)
\end{gathered}
$$

It follows

$$
\mu_{C}+\mu_{D} \leq 1, \nu_{C}+\nu_{D} \geq 1
$$

Define

$$
A=\left(\mu_{A}, \nu_{A}\right), B=\left(\mu_{B}, \nu_{B}\right)
$$

by the following formulas

$$
\begin{aligned}
& \mu_{A}=\varphi^{-1}\left(\mu_{C}\right), \nu_{A}=1-\varphi^{-1}\left(1-\nu_{C}\right) \\
& \mu_{B}=\varphi^{-1}\left(\mu_{D}\right), \nu_{B}=1-\varphi^{-1}\left(1-\nu_{D}\right)
\end{aligned}
$$

Then

$$
\begin{gathered}
A \widehat{\odot} B= \\
=\left(\left(\varphi\left(\varphi^{-1}\left(\mu_{C}\right)\right)+\varphi\left(\varphi^{-1}\left(\mu_{D}\right)-1\right) \vee 0\right.\right. \\
\left.\left.1-\left(\varphi\left(\varphi^{-1}\left(1-\nu_{C}\right)+1-\varphi\left(\varphi^{-1}\left(1-\nu_{D}\right)\right)\right)\right) \wedge 1\right)\right) \\
=\left(\left(\mu_{C}+\mu_{D}-1\right) \vee 0,\left(\nu_{C}+\nu_{D}\right) \wedge 1\right) \\
=(0,1)
\end{gathered}
$$

It follows

$$
\begin{aligned}
& \quad m(A \widehat{\odot} B)=m(A)+m(B) \\
& \widehat{m}(C \oplus D)= \\
& =\widehat{m}\left(\left(\mu_{C}+\mu_{D}, \nu_{C}+\nu_{D}-1\right)\right)= \\
& =\widehat{m}\left(\left(\varphi\left(\mu_{A}\right)+\varphi\left(\mu_{B}\right)\right.\right. \\
& \left.\left.1-\varphi\left(1-\nu_{A}\right)+1-\varphi\left(1-\nu_{B}\right)-1\right)\right)= \\
& =m\left(\left(\varphi^{-1}\left(\varphi\left(\mu_{A}\right)+\varphi\left(\mu_{B}\right)\right),\right.\right. \\
& \left.\left.1-\varphi^{-1}\left(\varphi\left(1-\nu_{A}\right)+\varphi\left(1-\nu_{B}\right)\right)\right)\right)= \\
& =m(A \widehat{\oplus} B)=m(A)+m(B)= \\
& =\widehat{m}\left(\left(\varphi\left(\mu_{A}\right),\right.\right. \\
& \left.\left.1-\varphi\left(1-\nu_{A}\right)\right)\right)+\widehat{m}\left(\left(\varphi\left(\mu_{B}\right), 1-\varphi\left(1-\nu_{B}\right)\right)\right) \\
& =\widehat{m}\left(\left(\mu_{C}, \nu_{C}\right)\right)+\widehat{m}\left(\left(\mu_{D}, \nu_{D}\right)\right)= \\
& =\widehat{m}(C)+\widehat{m}(D) .
\end{aligned}
$$

Next, we can use know results about \widehat{m}. Hence there exists $\alpha \in[0,1]$ and a probability p : $\mathcal{S} \rightarrow[0,1]$ such that for any $C \in \mathcal{F}$

$$
\widehat{m}(C)=(1-\alpha) \int_{\Omega} \mu_{C} d p+\alpha\left(1-\int_{\Omega} \nu_{C} d p\right),
$$

finally, we should show how we can translate obtained formula to m and hence

$$
\begin{gathered}
m(A)=\widehat{m}\left(\left(\varphi\left(\mu_{A}\right), 1-\varphi\left(1-\nu_{A}\right)\right)\right)= \\
=(1-\alpha) \int_{\Omega} \varphi\left(\mu_{A}\right) d p+\alpha \int_{\Omega} \varphi\left(1-\nu_{A}\right) d p
\end{gathered}
$$

A direct corollary of Theorem 2.5 is the following assertion.

Theorem 2.6 To any strongly additive φ-probability $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$ there exist $\alpha, \beta \in[0,1]$ such that $\alpha \leq \beta$ and

$$
\begin{gathered}
\mathcal{P}(A)= \\
=\left[(1-\alpha) \int_{\Omega} \varphi\left(\mu_{A}\right) d p+\alpha\left(1-\int_{\Omega} \varphi\left(\nu_{A}\right) d p\right)\right. \\
\left.(1-\beta) \int_{\Omega} \varphi\left(\mu_{A}\right) d p+\beta\left(1-\int_{\Omega} \varphi\left(\nu_{A}\right) d p\right)\right] .
\end{gathered}
$$

3 Conclusion

There are various notions of probability on IF-events ([3], [8], [10],). In [6] so-called φ-probability has been studied what is a generalization of IF-probability ([4], [7], [9]). In the paper we studied a special case of φ-probability, so-called strongly additive probability. We have shown the general form of strongly additive probability (Theorem 2.6). The problem of a general form of arbitrary φ - probability is open.

References

[1] Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Phisica Verlag, New York, 1999.
[2] Atanassov, K., Riečan, B.: On two new types of probability on IF-events. In: Proc.of the First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering. Warsawa, 2007.
[3] Čunderlíková - Lendelová, K., Riečan, B.: The probability theory on B-structures. Accepted to Fuzzy Sets and Systems. 2007.
[4] Lendelová, K.: Strong law of large numbers for IF-events. In: Proc. Eleventh Int. Conf. IPMU. Paris 2006, pp. 2363-2366.
[5] Petrovičová, J., Riečan, B.: On a characterization of IF probability. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J.(eds.) MDAI 2006. LNCS (LNAI), vol. 3885. Springer : Heidelberg, 2006, pp. 1-7.
[6] Renčová, M.: On the φ-probability and φ-observables. Submitted to Fuzzy Sets and Systems. 2007.
[7] Renčová, M., Riečan, B.: Probability on IF - sets: an elementary approach. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering. London : University of Westminster, 2006, pp. 8 17.
[8] Riečan, B.: A descriptive definition of the probability on intuitionistic fuzzy sets. In: Wagenecht, M., Hampet, R.(eds.) Proc. EUSFLAT 2003. Goerlitz Univ. : Zittau. Appl. Sci., Dordrecht, 2003, pp.263-266.
[9] Riečan, B.: On a problem of Radko Mesiar: general form of IF probabilities. In: Fuzzy Sets and Systems. 152, 2006, 1485-1490.
[10] Riečan, B.: Probability theory on intuitionistic fuzzy sets. In: A volume in honor of Daniele Mundicits $60^{\text {th }}$ birthday. Lecture Notes in Computer Science, 2007.
[11] Riečan, B.: Reprezentation of probabilities on IFS events. In: Lopez-Diaz, M., et al. (eds.) Advances in Soft Computing, Soft Methodology and Random Information Systems. Springer, Heidelberg, 2004, pp. 243-246.

Acknowledgements

The paper was supported by Grant VEGA 1/0539/08.

References

[1] P. Ipmu (2008). Instructions for Authors. In Proceedings of the conference IPMU'2008, volume 2, pages 1-42, Málaga, Spain, June 2008.

