A measure extension theorem in ℓ -groups

Alžbeta Michalíková

Faculty of Natural Sciences Matej Bel University Tajovského 40 974 01 Banská Bystrica Slovakia e-mail: michalik@fpv.umb.sk

Abstract

In the paper [2] there was proved that if H is a σ -continuous, orthomodular lattice, A is its orthocomplemented sublattice, $\mu : A \to \langle 0, 1 \rangle$ is a probability measure that is subadditive and S(A) is the σ -complete orthocomplemented sublattice of Hgenerated by A, then there exist exactly one subadditive probability measure $\overline{\mu} : S(A) \to \langle 0, 1 \rangle$ that is an extension of μ . In the paper we prove the theorem for ℓ -group valued measures that are subadditive. Similar problems were studied for example in [1] and [4].

Keywords: Measure, measure extension, orthomodular and orthocomplemented lattices.

1 Basic notions

In this section we introduce the basic notions which are necessary for understanding of the studying problems.

Let H be a σ -complete lattice. Then H is called a σ -continuous, if $x_n \nearrow x, y_n \nearrow y$ implies $x_n \land y_n \nearrow x \land y$ and $x_n \searrow x, y_n \searrow y$ implies $x_n \lor y_n \searrow x \lor y$.

A σ -complete lattice H with the least element 0 and the greatest element 1 is called orthocomplemented, if there is a mapping $\perp: H \to H$ such that the following properties are satisfied:

- 1. $(a^{\perp})^{\perp} = a$ for each $a \in H$.
- 2. If $a \leq b$ then $b^{\perp} \leq a^{\perp}$.
- 3. $a \vee a^{\perp} = 1$ for each $a \in H$.

An orthocomplemented lattice is called to be an orthomodular lattice if the following condition is satisfied:

4. If $a \leq b$ then $b = a \lor (b \land a^{\perp})$.

Two elements $a, b \in H$ are called orthogonal if $a \leq b^{\perp}$ or $b \leq a^{\perp}$.

A subset A of an orthocomplemented lattice H is called an orthocomplemented sublattice of H if $a, b \in A$ implies $a \lor b \in A$, $a^{\perp} \in A$.

Let G be a complete ℓ -group, i.e. a structure $(G, +, \leq)$ such that (G, +) is an Abelian group, (G, \leq) is a complete lattice (i.e. any upper bounded subset of G has the supremum) and $a \leq b$ implies $a + c \leq b + c$ for any $c \in G$. Let 0 be the neutral element of G (i.e. a + 0 = a for any $a \in G$), $G^+ = \{a \in G; a \geq 0\}$. Denote by ∞ an ideal element and $G^* = G^+ \cup \{\infty\}$, where $a + \infty = \infty + a = \infty + \infty = \infty$ for any $a \in G$ and $a \leq \infty$, $\infty \leq \infty$ for any $a \in G$.

Let A be an orthocomplemented sublattice of an orthomodular lattice H. A mapping μ : $A \to G^+$ is called a measure if the following properties are satisfied:

- 1. $\mu(0) = 0.$
- 2. If $a_n \in A(n = 1, 2, \ldots)$, elements a_n are

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU'08, pp. 1666–1670 Torremolinos (Málaga), June 22–27, 2008 pairwise orthogonal and $\bigvee_{n=1}^{\infty} a_n \in A$, then

$$\mu(\bigvee_{n=1}^{\infty} a_n) = \sum_{n=1}^{\infty} \mu(a_n).$$

A measure $\mu : A \to G^+$ is subadditive if $\mu(a \lor b) \le \mu(a) + \mu(b)$ for each $a, b \in A$. It is easy to prove that every measure is nondecreasing and upper continuous. Recall that a measure on an orthomodular lattice need not to be subadditive.

2 Construction

First we construct some auxiliary mappings important for the extension.

Lemma 2.1 Let A be an orthocomplemented sublattice of an orthomodular lattice H. Let $\mu : A \to G^+$ be a measure. Let $a_n \in A$, $b_n \in A$ (n = 1, 2, ...), $a_n \nearrow a$, $b_n \nearrow b$, $a \le b$. Then

$$\bigvee_{n=1}^{\infty} \mu(a_n) \le \bigvee_{n=1}^{\infty} \mu(b_n).$$

Proof. Evidently $a_n \wedge b_m \nearrow a_n \wedge b = a_n$, hence for each $n \in N$ it holds $\mu(a_n) = \bigvee_{m=1}^{\infty} \mu(a_n \wedge b_m) \leq \bigvee_{m=1}^{\infty} \mu(b_m)$ and therefore $\bigvee_{n=1}^{\infty} \mu(a_n) \leq \bigvee_{n=1}^{\infty} \mu(b_n)$.

Now put

$$A^+ = \{ b \in H; \exists a_n \in A, a_n \nearrow b \}.$$
(1)

Using preceding lemma we can define a mapping $\mu^+: A^+ \to G^*$ by the formula

$$\mu^+(b) = \bigvee_{n=1}^{\infty} \mu(a_n), \ a_n \nearrow b.$$
 (2)

Since A is an orthocomplemented sublattice of H, then $1 \in A$ and for each $x \in H$ there exists $b \in A^+$ such that $b \ge x$. Therefore we can define a mapping $\mu^* : H \to G^*$ by the formula

$$\mu^*(x) = \bigwedge \{\mu^+(b); b \in A^+, b \ge x, x \in H\}.$$
(3)

Similarly there can be defined A^-, μ^-, μ_* .

Proceedings of IPMU'08

The last step of our construction is the set

$$L = \{ x \in H; \ \mu_*(x) = \mu^*(x) \}.$$
 (4)

Later we will prove that $L \supset S(A)$ and $\mu^*|S(A)$ is the asked extension.

Remark 2.2 It is easy to prove that μ^+, μ^- are extensions of μ , μ^+ is upper continuous, nondecreasing and subadditive. Further μ^* is an extension of μ^+ and it is a non-decreasing, subadditive and $\mu^*(x) \ge \mu_*(x)$ for each $x \in$ H.

3 Main theorem

First we prove some propositions which are necessary to prove the main theorem.

Proposition 3.1 Let $x \in H$, $y \in L$, $y \leq x$. Then $\mu^*(x) = \mu^*(y) + \mu^*(x \wedge y^{\perp})$.

Proof. Let us divide the proof to the following steps:

1. We prove that if $a \in A$, $b \in A^+$, $a \leq b$, then $\mu^{+}(b) = \mu(a) + \mu^{+}(b \wedge a^{\perp}).$ Because $a \leq a_n \nearrow b$, $a_n \in A$, then $\mu(a_n) =$ $\mu(a) + \mu(a_n \wedge a^{\perp})$. Since $a_n \nearrow b$ then $a_n \wedge a^{\perp} \nearrow$ $b \wedge a^{\perp}$ and therefore $\mu^+(b) = \mu(a) + \mu^+(b \wedge a^{\perp})$. 2. If $b, d \in A^+$, $d \le b$, then $\mu^+(b) \ge \mu^+(d) + \mu^+(b) \ge \mu^+(d) + \mu^+(b) \ge \mu^+(b) = \mu^+(b) \ge \mu^+(b) = \mu^+(b) = \mu^+(b) = \mu^+(b) = \mu^+(b) = \mu^+(b) = \mu^+$ $\mu^*(b \wedge d^{\perp}).$ Indeed, $d_n \nearrow d$, $d_n \in A$ and 1. imply $\mu^+(b) =$ $\mu(d_n) + \mu^+(b \wedge d_n^\perp) \ge \mu(d_n) + \mu^*(b \wedge d^\perp)$, which gives $\mu^+(b) \ge \mu^+(d) + \mu^*(b \wedge d^{\perp}).$ 3. If $b \in A^+$, $c \in A^-$, $c \leq b$, then $\mu^+(b) \geq$ $\mu^{-}(c) + \mu^{+}(b \wedge c^{\perp}).$ Take $c_n \in A$, $c_n \searrow c$. Since $b \land c_n \in A^+$, $b \wedge c_n \leq b$ we have by 2. $\mu^+(b) \geq \mu^+(b \wedge c_n) +$ $\mu^*(b \wedge (b \wedge c_n)^{\perp}) \ge \mu^+(b \wedge c_n) + \mu^*(b \wedge c_n^{\perp}) =$ $\mu^+(b \wedge c_n) + \mu^+(b \wedge c_n^{\perp})$. Taking $n \to \infty$ we ob-

$$\min \mu^+(b) \ge \bigvee_{n=1}^{\infty} \mu^+(b \wedge c_n) + \bigvee_{n=1}^{\infty} \mu^+(b \wedge c_n^{\perp}) \ge$$
$$\mu^-(c) + \mu^+(b \wedge c^{\perp}).$$

4. Let $x \in H$, $c \in A^-$, $c \leq x$. Then $\mu^*(x) \geq \mu^-(c) + \mu^*(x \wedge c^{\perp})$.

If $b \in A^+$, $b \ge x$, then $\mu^+(b) \ge \mu^-(c) + \mu^+(b \wedge c^\perp) \ge \mu^-(c) + \mu^*(x \wedge c^\perp)$ therefore $\mu^*(x) \ge \mu^-(c) + \mu^*(x \wedge c^\perp)$.

5. Finally we prove the statement of the Proposition.

Let $x \in H$, $y \in L$, $y \leq x$. Take $c \leq y$, $c \in A^-$. By 4. we have $\mu^*(x) \geq \mu^-(c) + \mu^*(x \wedge c^{\perp}) \geq$ $\begin{array}{l} \mu^{-}(c) + \mu^{*}(x \wedge y^{\perp}), \text{ hence } \mu^{*}(x) - \mu^{*}(x \wedge y^{\perp}) \geq \\ \mu^{-}(c). \text{ Therefore } \mu^{*}(x) - \mu^{*}(x \wedge y^{\perp}) \geq \mu_{*}(y) = \\ \mu^{*}(y). \end{array}$

The opposite inequality follows from the subadditivity of μ^* .

Proposition 3.2 If $y \in L$, then $y^{\perp} \in L$.

Proof. For each $b \in A^+$ it holds $\mu^+(b) + \mu^-(b^\perp) = \mu^*(b \vee b^\perp) = \mu(1)$. Let $b \ge y$. Then $b^\perp \le y^\perp$ and therefore $\mu(1) = \mu^+(b) + \mu^-(b) \le \mu^+(b) + \mu_*(y^\perp)$. Since this inequality holds for arbitrary $b \in A^+$, then it holds also for infimum and therefore $\mu(1) - \mu_*(y^\perp) \le \mu^*(y)$. If we put x = 1 into the Proposition 3.1, then we get $\mu(1) = \mu^*(1) = \mu^*(y) + \mu^*(1 \land y^\perp) = \mu^*(y) + \mu^*(y^\perp)$. Hence $\mu^*(y) + \mu_*(y^\perp) \ge \mu(1) = \mu^*(y) + \mu^*(y^\perp)$, which implies $\mu_*(y^\perp) \ge \mu^*(y^\perp)$. Opposite inequality follows from Remark 2.2.

Definition 3.3 An ℓ -group G is called a Dedekind complete if any upper bounded sequence of elements from G has a supremum in G.

Definition 3.4 Dedekind complete ℓ -group G is called to be of countable type, if to any bounded set $A \subset G$ there exists such a countable subset $B \subset A$ that

$$\bigwedge A = \bigwedge B.$$

Proposition 3.5 Let G be a Dedekind complete ℓ -group of countable type. Let μ^* be the subadditive mapping defined on the lattice H generated by μ^+ . Then for each $x \in H$ there exists bounded double sequence $a_{i,j} \searrow 0$, $(j \to \infty, i = 1, 2, ...)$ such that for each $\varphi : N \to N$ there exists $b \in A^+$, $b \ge x$ and it holds

$$\mu^*(x) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \ge \mu^+(b).$$

Proof. Let G be a Dedekind complete ℓ group of countable type. Then there exists a sequence $(b_n)_{n=1}^{\infty}$ of elements of the set A^+ such that $\mu^*(x) = \bigwedge_{n=1}^{\infty} \{\mu^+(b_n), b_n \ge x, b_n \in A^+, n = 1, 2, \ldots\}.$ Put $c_1 = b_1, c_2 = b_1 \wedge b_2, c_n = \bigwedge_{i=1}^n b_i$ then $c_n \geq c_{n+1}, c_n \in A^+$ and $b_n \geq c_n \geq x$. Therefore $\mu^+(b_n) \geq \mu^+(c_n) \geq \mu^*(x)$. Hence $\mu^+(b_n) - \mu^*(x) \geq \mu^+(c_n) - \mu^*(x) \geq 0$. Define $a_{i,j} = \mu^+(c_j) - \mu^*(x), (j \to \infty, i = 1, 2, ...)$, then $0 = \bigvee_j \{\mu^+(b_j) - \mu^*(x)\} \geq \bigvee_j \{\mu^+(c_j) - \mu^*(x)\}$. Therefore $a_{i,j} \searrow 0$ $(j \to \infty, i = 1, 2, ...)$. Let $\varphi : N \to N$. Then $\bigvee_{i=1}^\infty a_{i,\varphi(i)} \geq a_{i,\varphi(i)} = \mu^+(c_{\varphi(i)}) - \mu^*(x)$. Put $b = c_{(\varphi(i))}$ then holds following inequality $\mu^*(x) + \bigvee_{i=1}^\infty a_{i,\varphi(i)} \geq \mu^+(b)$.

Proposition 3.6 Let G be Dedekind complete ℓ -group. Then the following assertion holds:

Let for each $n \in N$ exists double bounded sequence $(a_{n,i,j})_{i,j}$ of elements of the set G such that $a_{n,i,j} \searrow 0$, $(j \to \infty, i = 1, 2, ...)$. Then for each $a \in G$, a > 0 there exists double bounded sequence $(a_{i,j})_{i,j}$ such that sequence $a_{n,i,j} \searrow 0$, $(j \to \infty, i = 1, 2, ...)$ and at the same time $a \land (\sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n,i,\varphi(n+i)}) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}$ for each $\varphi : N \to N$.

Proposition 3.6 is called Fremlin Theorem. The proof can be find in [3] (see Proposition 3.2.4).

Definition 3.7 Dedekind complete ℓ -group Gis called to be weakly σ -distributive if for any bounded double sequence $(a_{i,j})$ such that $a_{i,j} \searrow 0 \ (j \to \infty, i = 1, 2, ...)$ it is

$$\bigwedge_{\varphi \in N \to N} \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} = 0.$$

Proposition 3.8 Let G be a Dedekind complete, weakly σ -distributive ℓ -group of countable type. Let H be a σ -complete lattice. Let $\mu^* : H \to G^*$ be a mapping satisfying the condition (3). Let L be the set satisfying the condition (4). Let $z_n \in L$ $(n = 1, 2, ...), z_n \nearrow z$, $(or \ z_n \searrow z \ resp.), z \in H$. Then $z \in L$ and $\mu^*(z_n) \nearrow \mu^*(z)$.

Proof. Let $z_n \nearrow z$. Then $\bigvee_{n=1}^{\infty} \mu^*(z_n) \le \mu^*(z)$ and for each $z \in H$ there exists $y \in A^+$ such that $y \ge z$ and certainly $\mu^+(y) \ge \mu^*(z)$.

Proceedings of IPMU'08

Put $z_0 = 0$. By Proposition 3.1 $\mu^*(z_n) - \mu^*(z_{n-1}) = \mu^*(z_n \wedge z_{n-1}^{\perp}), n = 1, 2, \dots$ From Proposition 3.5 follows that for every $n \in N$ there exists bounded double sequence $(a_{n,i,j})_{i,j}$ such that for each $\varphi : N \to N$ there exists $b_n \in A^+, b_n \geq z_n \wedge z_{n-1}^{\perp}$ and $\mu^*(z_n \wedge z_{n-1}^{\perp}) \geq \mu^+(b_n) - \bigvee_{i=1}^{\infty} a_{n,i,\varphi(n+i)}$. Put $y_n = y \wedge (\bigvee_{i=1}^n b_i)$. Then $y_n \in A^+, y_n \leq y_{n+1}$ and $y_n \leq y$. Therefore $\mu^*(z_1) - \mu^*(z_0) = \mu^*(z_1 \wedge z_0^{\perp}) \geq \mu^+(y_1) - \bigvee_{i=1}^{\infty} a_{1,i,\varphi(i+1)}$. Similarly $\mu^*(z_2) = \mu^*(z_1) + \mu^*(z_2 \wedge z_1^{\perp}) \geq \mu^+(y_1) - \bigvee_{i=1}^{\infty} a_{2,i,\varphi(i+2)}$.

By induction we get:

$$u^*(z_n) \ge \sum_{k=1}^n \mu^+(y_k) - \sum_{k=1}^n \bigvee_{k=1}^\infty a_{k,i,\varphi(i+k)}.$$

Hence

1

$$\bigvee_{n=1}^{\infty} \mu^*(z_n) \ge \bigvee_{n=1}^{\infty} \sum_{k=1}^n \mu^+(y_k) - \\ - \bigvee_{n=1}^{\infty} \sum_{k=1}^n \bigvee_{i=1}^{\infty} a_{n,i,\varphi(n+i)} \ge \\ \ge \mu^+(\bigvee_{n=1}^{\infty} y_n) - \sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n,i,\varphi(n+i)}.$$

We assumed that there exists $y \in A^+$ such that $y \ge \bigvee_{n=1}^{\infty} y_n$. Then $\mu^+(y) \ge \mu^+(\bigvee_{n=1}^{\infty} y_n)$ and also $\mu^+(y) \ge \mu^+(\bigvee_{n=1}^{\infty} y_n) - \bigvee_{n=1}^{\infty} \mu^*(z_n)$. Then by Proposition 3.6

$$\mu^{+}(\bigvee_{n=1}^{\infty} y_{n}) - \bigvee_{n=1}^{\infty} \mu^{*}(z_{n}) \leq \\ \leq \mu^{+}(y) \wedge \sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n,i,\varphi(n+i)} \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}$$

for each $\varphi : N \to N$. But $\bigvee_{n=1}^{\infty} y_n \ge z$ and either $\mu^+(\bigvee_{n=1}^{\infty} y_n) \ge \mu^*(z)$. Since *G* is weakly σ -distributive ℓ -group, it holds:

$$\mu^*(z) - \bigvee_{n=1}^{\infty} \mu^*(z_n) \le \bigwedge_{\varphi: N \to N} \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} = 0.$$

Therefore $\mu^*(z_n) \nearrow \mu^*(z)$. Further $\mu_*(z) \le \mu^*(z) = \bigvee_{n=1}^{\infty} \mu^*(z_n) = \bigvee_{n=1}^{\infty} \mu_*(z_n) \le \mu_*(z)$, hence $z \in L$.

The second part of Proposition (for nonincreasing sequences) follows from Proposition 3.2 and the first part of proof.

Proposition 3.9 Let G be a Dedekind complete, weakly σ -distributive ℓ -group of countable type. Let $\mu^* : H \to G^*$ be a mapping satisfying the condition (3). Let L be the set satisfying the condition (4). Then $\overline{\mu} = \mu^* | L$ is additive mapping, i.e. for each $x, y \in L$ holds $\mu^*(x \lor y) = \mu^*(x) + \mu^*(y)$.

Proof. First we prove that for each *c*, *d* ∈ *A*[−] it hold $\mu^{-}(c \lor d) = \mu^{-}(c) + \mu^{-}(d)$. By Proposition 3.1 it holds: $1 - \mu^{-}(d) = \mu^{+}(d^{\perp}) = \mu^{*}(d^{\perp}) = \mu^{-}(c) + \mu^{*}(d^{\perp} \land c^{\perp}) = \mu^{-}(c) + \mu^{+}((d \lor c)^{\perp}) = \mu^{-}(c) + 1 - \mu^{-}(d \lor c)$.

Now let $x, y \in H$, $x \leq y^{\perp}$. Since G is Dedekind complete, weakly σ -distributive ℓ -group of countable type, then there exist $a_{i,j} \searrow 0$, $b_{i,j} \searrow 0 \ (j \to \infty, i = 1, 2, ...)$ such that for each $\varphi : N \to N$ there exist $c, d \in A^-, c \leq x$, $d \leq y$ and it hold $\mu_*(x) - \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} < \mu^-(c)$,

$$\begin{split} \mu_*(y) &- \bigvee_{i=1}^{\mathbb{V}} b_{i,\varphi(i)} < \mu^-(d) \ . \\ \text{Because } c \leq x \leq y^\perp \leq d^\perp, \text{ then } \mu^*(x \lor y) \leq \\ \mu^*(x) &+ \mu^*(y) = \mu_*(x) + \mu_*(y) < \mu^-(c) + \\ \mu^-(d) &+ \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} + \bigvee_{i=1}^{\mathbb{V}} b_{i,\varphi(i)} = \mu^-(c \lor d) + \\ \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} + \bigvee_{i=1}^{\infty} b_{i,\varphi(i)} \leq \mu_*(x \lor y) + \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} + \\ \bigvee_{i=1}^{\infty} b_{i,\varphi(i)}. \end{split}$$

Proposition 3.10 Let G be a Dedekind complete, weakly σ -distributive ℓ -group of countable type. Let A be an orthocomplemented sublattice of an orthomodular σ -complete lattice H. Let S(A) be the σ -complete orthocomplemented lattice generated by A, M(A)be the least set over A closed under monotone sequences. Then S(A) = M(A).

Proof. Since S(A) is σ -complete orthocomplemented lattice then $M(A) \subset S(A)$. On the other side, let $x \in A$ be an arbitrary but fixed element. Denote $P = \{y \in M, x \lor y \in M\}$.

Proceedings of IPMU'08

Evidently $A \subset P$ and P is closed under monotone sequences, therefore $M \subset P$. Hence for each $x \in A$ and each $y \in M$ it hold $x \lor y \in M$. Now let us take a fixed $y \in M$ and put $R = \{x \in M, x \lor y \in M\}$. Then also R is closed under monotone sequences, $A \subset R$ and $M \subset R$ therefore M is closed under the operation \lor . Because for each $x \in A$ holds that $x^{\perp} \in A$, it is easy to prove, that if $y \in M$ also $y^{\perp} \in M$. Hence M(A) is the σ -complete orthocomplemented lattice generated by A and $S(A) \subset M(A)$.

Theorem 3.11 Let G be a Dedekind complete, weakly σ -distributive ℓ -group of countable type. Let H be a σ -continuous, orthomodular lattice, A its orthocomplemented sublattice and $\mu : A \to G^+$ a subadditive measure. Let S(A) be the σ -complete orthocomplemented sublattice generated by A. Then there is exactly one subadditive measure $\overline{\mu}$: $S(A) \to G^*$ that is an extension of μ .

Proof. Existence. Evidently $S(A) = M(A) \subset L$. Put $\overline{\mu} = \mu^* | S(A)$. By Propositions 3.8 and 3.9 $\overline{\mu}$ is a measure.

Uniqueness. Let $\nu : S(A) \to G^*$ be a measure, $\nu | A = \mu$. Put $K = \{x \in S(A); \overline{\mu}(x) = \nu(x)\}$. Evidently $A \subset K$, K is closed under monotone sequences. Therefore $S(A) = M(A) \subset K$.

4 Conclusion

We proved the extension theorem for ℓ -group valued measures being moreover subadditive and that are defined on an orthocomplemented sublattice of σ -continuous orthomodular lattice.

Another approach has been realized by Vrábelová in [5], where the assumption that μ is σ - additive is substituted by assumption that μ is exhaustive.

Acknowledgements

The support of the grant VEGA 1/0539/08 is kindly announced.

References

- Georgescu, G.: An extension theorem for submeasures on Łukasiewicz-Moisil algebras. *Fuzzy Sets and Systems* 158, pages 1782-1790, 2007.
- [2] Riečan, B.: The measure extension theorem for subadditive probability measures in orthomodular σ-continuous lattices. *Commen. Mathematiceae Univ. Carol.* 20, pages 309-316, 1979.
- [3] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997.
- [4] Vrábel, P.: The measures extension theorem for subadditive measures in σ -continuous logics. *Math. Slovaca* 31, pages 141-147, 1981.
- [5] Vrábelová, M.: On the extension of subadditive measures in lattice ordered groups. *Czechoslovak Mathematical Journal*, volume 57, 1, pages 95-103, 2007. ISSN 0011-4642 (Print)