
A measure extension theorem in `-groups
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Abstract

In the paper [2] there was proved
that if H is a σ-continuous, ortho-
modular lattice, A is its orthocom-
plemented sublattice, µ : A → 〈0, 1〉
is a probability measure that is sub-
additive and S(A) is the σ-complete
orthocomplemented sublattice of H
generated by A, then there exist
exactly one subadditive probability
measure µ : S(A) → 〈0, 1〉 that is
an extension of µ. In the paper we
prove the theorem for `-group valued
measures that are subadditive. Sim-
ilar problems were studied for exam-
ple in [1] and [4].

Keywords: Measure, measure ex-
tension, orthomodular and ortho-
complemented lattices.

1 Basic notions

In this section we introduce the basic notions
which are necessary for understanding of the
studying problems.

Let H be a σ-complete lattice. Then H is
called a σ-continuous, if xn ↗ x, yn ↗ y im-
plies xn ∧ yn ↗ x ∧ y and xn ↘ x, yn ↘ y
implies xn ∨ yn ↘ x ∨ y.

A σ-complete lattice H with the least ele-
ment 0 and the greatest element 1 is called
orthocomplemented, if there is a mapping
⊥: H → H such that the following proper-
ties are satisfied:

1. (a⊥)⊥ = a for each a ∈ H.

2. If a ≤ b then b⊥ ≤ a⊥.

3. a ∨ a⊥ = 1 for each a ∈ H.

An orthocomplemented lattice is called to be
an orthomodular lattice if the following con-
dition is satisfied:

4. If a ≤ b then b = a ∨ (b ∧ a⊥).

Two elements a, b ∈ H are called orthogonal
if a ≤ b⊥ or b ≤ a⊥.

A subset A of an orthocomplemented lattice
H is called an orthocomplemented sublattice
of H if a, b ∈ A implies a ∨ b ∈ A, a⊥ ∈ A.

Let G be a complete `-group, i.e. a struc-
ture (G,+,≤) such that (G,+) is an Abelian
group, (G,≤) is a complete lattice (i.e. any
upper bounded subset of G has the supre-
mum) and a ≤ b implies a + c ≤ b + c
for any c ∈ G. Let 0 be the neutral ele-
ment of G (i.e. a + 0 = a for any a ∈ G),
G+ = {a ∈ G; a ≥ 0}. Denote by ∞ an
ideal element and G∗ = G+ ∪ {∞}, where
a + ∞ = ∞ + a = ∞ + ∞ = ∞ for any
a ∈ G and a ≤ ∞, ∞ ≤∞ for any a ∈ G.

Let A be an orthocomplemented sublattice of
an orthomodular lattice H. A mapping µ :
A → G+ is called a measure if the following
properties are satisfied:

1. µ(0) = 0.

2. If an ∈ A(n = 1, 2, . . .), elements an are
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pairwise orthogonal and
∞∨

n=1
an ∈ A, then

µ(
∞∨

n=1

an) =
∞∑

n=1

µ(an).

A measure µ : A → G+ is subadditive if
µ(a ∨ b) ≤ µ(a) + µ(b) for each a, b ∈ A. It
is easy to prove that every measure is non-
decreasing and upper continuous. Recall that
a measure on an orthomodular lattice need
not to be subadditive.

2 Construction

First we construct some auxiliary mappings
important for the extension.

Lemma 2.1 Let A be an orthocomplemented
sublattice of an orthomodular lattice H. Let
µ : A → G+ be a measure. Let an ∈ A, bn ∈ A
(n = 1, 2, . . .), an ↗ a, bn ↗ b, a ≤ b. Then

∞∨
n=1

µ(an) ≤
∞∨

n=1

µ(bn).

Proof. Evidently an∧bm ↗ an∧b = an, hence

for each n ∈ N it holds µ(an) =
∞∨

m=1
µ(an ∧

bm) ≤
∞∨

m=1
µ(bm) and therefore

∞∨
n=1

µ(an) ≤
∞∨

n=1
µ(bn).

Now put

A+ = {b ∈ H; ∃an ∈ A, an ↗ b}. (1)

Using preceding lemma we can define a map-
ping µ+ : A+ → G∗ by the formula

µ+(b) =
∞∨

n=1

µ(an), an ↗ b. (2)

Since A is an orthocomplemented sublattice
of H, then 1 ∈ A and for each x ∈ H there
exists b ∈ A+ such that b ≥ x. Therefore we
can define a mapping µ∗ : H → G∗ by the
formula

µ∗(x) =
∧
{µ+(b); b ∈ A+, b ≥ x, x ∈ H}.

(3)
Similarly there can be defined A−, µ−, µ∗.

The last step of our construction is the set

L = {x ∈ H; µ∗(x) = µ∗(x)}. (4)

Later we will prove that L ⊃ S(A) and
µ∗|S(A) is the asked extension.

Remark 2.2 It is easy to prove that µ+, µ− are
extensions of µ, µ+ is upper continuous, non-
decreasing and subadditive. Further µ∗ is an
extension of µ+ and it is a non-decreasing,
subadditive and µ∗(x) ≥ µ∗(x) for each x ∈
H.

3 Main theorem

First we prove some propositions which are
necessary to prove the main theorem.

Proposition 3.1 Let x ∈ H, y ∈ L, y ≤ x.
Then µ∗(x) = µ∗(y) + µ∗(x ∧ y⊥).

Proof. Let us divide the proof to the following
steps:
1. We prove that if a ∈ A, b ∈ A+, a ≤ b, then
µ+(b) = µ(a) + µ+(b ∧ a⊥).
Because a ≤ an ↗ b, an ∈ A, then µ(an) =
µ(a)+µ(an∧a⊥). Since an ↗ b then an∧a⊥ ↗
b∧a⊥ and therefore µ+(b) = µ(a)+µ+(b∧a⊥).
2. If b, d ∈ A+, d ≤ b, then µ+(b) ≥ µ+(d) +
µ∗(b ∧ d⊥).
Indeed, dn ↗ d, dn ∈ A and 1. imply µ+(b) =
µ(dn)+µ+(b∧d⊥n ) ≥ µ(dn)+µ∗(b∧d⊥), which
gives µ+(b) ≥ µ+(d) + µ∗(b ∧ d⊥).
3. If b ∈ A+, c ∈ A−, c ≤ b, then µ+(b) ≥
µ−(c) + µ+(b ∧ c⊥).
Take cn ∈ A, cn ↘ c. Since b ∧ cn ∈ A+,
b∧ cn ≤ b we have by 2. µ+(b) ≥ µ+(b∧ cn)+
µ∗(b ∧ (b ∧ cn)⊥) ≥ µ+(b ∧ cn) + µ∗(b ∧ c⊥n ) =
µ+(b∧cn)+µ+(b∧c⊥n ). Taking n →∞ we ob-

tain µ+(b) ≥
∞∨

n=1
µ+(b∧cn)+

∞∨
n=1

µ+(b∧c⊥n ) ≥
µ−(c) + µ+(b ∧ c⊥).
4. Let x ∈ H, c ∈ A−, c ≤ x. Then
µ∗(x) ≥ µ−(c) + µ∗(x ∧ c⊥).
If b ∈ A+, b ≥ x, then µ+(b) ≥ µ−(c) +
µ+(b ∧ c⊥) ≥ µ−(c) + µ∗(x ∧ c⊥) therefore
µ∗(x) ≥ µ−(c) + µ∗(x ∧ c⊥).
5. Finally we prove the statement of the
Proposition.
Let x ∈ H, y ∈ L, y ≤ x. Take c ≤ y, c ∈ A−.
By 4. we have µ∗(x) ≥ µ−(c) + µ∗(x ∧ c⊥) ≥
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µ−(c)+µ∗(x∧y⊥), hence µ∗(x)−µ∗(x∧y⊥) ≥
µ−(c). Therefore µ∗(x)−µ∗(x∧y⊥) ≥ µ∗(y) =
µ∗(y).
The opposite inequality follows from the sub-
additivity of µ∗.

Proposition 3.2 If y ∈ L, then y⊥ ∈ L.

Proof. For each b ∈ A+ it holds µ+(b) +
µ−(b⊥) = µ∗(b ∨ b⊥) = µ(1). Let b ≥ y.
Then b⊥ ≤ y⊥ and therefore µ(1) = µ+(b) +
µ−(b) ≤ µ+(b)+µ∗(y⊥). Since this inequality
holds for arbitrary b ∈ A+, then it holds also
for infimum and therefore µ(1) − µ∗(y⊥) ≤
µ∗(y). If we put x = 1 into the Propo-
sition 3.1, then we get µ(1) = µ∗(1) =
µ∗(y) + µ∗(1 ∧ y⊥) = µ∗(y) + µ∗(y⊥). Hence
µ∗(y) + µ∗(y⊥) ≥ µ(1) = µ∗(y) + µ∗(y⊥),
which implies µ∗(y⊥) ≥ µ∗(y⊥). Opposite in-
equality follows from Remark 2.2.

Definition 3.3 An `-group G is called a De-
dekind complete if any upper bounded se-
quence of elements from G has a supremum
in G.

Definition 3.4 Dedekind complete `-group G
is called to be of countable type, if to any
bounded set A ⊂ G there exists such a count-
able subset B ⊂ A that∧

A =
∧

B.

Proposition 3.5 Let G be a Dedekind com-
plete `-group of countable type. Let µ∗ be
the subadditive mapping defined on the lattice
H generated by µ+. Then for each x ∈ H
there exists bounded double sequence ai,j ↘ 0,
(j → ∞, i = 1, 2, . . .) such that for each
ϕ : N → N there exists b ∈ A+, b ≥ x and it
holds

µ∗(x) +
∞∨
i=1

ai,ϕ(i) ≥ µ+(b).

Proof. Let G be a Dedekind complete `-
group of countable type. Then there exists
a sequence (bn)∞n=1 of elements of the set A+

such that µ∗(x) =
∞∧

n=1
{µ+(bn), bn ≥ x, bn ∈

A+, n = 1, 2, . . .}.

Put c1 = b1, c2 = b1∧b2, cn =
n∧

i=1
bi then cn ≥

cn+1, cn ∈ A+ and bn ≥ cn ≥ x. Therefore
µ+(bn) ≥ µ+(cn) ≥ µ∗(x). Hence µ+(bn) −
µ∗(x) ≥ µ+(cn) − µ∗(x) ≥ 0. Define ai,j =
µ+(cj) − µ∗(x), (j → ∞, i = 1, 2, . . .), then
0 =

∨
j
{µ+(bj)− µ∗(x)} ≥ ∨

j
{µ+(cj)− µ∗(x)}.

Therefore ai,j ↘ 0 (j → ∞, i = 1, 2, . . .).

Let ϕ : N → N . Then
∞∨
i=1

ai,ϕ(i) ≥ ai,ϕ(i) =

µ+(cϕ(i)) − µ∗(x). Put b = c(ϕ(i)) then holds

following inequality µ∗(x)+
∞∨
i=1

ai,ϕ(i) ≥ µ+(b).

Proposition 3.6 Let G be Dedekind com-
plete `-group. Then the following assertion
holds:
Let for each n ∈ N exists double bounded se-
quence (an,i,j)i,j of elements of the set G such
that an,i,j ↘ 0, (j → ∞, i = 1, 2, . . .). Then
for each a ∈ G, a > 0 there exists double
bounded sequence (ai,j)i,j such that sequence
an,i,j ↘ 0, (j → ∞, i = 1, 2, . . .) and at the

same time a ∧ (
∞∑

n=1

∞∨
i=1

an,i,ϕ(n+i)) ≤
∞∨
i=1

ai,ϕ(i)

for each ϕ : N → N.

Proposition 3.6 is called Fremlin Theorem.
The proof can be find in [3] (see Proposi-
tion 3.2.4 ).

Definition 3.7 Dedekind complete `-group G
is called to be weakly σ-distributive if for
any bounded double sequence (ai,j) such that
ai,j ↘ 0 (j →∞, i = 1, 2, . . .) it is

∧
ϕ∈N→N

∞∨
i=1

ai,ϕ(i) = 0.

Proposition 3.8 Let G be a Dedekind com-
plete, weakly σ-distributive `-group of count-
able type. Let H be a σ-complete lattice. Let
µ∗ : H → G∗ be a mapping satisfying the con-
dition (3). Let L be the set satisfying the con-
dition (4). Let zn ∈ L (n = 1, 2, . . .), zn ↗ z,
(or zn ↘ z resp.), z ∈ H. Then z ∈ L and
µ∗(zn) ↗ µ∗(z).

Proof. Let zn ↗ z. Then
∞∨

n=1
µ∗(zn) ≤ µ∗(z)

and for each z ∈ H there exists y ∈ A+ such
that y ≥ z and certainly µ+(y) ≥ µ∗(z).
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Put z0 = 0. By Proposition 3.1 µ∗(zn) −
µ∗(zn−1) = µ∗(zn ∧ z⊥n−1), n = 1, 2, . . ..
From Proposition 3.5 follows that for every
n ∈ N there exists bounded double sequence
(an,i,j)i,j such that for each ϕ : N → N
there exists bn ∈ A+, bn ≥ zn ∧ z⊥n−1 and

µ∗(zn ∧ z⊥n−1) ≥ µ+(bn) −
∞∨
i=1

an,i,ϕ(n+i). Put

yn = y ∧ (
n∨

i=1
bi). Then yn ∈ A+, yn ≤ yn+1

and yn ≤ y.
Therefore µ∗(z1) − µ∗(z0) = µ∗(z1 ∧ z⊥0 ) ≥
µ+(y1) −

∞∨
i=1

a1,i,ϕ(i+1). Similarly µ∗(z2) =

µ∗(z1)+µ∗(z2∧z⊥1 ) ≥ µ+(y1)−
∞∨
i=1

a1,i,ϕ(i+1)+

µ+(y2)−
∞∨
i=1

a2,i,ϕ(i+2).

By induction we get:

µ∗(zn) ≥
n∑

k=1

µ+(yk)−
n∑

k=1

∞∨
k=1

ak,i,ϕ(i+k).

Hence
∞∨

n=1

µ∗(zn) ≥
∞∨

n=1

n∑
k=1

µ+(yk)−

−
∞∨

n=1

n∑
k=1

∞∨
i=1

an,i,ϕ(n+i) ≥

≥ µ+(
∞∨

n=1

yn)−
∞∑

n=1

∞∨
i=1

an,i,ϕ(n+i).

We assumed that there exists y ∈ A+ such

that y ≥
∞∨

n=1
yn. Than µ+(y) ≥ µ+(

∞∨
n=1

yn)

and also µ+(y) ≥ µ+(
∞∨

n=1
yn) −

∞∨
n=1

µ∗(zn).

Then by Proposition 3.6

µ+(
∞∨

n=1

yn)−
∞∨

n=1

µ∗(zn) ≤

≤ µ+(y) ∧
∞∑

n=1

∞∨
i=1

an,i,ϕ(n+i) ≤
∞∨
i=1

ai,ϕ(i)

for each ϕ : N → N. But
∞∨

n=1
yn ≥ z and

either µ+(
∞∨

n=1
yn) ≥ µ∗(z). Since G is weakly

σ-distributive `-group, it holds:

µ∗(z)−
∞∨

n=1

µ∗(zn) ≤
∧

ϕ:N→N

∞∨
i=1

ai,ϕ(i) = 0.

Therefore µ∗(zn) ↗ µ∗(z). Further µ∗(z) ≤
µ∗(z) =

∞∨
n=1

µ∗(zn) =
∞∨

n=1
µ∗(zn) ≤ µ∗(z),

hence z ∈ L.
The second part of Proposition (for non-
increasing sequences) follows from Proposi-
tion 3.2 and the first part of proof.

Proposition 3.9 Let G be a Dedekind com-
plete, weakly σ-distributive `-group of count-
able type. Let µ∗ : H → G∗ be a mapping
satisfying the condition (3). Let L be the set
satisfying the condition (4). Then µ = µ∗|L is
additive mapping, i.e. for each x, y ∈ L holds
µ∗(x ∨ y) = µ∗(x) + µ∗(y).

Proof. First we prove that for each c, d ∈ A−

it hold µ−(c∨ d) = µ−(c) + µ−(d). By Propo-
sition 3.1 it holds: 1 − µ−(d) = µ+(d⊥) =
µ∗(d⊥) = µ−(c) + µ∗(d⊥ ∧ c⊥) = µ−(c) +
µ+((d ∨ c)⊥) = µ−(c) + 1− µ−(d ∨ c).
Now let x, y ∈ H, x ≤ y⊥. Since G is Dede-
kind complete, weakly σ-distributive `-group
of countable type, then there exist ai,j ↘ 0,
bi,j ↘ 0 (j → ∞, i = 1, 2, . . .) such that for
each ϕ : N → N there exist c, d ∈ A−, c ≤ x,

d ≤ y and it hold µ∗(x) −
∞∨
i=1

ai,ϕ(i) < µ−(c),

µ∗(y)−
∞∨
i=1

bi,ϕ(i) < µ−(d) .

Because c ≤ x ≤ y⊥ ≤ d⊥, then µ∗(x ∨ y) ≤
µ∗(x) + µ∗(y) = µ∗(x) + µ∗(y) < µ−(c) +

µ−(d) +
∞∨
i=1

ai,ϕ(i) +
∞∨
i=1

bi,ϕ(i) = µ−(c ∨ d) +
∞∨
i=1

ai,ϕ(i) +
∞∨
i=1

bi,ϕ(i) ≤ µ∗(x∨ y)+
∞∨
i=1

ai,ϕ(i) +
∞∨
i=1

bi,ϕ(i).

Proposition 3.10 Let G be a Dedekind com-
plete, weakly σ-distributive `-group of count-
able type. Let A be an orthocomplemented
sublattice of an orthomodular σ-complete lat-
tice H. Let S(A) be the σ-complete ortho-
complemented lattice generated by A, M(A)
be the least set over A closed under monotone
sequences. Then S(A) = M(A).

Proof. Since S(A) is σ-complete orthocom-
plemented lattice then M(A) ⊂ S(A). On the
other side, let x ∈ A be an arbitrary but fixed
element. Denote P = {y ∈ M, x ∨ y ∈ M}.
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Evidently A ⊂ P and P is closed under mono-
tone sequences, therefore M ⊂ P . Hence
for each x ∈ A and each y ∈ M it hold
x∨y ∈ M . Now let us take a fixed y ∈ M and
put R = {x ∈ M,x ∨ y ∈ M}. Then also R is
closed under monotone sequences, A ⊂ R and
M ⊂ R therefore M is closed under the op-
eration ∨. Because for each x ∈ A holds that
x⊥ ∈ A, it is easy to prove, that if y ∈ M also
y⊥ ∈ M. Hence M(A) is the σ-complete or-
thocomplemented lattice generated by A and
S(A) ⊂ M(A).

Theorem 3.11 Let G be a Dedekind com-
plete, weakly σ-distributive `-group of count-
able type. Let H be a σ-continuous, ortho-
modular lattice, A its orthocomplemented sub-
lattice and µ : A → G+ a subadditive mea-
sure. Let S(A) be the σ-complete orthocom-
plemented sublattice generated by A. Then
there is exactly one subadditive measure µ :
S(A) → G∗ that is an extension of µ.

Proof. Existence. Evidently S(A) = M(A) ⊂
L. Put µ = µ∗|S(A). By Propositions 3.8
and 3.9 µ is a measure.
Uniqueness. Let ν : S(A) → G∗ be a measure,
ν|A = µ. Put K = {x ∈ S(A);µ(x) = ν(x)}.
Evidently A ⊂ K, K is closed under mono-
tone sequences. Therefore S(A) = M(A) ⊂
K.

4 Conclusion

We proved the extension theorem for `-group
valued measures being moreover subadditive
and that are defined on an orthocomple-
mented sublattice of σ-continuous orthomod-
ular lattice.

Another approach has been realized by
Vrábelová in [5], where the assumption that
µ is σ- additive is substituted by assumption
that µ is exhaustive.
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[3] Riečan, B., Neubrunn, T.: Integral, Mea-
sure, and Ordering Kluwer Academic
Publishers, Dordrecht and Ister Science,
Bratislava, 1997.
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