A measure extension theorem in ℓ-groups

Alžbeta Michalíková
Faculty of Natural Sciences
Matej Bel University
Tajovského 40
97401 Banská Bystrica
Slovakia
e-mail: michalik@fpv.umb.sk

Abstract

In the paper [2] there was proved that if H is a σ-continuous, orthomodular lattice, A is its orthocomplemented sublattice, $\mu: A \rightarrow\langle 0,1\rangle$ is a probability measure that is subadditive and $S(A)$ is the σ-complete orthocomplemented sublattice of H generated by A, then there exist exactly one subadditive probability measure $\bar{\mu}: S(A) \rightarrow\langle 0,1\rangle$ that is an extension of μ. In the paper we prove the theorem for ℓ-group valued measures that are subadditive. Similar problems were studied for example in [1] and [4].

Keywords: Measure, measure extension, orthomodular and orthocomplemented lattices.

1 Basic notions

In this section we introduce the basic notions which are necessary for understanding of the studying problems.

Let H be a σ-complete lattice. Then H is called a σ-continuous, if $x_{n} \nearrow x, y_{n} \nearrow y$ implies $x_{n} \wedge y_{n} \nearrow x \wedge y$ and $x_{n} \searrow x, y_{n} \searrow y$ implies $x_{n} \vee y_{n} \searrow x \vee y$.

A σ-complete lattice H with the least element 0 and the greatest element 1 is called orthocomplemented, if there is a mapping $\perp: H \rightarrow H$ such that the following properties are satisfied:

1. $\left(a^{\perp}\right)^{\perp}=a$ for each $a \in H$.
2. If $a \leq b$ then $b^{\perp} \leq a^{\perp}$.
3. $a \vee a^{\perp}=1$ for each $a \in H$.

An orthocomplemented lattice is called to be an orthomodular lattice if the following condition is satisfied:
4. If $a \leq b$ then $b=a \vee\left(b \wedge a^{\perp}\right)$.

Two elements $a, b \in H$ are called orthogonal if $a \leq b^{\perp}$ or $b \leq a^{\perp}$.

A subset A of an orthocomplemented lattice H is called an orthocomplemented sublattice of H if $a, b \in A$ implies $a \vee b \in A, a^{\perp} \in A$.

Let G be a complete ℓ-group, i.e. a structure $(G,+, \leq)$ such that $(G,+)$ is an Abelian group, (G, \leq) is a complete lattice (i.e. any upper bounded subset of G has the supremum) and $a \leq b$ implies $a+c \leq b+c$ for any $c \in G$. Let 0 be the neutral element of G (i.e. $a+0=a$ for any $a \in G$), $G^{+}=\{a \in G ; a \geq 0\}$. Denote by ∞ an ideal element and $G^{*}=G^{+} \cup\{\infty\}$, where $a+\infty=\infty+a=\infty+\infty=\infty$ for any $a \in G$ and $a \leq \infty, \infty \leq \infty$ for any $a \in G$.
Let A be an orthocomplemented sublattice of an orthomodular lattice H. A mapping μ : $A \rightarrow G^{+}$is called a measure if the following properties are satisfied:

1. $\mu(0)=0$.
2. If $a_{n} \in A(n=1,2, \ldots)$, elements a_{n} are
pairwise orthogonal and $\bigvee_{n=1}^{\infty} a_{n} \in A$, then

$$
\mu\left(\bigvee_{n=1}^{\infty} a_{n}\right)=\sum_{n=1}^{\infty} \mu\left(a_{n}\right)
$$

A measure $\mu: A \rightarrow G^{+}$is subadditive if $\mu(a \vee b) \leq \mu(a)+\mu(b)$ for each $a, b \in A$. It is easy to prove that every measure is nondecreasing and upper continuous. Recall that a measure on an orthomodular lattice need not to be subadditive.

2 Construction

First we construct some auxiliary mappings important for the extension.

Lemma 2.1 Let A be an orthocomplemented sublattice of an orthomodular lattice H. Let $\mu: A \rightarrow G^{+}$be a measure. Let $a_{n} \in A, b_{n} \in A$ $(n=1,2, \ldots), a_{n} \nearrow a, b_{n} \nearrow b, a \leq b$. Then

$$
\bigvee_{n=1}^{\infty} \mu\left(a_{n}\right) \leq \bigvee_{n=1}^{\infty} \mu\left(b_{n}\right)
$$

Proof. Evidently $a_{n} \wedge b_{m} \nearrow a_{n} \wedge b=a_{n}$, hence for each $n \in N$ it holds $\mu\left(a_{n}\right)=\bigvee_{m=1}^{\infty} \mu\left(a_{n} \wedge\right.$ $\left.b_{m}\right) \leq \bigvee_{m=1}^{\infty} \mu\left(b_{m}\right)$ and therefore $\bigvee_{n=1}^{\infty} \mu\left(a_{n}\right) \leq$ $\bigvee_{n=1}^{\infty} \mu\left(b_{n}\right)$.
Now put

$$
\begin{equation*}
A^{+}=\left\{b \in H ; \exists a_{n} \in A, a_{n} \nearrow b\right\} . \tag{1}
\end{equation*}
$$

Using preceding lemma we can define a mapping $\mu^{+}: A^{+} \rightarrow G^{*}$ by the formula

$$
\begin{equation*}
\mu^{+}(b)=\bigvee_{n=1}^{\infty} \mu\left(a_{n}\right), a_{n} \nearrow b \tag{2}
\end{equation*}
$$

Since A is an orthocomplemented sublattice of H, then $1 \in A$ and for each $x \in H$ there exists $b \in A^{+}$such that $b \geq x$. Therefore we can define a mapping $\mu^{*}: H \rightarrow G^{*}$ by the formula

$$
\begin{equation*}
\mu^{*}(x)=\bigwedge\left\{\mu^{+}(b) ; b \in A^{+}, b \geq x, x \in H\right\} \tag{3}
\end{equation*}
$$

Similarly there can be defined A^{-}, μ^{-}, μ_{*}.

The last step of our construction is the set

$$
\begin{equation*}
L=\left\{x \in H ; \mu_{*}(x)=\mu^{*}(x)\right\} . \tag{4}
\end{equation*}
$$

Later we will prove that $L \supset S(A)$ and $\mu^{*} \mid S(A)$ is the asked extension.

Remark 2.2 It is easy to prove that μ^{+}, μ^{-}are extensions of μ, μ^{+}is upper continuous, nondecreasing and subadditive. Further μ^{*} is an extension of μ^{+}and it is a non-decreasing, subadditive and $\mu^{*}(x) \geq \mu_{*}(x)$ for each $x \in$ H.

3 Main theorem

First we prove some propositions which are necessary to prove the main theorem.

Proposition 3.1 Let $x \in H, y \in L, y \leq x$. Then $\mu^{*}(x)=\mu^{*}(y)+\mu^{*}\left(x \wedge y^{\perp}\right)$.

Proof. Let us divide the proof to the following steps:

1. We prove that if $a \in A, b \in A^{+}, a \leq b$, then $\mu^{+}(b)=\mu(a)+\mu^{+}\left(b \wedge a^{\perp}\right)$.
Because $a \leq a_{n} \nearrow b, a_{n} \in A$, then $\mu\left(a_{n}\right)=$ $\mu(a)+\mu\left(a_{n} \wedge a^{\perp}\right)$. Since $a_{n} \nearrow b$ then $a_{n} \wedge a^{\perp} \nearrow$ $b \wedge a^{\perp}$ and therefore $\mu^{+}(b)=\mu(a)+\mu^{+}\left(b \wedge a^{\perp}\right)$. 2. If $b, d \in A^{+}, d \leq b$, then $\mu^{+}(b) \geq \mu^{+}(d)+$ $\mu^{*}\left(b \wedge d^{\perp}\right)$.
Indeed, $d_{n} \nearrow d, d_{n} \in A$ and 1. imply $\mu^{+}(b)=$ $\mu\left(d_{n}\right)+\mu^{+}\left(b \wedge d_{n}^{\perp}\right) \geq \mu\left(d_{n}\right)+\mu^{*}\left(b \wedge d^{\perp}\right)$, which gives $\mu^{+}(b) \geq \mu^{+}(d)+\mu^{*}\left(b \wedge d^{\perp}\right)$.
2. If $b \in A^{+}, c \in A^{-}, c \leq b$, then $\mu^{+}(b) \geq$ $\mu^{-}(c)+\mu^{+}\left(b \wedge c^{\perp}\right)$.
Take $c_{n} \in A, c_{n} \searrow c$. Since $b \wedge c_{n} \in A^{+}$, $b \wedge c_{n} \leq b$ we have by $2 . \mu^{+}(b) \geq \mu^{+}\left(b \wedge c_{n}\right)+$ $\mu^{*}\left(b \wedge\left(b \wedge c_{n}\right)^{\perp}\right) \geq \mu^{+}\left(b \wedge c_{n}\right)+\mu^{*}\left(b \wedge c_{n}^{\perp}\right)=$ $\mu^{+}\left(b \wedge c_{n}\right)+\mu^{+}\left(b \wedge c_{n}^{\perp}\right)$. Taking $n \rightarrow \infty$ we obtain $\mu^{+}(b) \geq \bigvee_{n=1}^{\infty} \mu^{+}\left(b \wedge c_{n}\right)+\bigvee_{n=1}^{\infty} \mu^{+}\left(b \wedge c_{n}^{\perp}\right) \geq$ $\mu^{-}(c)+\mu^{+}\left(b \wedge c^{\perp}\right)$.
3. Let $x \in H, c \in A^{-}, c \leq x$. Then $\mu^{*}(x) \geq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right)$.
If $b \in A^{+}, b \geq x$, then $\mu^{+}(b) \geq \mu^{-}(c)+$ $\mu^{+}\left(b \wedge c^{\perp}\right) \geq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right)$ therefore $\mu^{*}(x) \geq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right)$.
4. Finally we prove the statement of the Proposition.
Let $x \in H, y \in L, y \leq x$. Take $c \leq y, c \in A^{-}$. By 4. we have $\mu^{*}(x) \geq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right) \geq$
$\mu^{-}(c)+\mu^{*}\left(x \wedge y^{\perp}\right)$, hence $\mu^{*}(x)-\mu^{*}\left(x \wedge y^{\perp}\right) \geq$ $\mu^{-}(c)$. Therefore $\mu^{*}(x)-\mu^{*}\left(x \wedge y^{\perp}\right) \geq \mu_{*}(y)=$ $\mu^{*}(y)$.
The opposite inequality follows from the subadditivity of μ^{*}.

Proposition 3.2 If $y \in L$, then $y^{\perp} \in L$.
Proof. For each $b \in A^{+}$it holds $\mu^{+}(b)+$ $\mu^{-}\left(b^{\perp}\right)=\mu^{*}\left(b \vee b^{\perp}\right)=\mu(1)$. Let $b \geq y$. Then $b^{\perp} \leq y^{\perp}$ and therefore $\mu(1)=\mu^{+}(b)+$ $\mu^{-}(b) \leq \mu^{+}(b)+\mu_{*}\left(y^{\perp}\right)$. Since this inequality holds for arbitrary $b \in A^{+}$, then it holds also for infimum and therefore $\mu(1)-\mu_{*}\left(y^{\perp}\right) \leq$ $\mu^{*}(y)$. If we put $x=1$ into the Proposition 3.1 , then we get $\mu(1)=\mu^{*}(1)=$ $\mu^{*}(y)+\mu^{*}\left(1 \wedge y^{\perp}\right)=\mu^{*}(y)+\mu^{*}\left(y^{\perp}\right)$. Hence $\mu^{*}(y)+\mu_{*}\left(y^{\perp}\right) \geq \mu(1)=\mu^{*}(y)+\mu^{*}\left(y^{\perp}\right)$, which implies $\mu_{*}\left(y^{\perp}\right) \geq \mu^{*}\left(y^{\perp}\right)$. Opposite inequality follows from Remark 2.2.

Definition 3.3 An ℓ-group G is called a Dedekind complete if any upper bounded sequence of elements from G has a supremum in G.

Definition 3.4 Dedekind complete ℓ-group G is called to be of countable type, if to any bounded set $A \subset G$ there exists such a countable subset $B \subset A$ that

$$
\bigwedge A=\bigwedge B
$$

Proposition 3.5 Let G be a Dedekind complete ℓ-group of countable type. Let μ^{*} be the subadditive mapping defined on the lattice H generated by μ^{+}. Then for each $x \in H$ there exists bounded double sequence $a_{i, j} \searrow 0$, $(j \rightarrow \infty, i=1,2, \ldots)$ such that for each $\varphi: N \rightarrow N$ there exists $b \in A^{+}, b \geq x$ and it holds

$$
\mu^{*}(x)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{+}(b)
$$

Proof. Let G be a Dedekind complete ℓ group of countable type. Then there exists a sequence $\left(b_{n}\right)_{n=1}^{\infty}$ of elements of the set A^{+} such that $\mu^{*}(x)=\bigwedge_{n=1}^{\infty}\left\{\mu^{+}\left(b_{n}\right), b_{n} \geq x, b_{n} \in\right.$ $\left.A^{+}, n=1,2, \ldots\right\}$.

Put $c_{1}=b_{1}, c_{2}=b_{1} \wedge b_{2}, c_{n}=\bigwedge_{i=1}^{n} b_{i}$ then $c_{n} \geq$ $c_{n+1}, c_{n} \in A^{+}$and $b_{n} \geq c_{n} \geq x$. Therefore $\mu^{+}\left(b_{n}\right) \geq \mu^{+}\left(c_{n}\right) \geq \mu^{*}(x)$. Hence $\mu^{+}\left(b_{n}\right)-$ $\mu^{*}(x) \geq \mu^{+}\left(c_{n}\right)-\mu^{*}(x) \geq 0$. Define $a_{i, j}=$ $\mu^{+}\left(c_{j}\right)-\mu^{*}(x),(j \rightarrow \infty, i=1,2, \ldots)$, then $0=\bigvee_{j}\left\{\mu^{+}\left(b_{j}\right)-\mu^{*}(x)\right\} \geq \bigvee_{j}\left\{\mu^{+}\left(c_{j}\right)-\mu^{*}(x)\right\}$. Therefore $a_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$. Let $\varphi: N \rightarrow N$. Then $\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq a_{i, \varphi(i)}=$ $\mu^{+}\left(c_{\varphi(i)}\right)-\mu^{*}(x)$. Put $b=c_{(\varphi(i))}$ then holds following inequality $\mu^{*}(x)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)} \geq \mu^{+}(b)$.

Proposition 3.6 Let G be Dedekind complete ℓ-group. Then the following assertion holds:
Let for each $n \in N$ exists double bounded sequence $\left(a_{n, i, j}\right)_{i, j}$ of elements of the set G such that $a_{n, i, j} \searrow 0,(j \rightarrow \infty, i=1,2, \ldots)$. Then for each $a \in G, a>0$ there exists double bounded sequence $\left(a_{i, j}\right)_{i, j}$ such that sequence $a_{n, i, j} \searrow 0,(j \rightarrow \infty, i=1,2, \ldots)$ and at the same time $a \wedge\left(\sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n, i, \varphi(n+i)}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi}(i)$ for each $\varphi: N \rightarrow N$.

Proposition 3.6 is called Fremlin Theorem. The proof can be find in [3] (see Proposition 3.2.4).

Definition 3.7 Dedekind complete ℓ-group G is called to be weakly σ-distributive if for any bounded double sequence $\left(a_{i, j}\right)$ such that $a_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$ it is

$$
\bigwedge_{\varphi \in N \rightarrow N} \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}=0
$$

Proposition 3.8 Let G be a Dedekind complete, weakly σ-distributive ℓ-group of countable type. Let H be a σ-complete lattice. Let $\mu^{*}: H \rightarrow G^{*}$ be a mapping satisfying the condition (3). Let L be the set satisfying the condition (4). Let $z_{n} \in L(n=1,2, \ldots), z_{n} \nearrow z$, (or $z_{n} \searrow z$ resp.), $z \in H$. Then $z \in L$ and $\mu^{*}\left(z_{n}\right) \nearrow \mu^{*}(z)$.

Proof. Let $z_{n} \nearrow z$. Then $\bigvee_{n=1}^{\infty} \mu^{*}\left(z_{n}\right) \leq \mu^{*}(z)$ and for each $z \in H$ there exists $y \in A^{+}$such that $y \geq z$ and certainly $\mu^{+}(y) \geq \mu^{*}(z)$.

Put $z_{0}=0$. By Proposition $3.1 \mu^{*}\left(z_{n}\right)-$ $\mu^{*}\left(z_{n-1}\right)=\mu^{*}\left(z_{n} \wedge z_{n-1}^{\perp}\right), \quad n=1,2, \ldots$. From Proposition 3.5 follows that for every $n \in N$ there exists bounded double sequence $\left(a_{n, i, j}\right)_{i, j}$ such that for each $\varphi: N \rightarrow N$ there exists $b_{n} \in A^{+}, b_{n} \geq z_{n} \wedge z_{n-1}^{\perp}$ and $\mu^{*}\left(z_{n} \wedge z_{n-1}^{\perp}\right) \geq \mu^{+}\left(b_{n}\right)-\bigvee_{i=1}^{\infty} a_{n, i, \varphi(n+i)}$. Put $y_{n}=y \wedge\left(\bigvee_{i=1}^{n} b_{i}\right)$. Then $y_{n} \in A^{+}, y_{n} \leq y_{n+1}$ and $y_{n} \leq y$.
Therefore $\mu^{*}\left(z_{1}\right)-\mu^{*}\left(z_{0}\right)=\mu^{*}\left(z_{1} \wedge z_{0}^{\perp}\right) \geq$ $\mu^{+}\left(y_{1}\right)-\bigvee_{i=1}^{\infty} a_{1, i, \varphi(i+1)}$. Similarly $\mu^{*}\left(z_{2}\right)=$ $\mu^{*}\left(z_{1}\right)+\mu^{*}\left(z_{2} \wedge z_{1}^{\perp}\right) \geq \mu^{+}\left(y_{1}\right)-\bigvee_{i=1}^{\infty} a_{1, i, \varphi(i+1)}+$ $\mu^{+}\left(y_{2}\right)-\bigvee_{i=1}^{\infty} a_{2, i, \varphi(i+2)}$.
By induction we get:

$$
\mu^{*}\left(z_{n}\right) \geq \sum_{k=1}^{n} \mu^{+}\left(y_{k}\right)-\sum_{k=1}^{n} \bigvee_{k=1}^{\infty} a_{k, i, \varphi(i+k)}
$$

Hence

$$
\begin{gathered}
\bigvee_{n=1}^{\infty} \mu^{*}\left(z_{n}\right) \geq \bigvee_{n=1}^{\infty} \sum_{k=1}^{n} \mu^{+}\left(y_{k}\right)- \\
\quad-\bigvee_{n=1}^{\infty} \sum_{k=1}^{n} \bigvee_{i=1}^{\infty} a_{n, i, \varphi(n+i)} \geq \\
\geq \mu^{+}\left(\bigvee_{n=1}^{\infty} y_{n}\right)-\sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n, i, \varphi(n+i)}
\end{gathered}
$$

We assumed that there exists $y \in A^{+}$such that $y \geq \bigvee_{n=1}^{\infty} y_{n}$. Than $\mu^{+}(y) \geq \mu^{+}\left(\bigvee_{n=1}^{\infty} y_{n}\right)$ and also $\mu^{+}(y) \geq \mu^{+}\left(\bigvee_{n=1}^{\infty} y_{n}\right)-\bigvee_{n=1}^{\infty} \mu^{*}\left(z_{n}\right)$. Then by Proposition 3.6

$$
\begin{gathered}
\mu^{+}\left(\bigvee_{n=1}^{\infty} y_{n}\right)-\bigvee_{n=1}^{\infty} \mu^{*}\left(z_{n}\right) \leq \\
\leq \mu^{+}(y) \wedge \sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n, i, \varphi(n+i)} \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}
\end{gathered}
$$

for each $\varphi: N \rightarrow N$. But $\bigvee_{n=1}^{\infty} y_{n} \geq z$ and either $\mu^{+}\left(\bigvee_{n=1}^{\infty} y_{n}\right) \geq \mu^{*}(z)$. Since G is weakly σ-distributive ℓ-group, it holds:

$$
\mu^{*}(z)-\bigvee_{n=1}^{\infty} \mu^{*}\left(z_{n}\right) \leq \bigwedge_{\varphi: N \rightarrow N} \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}=0
$$

Therefore $\mu^{*}\left(z_{n}\right) \nearrow \mu^{*}(z)$. Further $\mu_{*}(z) \leq$ $\mu^{*}(z)=\bigvee_{n=1}^{\infty} \mu^{*}\left(z_{n}\right)=\bigvee_{n=1}^{\infty} \mu_{*}\left(z_{n}\right) \leq \mu_{*}(z)$, hence $z \in L$.
The second part of Proposition (for nonincreasing sequences) follows from Proposition 3.2 and the first part of proof.

Proposition 3.9 Let G be a Dedekind complete, weakly σ-distributive ℓ-group of countable type. Let $\mu^{*}: H \rightarrow G^{*}$ be a mapping satisfying the condition (3). Let L be the set satisfying the condition (4). Then $\bar{\mu}=\mu^{*} \mid L$ is additive mapping, i.e. for each $x, y \in L$ holds $\mu^{*}(x \vee y)=\mu^{*}(x)+\mu^{*}(y)$.

Proof. First we prove that for each $c, d \in A^{-}$ it hold $\mu^{-}(c \vee d)=\mu^{-}(c)+\mu^{-}(d)$. By Proposition 3.1 it holds: $1-\mu^{-}(d)=\mu^{+}\left(d^{\perp}\right)=$ $\mu^{*}\left(d^{\perp}\right)=\mu^{-}(c)+\mu^{*}\left(d^{\perp} \wedge c^{\perp}\right)=\mu^{-}(c)+$ $\mu^{+}\left((d \vee c)^{\perp}\right)=\mu^{-}(c)+1-\mu^{-}(d \vee c)$.
Now let $x, y \in H, x \leq y^{\perp}$. Since G is Dedekind complete, weakly σ-distributive ℓ-group of countable type, then there exist $a_{i, j} \searrow 0$, $b_{i, j} \searrow 0(j \rightarrow \infty, i=1,2, \ldots)$ such that for each $\varphi: N \rightarrow N$ there exist $c, d \in A^{-}, c \leq x$, $d \leq y$ and it hold $\mu_{*}(x)-\bigvee_{i=1}^{\infty} a_{i, \varphi(i)}<\mu^{-}(c)$, $\mu_{*}(y)-\bigvee_{i=1}^{\infty} b_{i, \varphi(i)}<\mu^{-}(d)$.
Because $c \leq x \leq y^{\perp} \leq d^{\perp}$, then $\mu^{*}(x \vee y) \leq$ $\mu^{*}(x)+\mu^{*}(y)=\mu_{*}(x)+\mu_{*}(y)<\mu^{-}(c)+$ $\mu^{-}(d)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)}+\bigvee_{i=1}^{\infty} b_{i, \varphi(i)}=\mu^{-}(c \vee d)+$ $\bigvee_{i=1}^{\infty} a_{i, \varphi(i)}+\bigvee_{i=1}^{\infty} b_{i, \varphi(i)} \leq \mu_{*}(x \vee y)+\bigvee_{i=1}^{\infty} a_{i, \varphi(i)}+$
$\bigvee_{i=1}^{\infty} b_{i, \varphi(i)}$

Proposition 3.10 Let G be a Dedekind complete, weakly σ-distributive ℓ-group of countable type. Let A be an orthocomplemented sublattice of an orthomodular σ-complete lattice H. Let $S(A)$ be the σ-complete orthocomplemented lattice generated by $A, M(A)$ be the least set over A closed under monotone sequences. Then $S(A)=M(A)$.

Proof. Since $S(A)$ is σ-complete orthocomplemented lattice then $M(A) \subset S(A)$. On the other side, let $x \in A$ be an arbitrary but fixed element. Denote $P=\{y \in M, x \vee y \in M\}$.

Evidently $A \subset P$ and P is closed under monotone sequences, therefore $M \subset P$. Hence for each $x \in A$ and each $y \in M$ it hold $x \vee y \in M$. Now let us take a fixed $y \in M$ and put $R=\{x \in M, x \vee y \in M\}$. Then also R is closed under monotone sequences, $A \subset R$ and $M \subset R$ therefore M is closed under the operation \vee. Because for each $x \in A$ holds that $x^{\perp} \in A$, it is easy to prove, that if $y \in M$ also $y^{\perp} \in M$. Hence $M(A)$ is the σ-complete orthocomplemented lattice generated by A and $S(A) \subset M(A)$.

Theorem 3.11 Let G be a Dedekind complete, weakly σ-distributive ℓ-group of countable type. Let H be a σ-continuous, orthomodular lattice, A its orthocomplemented sublattice and $\mu: A \rightarrow G^{+}$a subadditive measure. Let $S(A)$ be the σ-complete orthocomplemented sublattice generated by A. Then there is exactly one subadditive measure $\bar{\mu}$: $S(A) \rightarrow G^{*}$ that is an extension of μ.

Proof. Existence. Evidently $S(A)=M(A) \subset$ L. Put $\bar{\mu}=\mu^{*} \mid S(A)$. By Propositions 3.8 and $3.9 \bar{\mu}$ is a measure.
Uniqueness. Let $\nu: S(A) \rightarrow G^{*}$ be a measure, $\nu \mid A=\mu$. Put $K=\{x \in S(A) ; \bar{\mu}(x)=\nu(x)\}$. Evidently $A \subset K, K$ is closed under monotone sequences. Therefore $S(A)=M(A) \subset$ K.

4 Conclusion

We proved the extension theorem for ℓ-group valued measures being moreover subadditive and that are defined on an orthocomplemented sublattice of σ-continuous orthomodular lattice.

Another approach has been realized by Vrábelová in [5], where the assumption that μ is σ - additive is substituted by assumption that μ is exhaustive.

Acknowledgements

The support of the grant VEGA $1 / 0539 / 08$ is kindly announced.

References

[1] Georgescu, G.: An extension theorem for submeasures on Łukasiewicz-Moisil algebras. Fuzzy Sets and Systems 158, pages 1782-1790, 2007.
[2] Riečan, B.: The measure extension theorem for subadditive probability measures in orthomodular σ-continuous lattices. Commen. Mathematiceae Univ. Carol. 20, pages 309-316, 1979.
[3] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997.
[4] Vrábel, P.: The measures extension theorem for subadditive measures in σ-continuous logics. Math. Slovaca 31, pages 141-147, 1981.
[5] Vrábelová, M.: On the extension of subadditive measures in lattice ordered groups. Czechoslovak Mathematical Journal, volume 57, 1, pages 95-103, 2007. ISSN 0011-4642 (Print)

