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Abstract

The concept of Intuitionistic Fuzzy
Sets (IFS) was proposed by K.
Atanassov in 1983.
tension of the well-known notion
of fuzzy set defined by L. Zadeh.
Every element a of an IFS set has a
degree of membership u : a +— (0,1)
and a degree of non-membership
v : a ~— (0,1). The sum of the
two degrees have to be less than
I: p(a) +v(a) < 1. It is well
known that every IF set can be
embeded in MV-algebra. The nat-
ural noncomnutative generalization
of MV-algebra is the pseudo-MV-
algebra. The aim of this paper is to
show that some results holding in
B-structures are used for pseudo-
MV-algebras.

It is an ex-
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1 Basic notions

Definition 1.1 A B-structure is a system
(B,®,<,0p,1p) such that:

(i) & is a partial binary operation on B;
(ii) < is a partial ordering on B;

(i1i) Op is the smallest, 1p is the largest ele-
ment in (B, <).

Definition 1.2 A state on B is a mapping
m : B — [0,1] satisfying the following condi-
tions:

(I) m(1p) =1, m(0p) =0

(IT) if a = bde, then m (a) = m (b) +m (c)
(111) if a,, /" a, then m (a,) / m(a).

In the next part we define a pseudo-MV-
algebras and the states on them. For the first
time they were introduced in [6] and [7]. This

algebraic structure is known under the name
generalized MV-algebras, too.

Definition 1.3 A pseudo-MV-algebra is a
system M = (M,®,®,*,,0p,157), where
®,® are binary operations, *,' are the unary
operations and 0,1 are the elements of M
such that for all a,b,c in M the following
identities are satisfied:

(i))a® (bdc)=(adb) Dc;
(1) a ® Opr = Opr @ a = a;
(%) a ® 1y = 1y © a = 1y
(iv) (a*) = a;

(0) 131 = Ongs Ty = Ong;

(vi) (b* @ a*) = (b ©d)";
(vii) a © b = (a* © b*)';

(viii) a® (@ © b) = bB(V ©a) = (a © b*)Pb =
(b®a*)®a;

(ix) a® (a* & b) = (ad V) Ob.

We shall assume that 0 # 1. We shall define
a partial order <: a < b if and only if a* &
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b = 1. Then we can say that (M,<) is a
distributive lattice with operations supremum
and infimum on M:

a \/ b =a @ a// @ b,
aNb=a® (a* ®b).
If for the operation @& on pseudo-MV-algebra

M the commutative law holds then M is MV-
algebra.

We define a partial binary operation + on M:
a + b is defined iff a < b* and then holds:
a+b:=a®b.

It is clear that a < b* holds if and only if
b®a=0.

Definition 1.4 A state on M is a mapping
m: M — [0,1] satisfying the folowing condi-
tions:

(D) m(1y) =1, m(037) =0
(II) m (a +b) = m (a) +m (b) whenewer a+b
is defined in M

(111) if ap, /" a, then m (a,) / m(a).

In the next we shall assume that the state
In generally it can happen that
pseudo-MV-algebras has no states, which is
shown in [8].

exists.

Now we take a structure (M,+,<,0ns, 1)
with 4, <, which we defined in a previous
text. About this system we can say that it
is a B-structure and a state from Definition
2. on B is corresponding with a state on
pseudo-MV-algebras M. In the next text
we shall work with the B-structure, which
we get from the pseudo-MV-algebras. We
define a probability on it and we get some
results like a Central limit theorem for this
B-structure. By reason that the states on
M and the new system B coincides where
(B,®,<,0B,1p) = (M, +,<,0u, 13s) we can
use these results for the pseudo-MV-algebras.
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2 Probability on
pseudo-MV-algebras

Let (2,5, P) be a probability space. A ran-
dom variable on it is a mapping £ : 2 — R
such that

AeB(R)=¢1(A)es,
If we define
i A€ (A)
then we obtain a o-homomorphism
z:B(R)—S.

Instead of point mappings £ : @ — R we
can work with o-homomorphisms from the
o-algebra B (R) of Borel sets to given struc-
ture. This approach has been used in quan-
tum structures, where the corresponding o-
homomorphism is called observable.

Definition 2.1 Let M =
(M,®,0,x,,0p,10) be a pseudo-MV-
algebra. An observable of M is a mapping
x : B(R) — M satisfying the following
conditions:

(i) x (R) = 157, x (0) = 0py;
(i) if A,B € B(R) and AN B = 0, then
x(AUB)=z(A)®x(B);

(i17) if A, € B(R), A, /" A, then x(4,) /
x(A).

The next theorem is proved in [1].

Theorem 2.2 Let be an observable =z
B(R) — M and m : M — [0,1] be a state.
Then the composite map mox = my, : (R) —
[0,1] is a probability measure.

Let we have the B-structure
(M, +,<,0n,1p). When we wuse the
previous definition and theorem on this
structure we get the probability measure on
the pseudo-MV-algebras.

Definition 2.3 The expected value E (z) of
the observable x is defined by the formula

E (z) = [ptdmg (1),
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if the integral exists.

In the following text under the B-structure we
mean the system (M, 4, <,0ns, 157), when we
got from the pseudo-MV-algebra. We denote
the remembered B-structure by the letter M.

Definition 2.4 Let g : R — R be a Borel
function (ie. A € B(R) = g '(A) €
B(R)), x : B(R) — M be an observable.
Then we define gox : B(R) — M by the
formula

gox(A) =z (971 (4)).

Theorem 2.5 The mapping gox : B(R) —
M s an observable and

E(gox)= [pgdmy,
if the integral exists.
Proof: First, by the definition
y(A)=gox(A) =z (97" (4) € M,

because of g7! (4) € B(R). Secondly recall
the integral transformation theorem

Jo-1(ay fopdP = [, fdP,.

Put A = R,¢ : R — Rp(t) =
gt),fu) = Then P,(A) =
Py(A) = P(g7'(4) = ma(g7'(4) =
m(z (g7 (A))) = m(y(4)) = my (A4). Fur-

Jrgdme = [ptdPy (t) = [ptdmy (t) =
E(y) =E(goux).

Corollary 1 D (z) = [ (t — E(€))*dm, (t)

We have shown the way how to define and
compute moments of observables. Now we de-
fine the sum of observables. If £, :Q — R
are random variables and T = (£,7) : Q@ — R?
is the corresponding random vector, then we
can express the sum by the help of the func-
tion g: R? — R, g (u,v) = u + v:

E+n=g(mn) =goT.

Therefore

(E+n)""(A) =T (g7 (4)).

T-1': B(R?*) — S is now a o-homomorphism
such that

T-1(Cx D)=¢1(C)nn 1 (D);
C,D € B(R).

Generally we are no able to construct a o-
homomorphism from B (R?) — M connected
with z,y. Different situation occurs if (£ + )
are independent:

P(T~1(C x D)) =P (1 (C)nn~1 (D)) =
P(&7H(C) - (71 (D).

This approach can be realized also in the gen-
eral case.

Definition 2.6 Two observables x,y
B(R) — M are independent, if there exists
a mapping h : B(R%*) — M satisfying the
following conditions:

(i) h (R?) = 1,h (D) = 0;

(i) ANB=0= h(AUB) ="h(A)+ h(B);
(iti) An /A= h(An) / (A);
(i) m(h(C x D)) = m(x(C)) -
C,D e B(R).

While h is not uniquely determined, any two
mappings h1 and ho satisfying the condition

i the above definition satisfy moh; = mohg
automatically.

Definition 2.7 Let z,y : B(R) — M are
independent observables and g : R> — R be

a Borel function. Then the mapping z =
g(z,y): B(R) — M defined by equality

z=hog™!
is a observable, where h : B (R?) — M is a
joint observable of x,y.

Definition 2.8 Let (z;)]° be an indepen-
dent sequence of observables in an B-
structure M with a state m. Let C =
{m,}(M),M € B(R"),n€ N} be a set of
all cylinders, where the function m, : RN —
R" defined by m, (ui)7°) = (u1,...,upn) is

called the n-th coordinate random vector. The
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infinite product P of the measures mo x;,i =
1,2,... on the space (RN,O'(C)) is defined by

P{(Uz)(fo € RN;uy € Ay, .yuy € An} =
(m o) (A1) - .- (moan) (An)

A, € B(R).

For each n € N the function &, : RN — R
gwen by &, (u3)77) = uy, is called n-th coordi-

nate random variable of (RN, o(C), P).

for everyn € N and every Aq, ...,

Theorem 2.9 Let (z;)]° be an independent
sequence of observables in an B-structure
M with a state m. Let g, : RN — R
be a Borel measurable function and &,

RN — R n-th coordinate random variable of
(RN,U(C),P), where P is infinite product

of mox;. Then
P{(ui)7” 5 9n (&1 ((xé)(fo) s n ((0)70))) €
= (mo gy (T1,....,x,)) (C).

Proof: Since the sequence (z;)]° is indepen-
dent, then there exists n-dimensional observ-
able h, : B (RY) — M such that m o h, =

Mgy X oo X My, . But g, (21, ..., 2,) = hpog, L.
Hence
(mogn(xl,..,x ) (C) =

= (mohy) (9,1 (C)) =
(mowxn)) (9;1 (C)) =
) =

)
(mohnog,')(C)
=((momx) X ... X
= (Pom!) (95" (C
=P ({(w)y”s (w1, up) € g1 (O)}) =
=P ({(wi)7" 1 9n (w1, ...;un) € C}) =
=P ({(u)7" 5 9n (& ((wi)77) 5 - &n ((u

Theorem 2.10 (Central limit theorem) Let
M be a pseudo-MV-algebra and m be a state
on M. Let (z;);2, be an independent se-
quence of square integrable observables hav-
ing the same probability distribution mox; =
. such that E(x,) = a, 0%(xy)

o2 (n=12,..) and y, = U”(% i x; —
i=1
Then for allt € R Jim (m o yn)((—o0,t))

mo xry =

\E/
[l

2
1 ot _uf
\/727[_006 2 du.
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i)7))) € C}.

This theorem is proved for every B-structure
in [1].
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