Probability on pseudo-MV-algebras

LAŠOVÁ Lenka

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia lasova@fpv.umb.sk

Abstract

The concept of Intuitionistic Fuzzy Sets (IFS) was proposed by K. Atanassov in 1983. It is an extension of the well-known notion of fuzzy set defined by L. Zadeh. Every element a of an IFS set has a degree of membership $\mu : a \mapsto \langle 0, 1 \rangle$ and a degree of non-membership $\nu : a \mapsto \langle 0, 1 \rangle$. The sum of the two degrees have to be less than 1: $\mu(a) + \nu(a) \leq 1$. It is well known that every IF set can be embedde in MV-algebra. The natural noncomnutative generalization of MV-algebra is the pseudo-MValgebra. The aim of this paper is to show that some results holding in B-structures are used for pseudo-MV-algebras.

Keywords: Pseudo-MV-algebra, B-structures, probability.

1 Basic notions

Definition 1.1 A B-structure is a system $(B, \hat{\oplus}, \leq, 0_B, 1_B)$ such that:

(i) \oplus is a partial binary operation on B;

 $(ii) \leq is \ a \ partial \ ordering \ on \ B;$

(iii) 0_B is the smallest, 1_B is the largest element in (B, \leq) .

Definition 1.2 A state on B is a mapping $m: B \rightarrow [0, 1]$ satisfying the following conditions:

(I) $m(1_B) = 1, m(0_B) = 0$ (II) if $a = b \oplus c$, then m(a) = m(b) + m(c)(III) if $a_n \nearrow a$, then $m(a_n) \nearrow m(a)$.

In the next part we define a pseudo-MValgebras and the states on them. For the first time they were introduced in [6] and [7]. This algebraic structure is known under the name generalized MV-algebras, too.

Definition 1.3 A pseudo-MV-algebra is a system $M = (M, \oplus, \odot, *, ', 0_M, 1_M)$, where \oplus, \odot are binary operations, *, ' are the unary operations and 0,1 are the elements of M such that for all a, b, c in M the following identities are satisfied:

(i)
$$a \oplus (b \oplus c) = (a \oplus b) \oplus c;$$

(ii) $a \oplus 0_M = 0_M \oplus a = a;$
(iii) $a \oplus 1_M = 1_M \oplus a = 1_M;$
(iv) $(a^*)' = a;$
(v) $1_M^* = 0_M; 1_M' = 0_M;$
(vi) $(b^* \oplus a^*)' = (b' \oplus a')^*;$
(vii) $a \odot b = (a^* \oplus b^*)';$
(viii) $a \oplus (a' \odot b) = b \oplus (b' \odot a) = (a \odot b^*) \oplus b =$
 $(b \odot a^*) \oplus a;$
(ix) $a \odot (a^* \oplus b) = (a \oplus b') \odot b.$

We shall assume that $0 \neq 1$. We shall define a partial order $\leq a \leq b$ if and only if $a^* \oplus$

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU'08, pp. 1662–1665 Torremolinos (Málaga), June 22–27, 2008 b = 1. Then we can say that (M, \leq) is a distributive lattice with operations supremum and infimum on M:

$$a \lor b = a \oplus a' \odot b$$

 $a \wedge b = a \odot (a^* \oplus b).$

If for the operation \oplus on pseudo-MV-algebra M the commutative law holds then M is MV-algebra.

We define a partial binary operation + on M:

a + b is defined iff $a \leq b^*$ and then holds: $a + b := a \oplus b$.

It is clear that $a \leq b^*$ holds if and only if $b \odot a = 0$.

Definition 1.4 A state on M is a mapping $m: M \rightarrow [0,1]$ satisfying the following conditions:

(I) $m(1_M) = 1, m(0_M) = 0$

(II) m(a + b) = m(a) + m(b) whenever a + b is defined in M

(III) if $a_n \nearrow a$, then $m(a_n) \nearrow m(a)$.

In the next we shall assume that the state exists. In generally it can happen that pseudo-MV-algebras has no states, which is shown in [8].

Now we take a structure $(M, +, \leq, 0_M, 1_M)$ with $+, \leq$, which we defined in a previous text. About this system we can say that it is a B-structure and a state from Definition 2. on *B* is corresponding with a state on pseudo-MV-algebras *M*. In the next text we shall work with the B-structure, which we get from the pseudo-MV-algebras. We define a probability on it and we get some results like a Central limit theorem for this B-structure. By reason that the states on *M* and the new system *B* coincides where $(B, \oplus, \leq, 0_B, 1_B) = (M, +, \leq, 0_M, 1_M)$ we can use these results for the pseudo-MV-algebras.

2 Probability on pseudo-MV-algebras

Let (Ω, S, P) be a probability space. A random variable on it is a mapping $\xi : \Omega \to R$ such that

$$A \in B(R) \Rightarrow \xi^{-1}(A) \in S.$$

If we define

$$x: A \to \xi^{-1}(A)$$

then we obtain a σ -homomorphism

$$x: B\left(R\right) \to S.$$

Instead of point mappings $\xi : \Omega \to R$ we can work with σ -homomorphisms from the σ -algebra B(R) of Borel sets to given structure. This approach has been used in quantum structures, where the corresponding σ -homomorphism is called observable.

Definition 2.1 Let $M = (M, \oplus, \odot, *, ', 0_M, 1_M)$ be a pseudo-MValgebra. An observable of M is a mapping $x : \beta(R) \rightarrow M$ satisfying the following conditions:

(*i*) $x(R) = 1_M, x(\emptyset) = 0_M;$

(ii) if $A, B \in \beta(R)$ and $A \cap B = \emptyset$, then $x(A \cup B) = x(A) \oplus x(B);$

(iii) if $A_n \in \beta(R)$, $A_n \nearrow A$, then $x(A_n) \nearrow x(A)$.

The next theorem is proved in [1].

Theorem 2.2 Let be an observable $x : \beta(R) \to M$ and $m : M \to [0,1]$ be a state. Then the composite map $m \circ x = m_x : \beta(R) \to [0,1]$ is a probability measure.

Let we have the B-structure $(M, +, \leq, 0_M, 1_M)$. When we use the previous definition and theorem on this structure we get the probability measure on the pseudo-MV-algebras.

Definition 2.3 The expected value E(x) of the observable x is defined by the formula

$$E(x) = \int_{R} t dm_x(t),$$

if the integral exists.

In the following text under the B-structure we mean the system $(M, +, \leq, 0_M, 1_M)$, when we got from the pseudo-MV-algebra. We denote the remembered B-structure by the letter M.

Definition 2.4 Let $g : R \to R$ be a Borel function (i.e. $A \in B(R) \Rightarrow g^{-1}(A) \in B(R)$), $x : B(R) \to M$ be an observable. Then we define $g \circ x : B(R) \to M$ by the formula

$$g \circ x \left(A \right) = x \left(g^{-1} \left(A \right) \right).$$

Theorem 2.5 The mapping $g \circ x : B(R) \rightarrow M$ is an observable and

$$E(g \circ x) = \int_R g dm_x,$$

if the integral exists.

Proof: First, by the definition

$$y(A) = g \circ x(A) = x(g^{-1}(A)) \in M,$$

because of $g^{-1}(A) \in B(R)$. Secondly recall the integral transformation theorem

$$\int_{\varphi^{-1}(A)} f \circ \varphi dP = \int_A f dP_{\varphi}.$$

Put $A = R, \varphi$: $R \to R, \varphi(t) = g(t), f(u) = u$. Then $P_{\varphi}(A) = P_g(A) = P(g^{-1}(A)) = m_x(g^{-1}(A)) = m(x(g^{-1}(A))) = m(y(A)) = m_y(A)$. Further $(f \circ \varphi)(t) = g(t)$

$$\int_{R} g dm_{x} = \int_{R} t dP_{g}(t) = \int_{R} t dm_{y}(t) = E(y) = E(g \circ x).$$

Corollary 1
$$D(x) = \int_{R} (t - E(\xi))^2 dm_x(t)$$

We have shown the way how to define and compute moments of observables. Now we define the sum of observables. If $\xi, \eta : \Omega \to R$ are random variables and $T = (\xi, \eta) : \Omega \to R^2$ is the corresponding random vector, then we can express the sum by the help of the function $g: R^2 \to R, g(u, v) = u + v$:

$$\xi + \eta = g\left(\xi, \eta\right) = g \circ T.$$

Therefore

$$(\xi + \eta)^{-1} (A) = T^{-1} (g^{-1} (A)).$$

 $T^{-1}: B(\mathbb{R}^2) \to S$ is now a σ -homomorphism such that

$$T^{-1}(C \times D) = \xi^{-1}(C) \cap \eta^{-1}(D); C, D \in B(R).$$

Generally we are no able to construct a σ -homomorphism from $B(R^2) \to M$ connected with x, y. Different situation occurs if $(\xi + \eta)$ are independent:

$$P(T^{-1}(C \times D)) = P(\xi^{-1}(C) \cap \eta^{-1}(D)) = P(\xi^{-1}(C)) \cdot (\eta^{-1}(D)).$$

This approach can be realized also in the general case.

Definition 2.6 Two observables x, y: $B(R) \rightarrow M$ are independent, if there exists a mapping $h : B(R^2) \rightarrow M$ satisfying the following conditions:

(i)
$$h(R^2) = 1, h(\emptyset) = 0;$$

(ii) $A \cap B = \emptyset \Rightarrow h(A \cup B) = h(A) + h(B);$
(iii) $A_n \nearrow A \Rightarrow h(A_n) \nearrow (A);$
(iv) $m(h(C \times D)) = m(x(C)) \cdot m(y(D)),$
 $C, D \in B(R).$

While h is not uniquely determined, any two mappings h_1 and h_2 satisfying the condition in the above definition satisfy $m \circ h_1 = m \circ h_2$ automatically.

Definition 2.7 Let $x, y : B(R) \to M$ are independent observables and $g : R^2 \to R$ be a Borel function. Then the mapping z = $g(x,y) : B(R) \to M$ defined by equality

$$z = h \circ g^{-1}$$

is a observable, where $h: B(\mathbb{R}^2) \to M$ is a joint observable of x, y.

Definition 2.8 Let $(x_i)_1^{\infty}$ be an independent sequence of observables in an *B*-structure *M* with a state *m*. Let $C = \{\pi_n^{-1}(M), M \in B(\mathbb{R}^n), n \in N\}$ be a set of all cylinders, where the function $\pi_n : \mathbb{R}^N \to \mathbb{R}^n$ defined by $\pi_n((u_i)_1^{\infty}) = (u_1, ..., u_n)$ is called the n-th coordinate random vector. The

infinite product **P** of the measures $m \circ x_i, i = 1, 2, ...$ on the space $(R^N, \sigma(C))$ is defined by

$$P\left\{ (u_i)_1^{\infty} \in \mathbb{R}^N; u_1 \in A_1, ..., u_n \in A_n \right\} = (m \circ x_1) (A_1) \cdot ... \cdot (m \circ x_n) (A_n)$$

for every $n \in N$ and every $A_1, ..., A_n \in \mathcal{B}(R)$.

For each $n \in N$ the function $\xi_n : \mathbb{R}^N \to \mathbb{R}$ given by $\xi_n ((u_i)_1^\infty) = u_n$ is called n-th coordinate random variable of $(\mathbb{R}^N, \sigma(C), \mathbf{P})$.

Theorem 2.9 Let $(x_i)_1^{\infty}$ be an independent sequence of observables in an B-structure M with a state m. Let $g_n : \mathbb{R}^N \to \mathbb{R}$ be a Borel measurable function and $\xi_n :$ $\mathbb{R}^N \to \mathbb{R}$ n-th coordinate random variable of $(\mathbb{R}^N, \sigma(C), \mathbf{P})$, where \mathbf{P} is infinite product of $m \circ x_i$. Then

$$P\{(u_i)_1^{\infty}; g_n(\xi_1((x_i)_1^{\infty}), ..., \xi_n((x_i)_1^{\infty}))) \in C = \\ = (m \circ g_n(x_1, ..., x_n))(C).$$

Proof: Since the sequence $(x_i)_1^{\infty}$ is independent, then there exists n-dimensional observable $h_n : B(\mathbb{R}^N) \to M$ such that $m \circ h_n = m_{x_1} \times \ldots \times m_{x_n}$. But $g_n(x_1, \ldots, x_n) = h_n \circ g_n^{-1}$. Hence

$$(m \circ g_n (x_1, ..., x_n)) (C) = (m \circ h_n \circ g_n^{-1}) (C) = (m \circ h_n) (g_n^{-1} (C)) = = ((m \circ x_1) \times ... \times (m \circ x_n)) (g_n^{-1} (C)) = = (\mathbf{P} \circ \pi_n^{-1}) (g_n^{-1} (C)) = = \mathbf{P} (\{(u_i)_1^{\infty}; (u_1, ..., u_n) \in g_n^{-1} (C)\}) = = \mathbf{P} (\{(u_i)_1^{\infty}; g_n (u_1, ..., u_n) \in C\}) = = \mathbf{P} (\{(u_i)_1^{\infty}; g_n (\xi_1 ((u_i)_1^{\infty}), ..., \xi_n ((u_i)_1^{\infty})))) \in C\}$$

Theorem 2.10 (Central limit theorem) Let M be a pseudo-MV-algebra and m be a state on M. Let $(x_i)_{i=1}^{\infty}$ be an independent sequence of square integrable observables having the same probability distribution $m \circ x_1 =$ $m \circ x_2 = \ldots$ such that $E(x_n) = a$, $\sigma^2(x_n) =$ σ^2 $(n = 1, 2, \ldots)$ and $y_n = \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^n x_i - a\right)$. Then for all $t \in R$ $\lim_{n \to \infty} (m \circ y_n)((-\infty, t)) =$ $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{u^2}{2}} du$. This theorem is proved for every B-structure in [1].

Acknowledgements

The support of the grant VEGA 1/0539/08 is kindly announced.

References

- K. Cunderlíková-Lendelová, B. Riečan. Probability on B-structures. In *Fuzzy sets* and systems, submitted.
- [2] A. Dvurečenskij. States on pseudo-MValgebras. In *Studia logica*, volume 68, pages 301–327, 2001.
- [3] A. Dvurečenskij. Pseudo-MV-algebras are intervals in l-groups. In J. Austr. Math. Soc., volume 70, pages 715–750, 2002.
- [4] A. Dvurečenskij,S. Pulmannová. New trends in Quantum Structures. Dordrecht, 2000.
- [5] Z. Ma, S. Wu,S. Lu. Pseudoeffect algebras and pseudo-difference posets. In Int. J. Theor. Physics CRC, volume 43, pages 1453–1460, 2004.
- [6] Rachunek, J.: A non-commutative generalization of MV-algebras. In *Czechoslovak Math. J.*, volume 52, pages 255–273, 2002.
- [7] G. Georgescu, A. Iorgulescu. Pseudo-MV-algebras. In *Multiple Val.Logic*, volume 6, pages 95–135, 2001.
- [8] A. DiNola, A. Dvurečenskij, J. Jakubík. Good and bad infinitesimals, and states on pseudo-MV-algebras. In *Order*, volume 21, pages 293–314, 2004.

Proceedings of IPMU'08