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Abstract

The concept of Intuitionistic Fuzzy
Sets (IFS) was proposed by K.
Atanassov in 1983. It is an ex-
tension of the well-known notion
of fuzzy set defined by L. Zadeh.
Every element a of an IFS set has a
degree of membership µ : a 7→ 〈0, 1〉
and a degree of non-membership
ν : a 7→ 〈0, 1〉. The sum of the
two degrees have to be less than
1: µ (a) + ν (a) ≤ 1. It is well
known that every IF set can be
embeded in MV-algebra. The nat-
ural noncomnutative generalization
of MV-algebra is the pseudo-MV-
algebra. The aim of this paper is to
show that some results holding in
B-structures are used for pseudo-
MV-algebras.
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1 Basic notions

Definition 1.1 A B-structure is a system(
B, ⊕̂,≤, 0B, 1B

)
such that:

(i) ⊕̂ is a partial binary operation on B;

(ii) ≤ is a partial ordering on B;

(iii) 0B is the smallest, 1B is the largest ele-
ment in (B,≤).

Definition 1.2 A state on B is a mapping
m : B → [0, 1] satisfying the following condi-
tions:

(I) m (1B) = 1, m (0B) = 0

(II) if a = b⊕̂c, then m (a) = m (b) + m (c)

(III) if an ↗ a, then m (an) ↗ m (a).

In the next part we define a pseudo-MV-
algebras and the states on them. For the first
time they were introduced in [6] and [7]. This
algebraic structure is known under the name
generalized MV-algebras, too.

Definition 1.3 A pseudo-MV-algebra is a
system M = (M,⊕,�, ∗,′ , 0M , 1M ), where
⊕,� are binary operations, ∗,′ are the unary
operations and 0, 1 are the elements of M
such that for all a, b, c in M the following
identities are satisfied:

(i) a⊕ (b⊕ c) = (a⊕ b)⊕ c;

(ii) a⊕ 0M = 0M ⊕ a = a;

(iii) a⊕ 1M = 1M ⊕ a = 1M ;

(iv) (a∗)′ = a;

(v) 1∗M = 0M ; 1′M = 0M ;

(vi) (b∗ ⊕ a∗)′ = (b′ ⊕ a′)∗;

(vii) a� b = (a∗ ⊕ b∗)′;

(viii) a⊕(a′ � b) = b⊕(b′ � a) = (a� b∗)⊕b =
(b� a∗)⊕ a;

(ix) a� (a∗ ⊕ b) = (a⊕ b′)� b.

We shall assume that 0 6= 1. We shall define
a partial order ≤: a ≤ b if and only if a∗ ⊕
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b = 1. Then we can say that (M,≤) is a
distributive lattice with operations supremum
and infimum on M :

a ∨ b = a⊕ a′ � b,

a ∧ b = a� (a∗ ⊕ b).

If for the operation ⊕ on pseudo-MV-algebra
M the commutative law holds then M is MV-
algebra.

We define a partial binary operation + on M :

a + b is defined iff a ≤ b∗ and then holds:
a + b := a⊕ b.

It is clear that a ≤ b∗ holds if and only if
b� a = 0.

Definition 1.4 A state on M is a mapping
m : M → [0, 1] satisfying the folowing condi-
tions:

(I) m (1M ) = 1, m (0M ) = 0

(II) m (a + b) = m (a)+m (b) whenewer a+ b
is defined in M

(III) if an ↗ a, then m (an) ↗ m (a).

In the next we shall assume that the state
exists. In generally it can happen that
pseudo-MV-algebras has no states, which is
shown in [8].

Now we take a structure (M,+,≤, 0M , 1M )
with +,≤, which we defined in a previous
text. About this system we can say that it
is a B-structure and a state from Definition
2. on B is corresponding with a state on
pseudo-MV-algebras M . In the next text
we shall work with the B-structure, which
we get from the pseudo-MV-algebras. We
define a probability on it and we get some
results like a Central limit theorem for this
B-structure. By reason that the states on
M and the new system B coincides where
(B,⊕,≤, 0B, 1B) = (M,+,≤, 0M , 1M ) we can
use these results for the pseudo-MV-algebras.

2 Probability on
pseudo-MV-algebras

Let (Ω, S, P ) be a probability space. A ran-
dom variable on it is a mapping ξ : Ω → R
such that

A ∈ B (R) ⇒ ξ−1 (A) ∈ S.

If we define

x : A → ξ−1 (A)

then we obtain a σ-homomorphism

x : B (R) → S.

Instead of point mappings ξ : Ω → R we
can work with σ-homomorphisms from the
σ-algebra B (R) of Borel sets to given struc-
ture. This approach has been used in quan-
tum structures, where the corresponding σ-
homomorphism is called observable.

Definition 2.1 Let M =
(M,⊕,�, ∗,′ , 0M , 1M ) be a pseudo-MV-
algebra. An observable of M is a mapping
x : β (R) → M satisfying the following
conditions:

(i) x (R) = 1M , x (∅) = 0M ;

(ii) if A,B ∈ β (R) and A ∩ B = ∅, then
x (A ∪B) = x (A)⊕ x (B);

(iii) if An ∈ β (R), An ↗ A, then x (An) ↗
x (A).

The next theorem is proved in [1].

Theorem 2.2 Let be an observable x :
β (R) → M and m : M → [0, 1] be a state.
Then the composite map m◦x = mx : β (R) →
[0, 1] is a probability measure.

Let we have the B-structure
(M,+,≤, 0M , 1M ). When we use the
previous definition and theorem on this
structure we get the probability measure on
the pseudo-MV-algebras.

Definition 2.3 The expected value E (x) of
the observable x is defined by the formula

E (x) =
∫
R tdmx (t),
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if the integral exists.

In the following text under the B-structure we
mean the system (M,+,≤, 0M , 1M ), when we
got from the pseudo-MV-algebra. We denote
the remembered B-structure by the letter M .

Definition 2.4 Let g : R → R be a Borel
function (i.e. A ∈ B (R) ⇒ g−1 (A) ∈
B (R)), x : B (R) → M be an observable.
Then we define g ◦ x : B (R) → M by the
formula

g ◦ x (A) = x
(
g−1 (A)

)
.

Theorem 2.5 The mapping g ◦ x : B (R) →
M is an observable and

E (g ◦ x) =
∫
R gdmx,

if the integral exists.

Proof: First, by the definition

y (A) = g ◦ x (A) = x
(
g−1 (A)

) ∈ M ,

because of g−1 (A) ∈ B (R). Secondly recall
the integral transformation theorem∫

ϕ−1(A) f ◦ ϕdP =
∫
A fdPϕ.

Put A = R,ϕ : R → R,ϕ (t) =
g (t) , f (u) = u. Then Pϕ (A) =
Pg (A) = P

(
g−1 (A)

)
= mx

(
g−1 (A)

)
=

m
(
x

(
g−1 (A)

))
= m (y (A)) = my (A). Fur-

ther (f ◦ ϕ) (t) = g (t)∫
R gdmx =

∫
R tdPg (t) =

∫
R tdmy (t) =

E (y) = E (g ◦ x).

Corollary 1 D (x) =
∫
R (t− E (ξ))2 dmx (t)

We have shown the way how to define and
compute moments of observables. Now we de-
fine the sum of observables. If ξ, η : Ω → R
are random variables and T = (ξ, η) : Ω → R2

is the corresponding random vector, then we
can express the sum by the help of the func-
tion g : R2 → R, g (u, v) = u + v:

ξ + η = g (ξ, η) = g ◦ T .

Therefore

(ξ + η)−1 (A) = T−1
(
g−1 (A)

)
.

T−1 : B
(
R2

) → S is now a σ-homomorphism
such that

T−1 (C ×D) = ξ−1 (C) ∩ η−1 (D);
C,D ∈ B (R).

Generally we are no able to construct a σ-
homomorphism from B

(
R2

) → M connected
with x, y. Different situation occurs if (ξ + η)
are independent:

P
(
T−1 (C ×D)

)
= P

(
ξ−1 (C) ∩ η−1 (D)

)
=

P
(
ξ−1 (C)

) · (η−1 (D)
)
.

This approach can be realized also in the gen-
eral case.

Definition 2.6 Two observables x, y :
B (R) → M are independent, if there exists
a mapping h : B

(
R2

) → M satisfying the
following conditions:

(i) h
(
R2

)
= 1, h (∅) = 0;

(ii) A ∩B = ∅ ⇒ h (A ∪B) = h (A) + h (B);

(iii) An ↗ A ⇒ h (An) ↗ (A);

(iv) m (h (C ×D)) = m (x (C)) · m (y (D)),
C,D ∈ B (R).

While h is not uniquely determined, any two
mappings h1 and h2 satisfying the condition
in the above definition satisfy m ◦h1 = m ◦h2

automatically.

Definition 2.7 Let x, y : B (R) → M are
independent observables and g : R2 → R be
a Borel function. Then the mapping z =
g (x, y) : B (R) → M defined by equality

z = h ◦ g−1

is a observable, where h : B
(
R2

) → M is a
joint observable of x, y.

Definition 2.8 Let (xi)
∞
1 be an indepen-

dent sequence of observables in an B-
structure M with a state m. Let C ={
π−1

n (M) ,M ∈ B (Rn) , n ∈ N
}

be a set of
all cylinders, where the function πn : RN →
Rn defined by πn ((ui)

∞
1 ) = (u1, ..., un) is

called the n-th coordinate random vector. The
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infinite product P of the measures m ◦ xi, i =
1, 2, ... on the space

(
RN , σ (C)

)
is defined by

P
{
(ui)

∞
1 ∈ RN ;u1 ∈ A1, ..., un ∈ An

}
=

(m ◦ x1) (A1) · ... · (m ◦ xn) (An)

for every n ∈ N and every A1, ..., An ∈ B (R).

For each n ∈ N the function ξn : RN → R
given by ξn ((ui)

∞
1 ) = un is called n-th coordi-

nate random variable of
(
RN , σ (C) ,P

)
.

Theorem 2.9 Let (xi)
∞
1 be an independent

sequence of observables in an B-structure
M with a state m. Let gn : RN → R
be a Borel measurable function and ξn :
RN → R n-th coordinate random variable of(
RN , σ (C) ,P

)
, where P is infinite product

of m ◦ xi. Then

P {(ui)
∞
1 ; gn (ξ1 ((xi)

∞
1 ) , ..., ξn ((xi)

∞
1 ))) ∈

C =

= (m ◦ gn (x1, ..., xn)) (C).

Proof: Since the sequence (xi)
∞
1 is indepen-

dent, then there exists n-dimensional observ-
able hn : B

(
RN

)
→ M such that m ◦ hn =

mx1× ...×mxn . But gn (x1, ..., xn) = hn ◦g−1
n .

Hence

(m ◦ gn (x1, ..., xn)) (C) =(
m ◦ hn ◦ g−1

n

)
(C) = (m ◦ hn)

(
g−1
n (C)

)
=

= ((m ◦ x1)× ...× (m ◦ xn))
(
g−1
n (C)

)
=

=
(
P ◦ π−1

n

) (
g−1
n (C)

)
=

= P
({

(ui)
∞
1 ; (u1, ..., un) ∈ g−1

n (C)
})

=

= P ({(ui)
∞
1 ; gn (u1, ..., un) ∈ C}) =

= P ({(ui)
∞
1 ; gn (ξ1 ((ui)

∞
1 ) , ..., ξn ((ui)

∞
1 ))) ∈ C}.

Theorem 2.10 (Central limit theorem) Let
M be a pseudo-MV-algebra and m be a state
on M . Let (xi)∞i=1 be an independent se-
quence of square integrable observables hav-
ing the same probability distribution m ◦ x1 =
m ◦ x2 = . . . such that E(xn) = a, σ2(xn) =

σ2 (n = 1, 2, . . .) and yn =
√

n
σ

(
1
n

n∑
i=1

xi − a
)
.

Then for all t ∈ R lim
n→∞ (m ◦ yn)((−∞, t)) =

1√
2π

∫ t
−∞ e−

u2

2 du.

This theorem is proved for every B-structure
in [1].
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[3] A. Dvurečenskij. Pseudo-MV-algebras
are intervals in l-groups. In J. Austr.
Math. Soc., volume 70, pages 715–750,
2002.
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Good and bad infinitesimals, and states
on pseudo-MV-algebras. In Order, vol-
ume 21, pages 293–314, 2004.

Proceedings of IPMU’08 1665


