# Probability on pseudo-MV-algebras 

LAŠOVÁ Lenka<br>Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia<br>lasova@fpv.umb.sk


#### Abstract

The concept of Intuitionistic Fuzzy Sets (IFS) was proposed by K. Atanassov in 1983. It is an extension of the well-known notion of fuzzy set defined by L. Zadeh. Every element $a$ of an IFS set has a degree of membership $\mu: a \mapsto\langle 0,1\rangle$ and a degree of non-membership $\nu: a \mapsto\langle 0,1\rangle$. The sum of the two degrees have to be less than 1: $\mu(a)+\nu(a) \leq 1$. It is well known that every IF set can be embeded in MV-algebra. The natural noncomnutative generalization of MV-algebra is the pseudo-MValgebra. The aim of this paper is to show that some results holding in B-structures are used for pseudo-MV-algebras.


Keywords: Pseudo-MV-algebra, B-structures, probability.

## 1 Basic notions

Definition 1.1 $A B$-structure is a system $\left(B, \hat{\oplus}, \leq, 0_{B}, 1_{B}\right)$ such that:
(i) $\hat{\oplus}$ is a partial binary operation on $B$;
(ii) $\leq$ is a partial ordering on $B$;
(iii) $0_{B}$ is the smallest, $1_{B}$ is the largest element in $(B, \leq)$.

Definition 1.2 A state on $B$ is a mapping $m: B \rightarrow[0,1]$ satisfying the following conditions:
(I) $m\left(1_{B}\right)=1, m\left(0_{B}\right)=0$
(II) if $a=b \hat{\oplus} c$, then $m(a)=m(b)+m(c)$
(III) if $a_{n} \nearrow a$, then $m\left(a_{n}\right) \nearrow m(a)$.

In the next part we define a pseudo-MValgebras and the states on them. For the first time they were introduced in [6] and [7]. This algebraic structure is known under the name generalized MV-algebras, too.

Definition 1.3 A pseudo-MV-algebra is a system $M=\left(M, \oplus, \odot, *,{ }^{\prime}, 0_{M}, 1_{M}\right)$, where $\oplus, \odot$ are binary operations, *,' are the unary operations and 0,1 are the elements of $M$ such that for all $a, b, c$ in $M$ the following identities are satisfied:
(i) $a \oplus(b \oplus c)=(a \oplus b) \oplus c$;
(ii) $a \oplus 0_{M}=0_{M} \oplus a=a$;
(iii) $a \oplus 1_{M}=1_{M} \oplus a=1_{M}$;
(iv) $\left(a^{*}\right)^{\prime}=a$;
(v) $1_{M}^{*}=0_{M} ; 1_{M}^{\prime}=0_{M}$;
(vi) $\left(b^{*} \oplus a^{*}\right)^{\prime}=\left(b^{\prime} \oplus a^{\prime}\right)^{*}$;
(vii) $a \odot b=\left(a^{*} \oplus b^{*}\right)^{\prime}$;
(viii) $a \oplus\left(a^{\prime} \odot b\right)=b \oplus\left(b^{\prime} \odot a\right)=\left(a \odot b^{*}\right) \oplus b=$ $\left(b \odot a^{*}\right) \oplus a$;
$(i x) a \odot\left(a^{*} \oplus b\right)=\left(a \oplus b^{\prime}\right) \odot b$.
We shall assume that $0 \neq 1$. We shall define a partial order $\leq: a \leq b$ if and only if $a^{*} \oplus$
$b=1$. Then we can say that $(M, \leq)$ is a distributive lattice with operations supremum and infimum on $M$ :
$a \vee b=a \oplus a^{\prime} \odot b$,
$a \wedge b=a \odot\left(a^{*} \oplus b\right)$.
If for the operation $\oplus$ on pseudo-MV-algebra $M$ the commutative law holds then $M$ is MValgebra.

We define a partial binary operation + on $M$ :
$a+b$ is defined iff $a \leq b^{*}$ and then holds: $a+b:=a \oplus b$.

It is clear that $a \leq b^{*}$ holds if and only if $b \odot a=0$.

Definition 1.4 $A$ state on $M$ is a mapping $m: M \rightarrow[0,1]$ satisfying the folowing conditions:
(I) $m\left(1_{M}\right)=1, m\left(0_{M}\right)=0$
(II) $m(a+b)=m(a)+m(b)$ whenewer $a+b$ is defined in $M$
(III) if $a_{n} \nearrow a$, then $m\left(a_{n}\right) \nearrow m(a)$.

In the next we shall assume that the state exists. In generally it can happen that pseudo-MV-algebras has no states, which is shown in [8].

Now we take a structure $\left(M,+, \leq, 0_{M}, 1_{M}\right)$ with,$+ \leq$, which we defined in a previous text. About this system we can say that it is a B-structure and a state from Definition 2 . on $B$ is corresponding with a state on pseudo-MV-algebras $M$. In the next text we shall work with the B-structure, which we get from the pseudo-MV-algebras. We define a probability on it and we get some results like a Central limit theorem for this B-structure. By reason that the states on $M$ and the new system $B$ coincides where $\left(B, \oplus, \leq, 0_{B}, 1_{B}\right)=\left(M,+, \leq, 0_{M}, 1_{M}\right)$ we can use these results for the pseudo-MV-algebras.

## 2 Probability on <br> pseudo-MV-algebras

Let $(\Omega, S, P)$ be a probability space. A random variable on it is a mapping $\xi: \Omega \rightarrow R$ such that

$$
A \in B(R) \Rightarrow \xi^{-1}(A) \in S
$$

If we define

$$
x: A \rightarrow \xi^{-1}(A)
$$

then we obtain a $\sigma$-homomorphism

$$
x: B(R) \rightarrow S
$$

Instead of point mappings $\xi: \Omega \rightarrow R$ we can work with $\sigma$-homomorphisms from the $\sigma$-algebra $B(R)$ of Borel sets to given structure. This approach has been used in quantum structures, where the corresponding $\sigma$ homomorphism is called observable.

Definition 2.1 Let $\quad M=$ $\left(M, \oplus, \odot, *,^{\prime}, 0_{M}, 1_{M}\right) \quad$ be a pseudo-MValgebra. An observable of $M$ is a mapping $x: \beta(R) \rightarrow M$ satisfying the following conditions:
(i) $x(R)=1_{M}, x(\emptyset)=0_{M}$;
(ii) if $A, B \in \beta(R)$ and $A \cap B=\emptyset$, then $x(A \cup B)=x(A) \oplus x(B)$;
(iii) if $A_{n} \in \beta(R), A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow$ $x(A)$.

The next theorem is proved in [1].
Theorem 2.2 Let be an observable $x$ : $\beta(R) \rightarrow M$ and $m: M \rightarrow[0,1]$ be a state. Then the composite map mox $=m_{x}: \beta(R) \rightarrow$ $[0,1]$ is a probability measure.

Let we have the B-structure $\left(M,+, \leq, 0_{M}, 1_{M}\right)$. When we use the previous definition and theorem on this structure we get the probability measure on the pseudo-MV-algebras.

Definition 2.3 The expected value $E(x)$ of the observable $x$ is defined by the formula

$$
E(x)=\int_{R} t d m_{x}(t)
$$

if the integral exists.
In the following text under the B -structure we mean the system ( $M,+, \leq, 0_{M}, 1_{M}$ ), when we got from the pseudo-MV-algebra. We denote the remembered B-structure by the letter $M$.

Definition 2.4 Let $g: R \rightarrow R$ be a Borel function (i.e. $A \in B(R) \Rightarrow g^{-1}(A) \in$ $B(R)), x: B(R) \rightarrow M$ be an observable. Then we define $g \circ x: B(R) \rightarrow M$ by the formula

$$
g \circ x(A)=x\left(g^{-1}(A)\right) .
$$

Theorem 2.5 The mapping $g \circ x: B(R) \rightarrow$ $M$ is an observable and

$$
E(g \circ x)=\int_{R} g d m_{x},
$$

if the integral exists.
Proof: First, by the definition

$$
y(A)=g \circ x(A)=x\left(g^{-1}(A)\right) \in M
$$

because of $g^{-1}(A) \in B(R)$. Secondly recall the integral transformation theorem

$$
\int_{\varphi^{-1}(A)} f \circ \varphi d P=\int_{A} f d P_{\varphi}
$$

Put $A=R, \varphi: R \rightarrow R, \varphi(t)=$ $g(t), f(u)=u$. Then $P_{\varphi}(A)=$ $P_{g}(A)=P\left(g^{-1}(A)\right)=m_{x}\left(g^{-1}(A)\right)=$ $m\left(x\left(g^{-1}(A)\right)\right)=m(y(A))=m_{y}(A)$. Further $(f \circ \varphi)(t)=g(t)$

$$
\begin{gathered}
\int_{R} g d m_{x}=\int_{R} t d P_{g}(t)=\int_{R} t d m_{y}(t)= \\
E(y)=E(g \circ x) .
\end{gathered}
$$

Corollary $1 D(x)=\int_{R}(t-E(\xi))^{2} d m_{x}(t)$
We have shown the way how to define and compute moments of observables. Now we define the sum of observables. If $\xi, \eta: \Omega \rightarrow R$ are random variables and $T=(\xi, \eta): \Omega \rightarrow R^{2}$ is the corresponding random vector, then we can express the sum by the help of the function $g: R^{2} \rightarrow R, g(u, v)=u+v:$

$$
\xi+\eta=g(\xi, \eta)=g \circ T
$$

Therefore

$$
(\xi+\eta)^{-1}(A)=T^{-1}\left(g^{-1}(A)\right)
$$

$T^{-1}: B\left(R^{2}\right) \rightarrow S$ is now a $\sigma$-homomorphism such that

$$
\begin{gathered}
T^{-1}(C \times D)=\xi^{-1}(C) \cap \eta^{-1}(D) ; \\
C, D \in B(R) .
\end{gathered}
$$

Generally we are no able to construct a $\sigma$ homomorphism from $B\left(R^{2}\right) \rightarrow M$ connected with $x, y$. Different situation occurs if $(\xi+\eta)$ are independent:

$$
\begin{gathered}
P\left(T^{-1}(C \times D)\right)=P\left(\xi^{-1}(C) \cap \eta^{-1}(D)\right)= \\
P\left(\xi^{-1}(C)\right) \cdot\left(\eta^{-1}(D)\right) .
\end{gathered}
$$

This approach can be realized also in the general case.

Definition 2.6 Two observables $x, y$ : $B(R) \rightarrow M$ are independent, if there exists a mapping $h: B\left(R^{2}\right) \rightarrow M$ satisfying the following conditions:
(i) $h\left(R^{2}\right)=1, h(\emptyset)=0$;
(ii) $A \cap B=\emptyset \Rightarrow h(A \cup B)=h(A)+h(B)$;
(iii) $A_{n} \nearrow A \Rightarrow h\left(A_{n}\right) \nearrow(A)$;
(iv) $m(h(C \times D))=m(x(C)) \cdot m(y(D))$, $C, D \in B(R)$.
While $h$ is not uniquely determined, any two mappings $h_{1}$ and $h_{2}$ satisfying the condition in the above definition satisfy $m \circ h_{1}=m \circ h_{2}$ automatically.

Definition 2.7 Let $x, y: B(R) \rightarrow M$ are independent observables and $g: R^{2} \rightarrow R$ be a Borel function. Then the mapping $z=$ $g(x, y): B(R) \rightarrow M$ defined by equality

$$
z=h \circ g^{-1}
$$

is a observable, where $h: B\left(R^{2}\right) \rightarrow M$ is a joint observable of $x, y$.

Definition 2.8 Let $\left(x_{i}\right)_{1}^{\infty}$ be an independent sequence of observables in an $B$ structure $M$ with a state $m$. Let $C=$ $\left\{\pi_{n}^{-1}(M), M \in B\left(R^{n}\right), n \in N\right\}$ be a set of all cylinders, where the function $\pi_{n}: R^{N} \rightarrow$ $R^{n}$ defined by $\pi_{n}\left(\left(u_{i}\right)_{1}^{\infty}\right)=\left(u_{1}, \ldots, u_{n}\right)$ is called the $n$-th coordinate random vector. The
infinite product $\boldsymbol{P}$ of the measures $m \circ x_{i}, i=$ $1,2, \ldots$ on the space $\left(R^{N}, \sigma(C)\right)$ is defined by

$$
\begin{gathered}
\boldsymbol{P}\left\{\left(u_{i}\right)_{1}^{\infty} \in R^{N} ; u_{1} \in A_{1}, \ldots, u_{n} \in A_{n}\right\}= \\
\left(m \circ x_{1}\right)\left(A_{1}\right) \cdot \ldots \cdot\left(m \circ x_{n}\right)\left(A_{n}\right)
\end{gathered}
$$

for every $n \in N$ and every $A_{1}, \ldots, A_{n} \in \mathcal{B}(R)$. For each $n \in N$ the function $\xi_{n}: R^{N} \rightarrow R$ given by $\xi_{n}\left(\left(u_{i}\right)_{1}^{\infty}\right)=u_{n}$ is called $n$-th coordinate random variable of $\left(R^{N}, \sigma(C), \boldsymbol{P}\right)$.

Theorem 2.9 Let $\left(x_{i}\right)_{1}^{\infty}$ be an independent sequence of observables in an $B$-structure $M$ with a state $m$. Let $g_{n}: R^{N} \rightarrow R$ be a Borel measurable function and $\xi_{n}$ : $R^{N} \rightarrow R$-th coordinate random variable of $\left(R^{N}, \sigma(C), \boldsymbol{P}\right)$, where $\boldsymbol{P}$ is infinite product of $m \circ x_{i}$. Then

$$
\begin{gathered}
\boldsymbol{P}\left\{\left(u_{i}\right)_{1}^{\infty} ; g_{n}\left(\xi_{1}\left(\left(x_{i}\right)_{1}^{\infty}\right), \ldots, \xi_{n}\left(\left(x_{i}\right)_{1}^{\infty}\right)\right)\right) \in \\
=\left(m \circ g_{n}\left(x_{1}, \ldots, x_{n}\right)\right)(C) .
\end{gathered}
$$

Proof: Since the sequence $\left(x_{i}\right)_{1}^{\infty}$ is independent, then there exists n-dimensional observable $h_{n}: B\left(R^{N}\right) \rightarrow M$ such that $m \circ h_{n}=$ $m_{x_{1}} \times \ldots \times m_{x_{n}}$. But $g_{n}\left(x_{1}, \ldots, x_{n}\right)=h_{n} \circ g_{n}^{-1}$. Hence
$\left(m \circ g_{n}\left(x_{1}, \ldots, x_{n}\right)\right)(C)=$
$\left(m \circ h_{n} \circ g_{n}^{-1}\right)(C)=\left(m \circ h_{n}\right)\left(g_{n}^{-1}(C)\right)=$
$=\left(\left(m \circ x_{1}\right) \times \ldots \times\left(m \circ x_{n}\right)\right)\left(g_{n}^{-1}(C)\right)=$
$=\left(\mathbf{P} \circ \pi_{n}^{-1}\right)\left(g_{n}^{-1}(C)\right)=$
$=\mathbf{P}\left(\left\{\left(u_{i}\right)_{1}^{\infty} ;\left(u_{1}, \ldots, u_{n}\right) \in g_{n}^{-1}(C)\right\}\right)=$
$=\mathbf{P}\left(\left\{\left(u_{i}\right)_{1}^{\infty} ; g_{n}\left(u_{1}, \ldots, u_{n}\right) \in C\right\}\right)=$
$=\mathbf{P}\left(\left\{\left(u_{i}\right)_{1}^{\infty} ; g_{n}\left(\xi_{1}\left(\left(u_{i}\right)_{1}^{\infty}\right), \ldots, \xi_{n}\left(\left(u_{i}\right)_{1}^{\infty}\right)\right)\right) \in C\right\}$.
Theorem 2.10 (Central limit theorem) Let $M$ be a pseudo-MV-algebra and $m$ be a state on $M$. Let $\left(x_{i}\right)_{i=1}^{\infty}$ be an independent sequence of square integrable observables having the same probability distribution $m \circ x_{1}=$ $m \circ x_{2}=\ldots$ such that $E\left(x_{n}\right)=a, \sigma^{2}\left(x_{n}\right)=$ $\sigma^{2}(n=1,2, \ldots)$ and $y_{n}=\frac{\sqrt{n}}{\sigma}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}-a\right)$. Then for all $t \in R \lim _{n \rightarrow \infty}\left(m \circ y_{n}\right)((-\infty, t))=$ $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\frac{u^{2}}{2}} \mathrm{~d} u$.

This theorem is proved for every B-structure in [1].

## Acknowledgements

The support of the grant VEGA $1 / 0539 / 08$ is kindly announced.

## References

[1] K. Čunderlíková-Lendelová, B. Riečan. Probability on B-structures. In Fuzzy sets and systems, submitted.
[2] A. Dvurečenskij. States on pseudo-MValgebras. In Studia logica, volume 68, pages 301-327, 2001.
[3] A. Dvurečenskij. Pseudo-MV-algebras are intervals in l-groups. In J. Austr. Math. Soc., volume 70, pages 715-750, 2002.
[4] A. Dvurečenskij,S. Pulmannová. New trends in Quantum Structures. Dordrecht, 2000.
[5] Z. Ma, S. Wu,S. Lu. Pseudoeffect algebras and pseudo-difference posets. In Int. J. Theor. Physics CRC, volume 43, pages 1453-1460, 2004.
[6] Rachunek, J.: A non-commutative generalization of MV-algebras. In Czechoslovak Math. J., volume 52, pages 255-273, 2002.
[7] G. Georgescu, A. Iorgulescu. Pseudo-MV-algebras. In Multiple Val.Logic, volume 6, pages 95-135, 2001.
[8] A. DiNola, A. Dvurečenskij, J. Jakubík. Good and bad infinitesimals, and states on pseudo-MV-algebras. In Order, volume 21, pages 293-314, 2004.

