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durica@fpv.umb.sk

Abstract

In this paper we study dynamical
systems based on IF-events (see [1]).
We define a special type of the no-
tion of the entropy on this systems
and its Maličký-Riečan modification
(see [12]).
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1 Introduction

We start with classical dynamical systems
(Ω,S, P, T ), where (Ω,S, P ) is a probability
space and T : Ω → Ω is a measure preserv-
ing map, i.e. T−1(A) ∈ S and P (T−1(A)) =
P (A) for any A ∈ S. The entropy of
the dynamical system is defined as follows
(see [11], [12]). Consider measurable parti-
tion A = {A1, ..., Ak}, where Ai ∈ S; i =

1, ..., k, Ai ∩ Aj = ∅; i 6= j,
k⋃
i=1

Ai = Ω. Its

entropy is the number

H(A) =
k∑
i=1

ϕ(P (Ai)),

where ϕ(x) = −x log x, if x > 0, and
ϕ(0) = 0. If A = {A1, ..., Ak} and B =
{B1, ..., Bl} are two measurable partitions,
then T−1(A) = {T−1(A1), ..., T−1(Ak)} and
A ∨ B = {A ∩ B;A ∈ A, B ∈ B} are mea-
surable partitions, too. It can be proved that

there exists

h(A, T ) = lim
n→∞H

(
n−1∨
i=0

T−i(A)

)
.

The Kolmogorov-Sinaj entropy h(T ) of
(Ω,S, P, T ) is defined as the supremum

h(T ) = sup{h(A, T );A is a measurable
partition}.

The aim of the Kolmogorov-Sinaj entropy was
to distinguish non-isomorphic dynamical sys-
tems. Two dynamical systems with different
entropies cannot be isomorphic.

The notion of the entropy has been extended
using fuzzy partitions instead of set partitions
(see [11], [12], [2], [3]). Let T be a tribe of
fuzzy sets on Ω, m : T − [0, 1] is a state on
this tribe and a mapping τ : T → T is given
satisfying the following conditions:

(i) If f ∈ T , then τ(f) ∈ T and m(f) =
m(τ(f)).

(ii) If f, g ∈ T and f+g ≤ 1, then τ(f+g) =
τ(f) + τ(g).

Then a triplet (T ,m, τ) is called fuzzy dy-
namical system. Fuzzy partition is a set of
functions A = {f1, ..., fk} ⊂ T such that
k∑
i=1

fi = 1. Then we define its entropy

H(A) =
k∑
i=1

ϕ(m(fi)) (1)

and the conditional entropy

H(A|B) =
k∑
i=1

l∑
j=1

m(gj)ϕ

(
m(figj)
m(gj)

)
, (2)
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where B = {g1, ..., gl} is a fuzzy partition, too.
Further

h(A, τ) = lim
n→∞

1
n
H

(
n−1∨
i=0

τ i(A)

)
,

and, if G ⊂ T is an arbitrary non-empty set,
then

hG(τ) = sup{h(A, τ);A is a fuzzy partition,
A ⊂ G}

is an entropy (Kolmogorov-Sinaj type) of the
fuzzy dynamical system (T ,m, τ).

In [5] there was defined a special type of the
entropy of dynamical systems based on IF-
events. We start with a measurable space
(Ω,S). By an IF-event (see [1]) we consider a
pair A = (µA, νA) of S-measurable functions
µA, νA : Ω → [0, 1], such that µA + νA ≤ 1.
Denote by F the family of all IF-events. On
F we define partial binary operation ⊕ and
binary operation �. Namely

A⊕B = (µA, νA)⊕ (µB, νB) =

= (µA + µB, νA + νB − 1),

whenever µA + µB ≤ 1 and 0 ≤ νA + νB − 1,
and

A�B = (µA, νA)� (µB, νB) =

= (µA.µB, νA + νB − νA.νB).

Further

An ↗ A⇐⇒ µAn ↗ µA, νAn ↘ νA,

where A = (µA, νA), An = (µAn , νAn) ∈ F
(n = 1, 2, ...).

Definition 1.1 A mapping m : F → [0, 1] is
called a state on the family of all IF-events, if
the following conditions are satisfied:

(i) m((1, 0)) = 1,m((0, 1)) = 0;

(ii) If A,B,C ∈ F and A ⊕ B = C, then
m(A) +m(B) = m(C);

(iii) If An ∈ F(n = 1, 2, ...), An ↗ A, then
m(An)↗ m(A).

Theorem 1.2 To any state m : F → [0, 1]
there exists α ∈ [0, 1] and a probability mea-
sure P : S → [0, 1] such that

mα(A) = m(A) =

= (1− α)
∫
Ω

µAdP + α(1−
∫
Ω

νAdP )

for any A = (µA, νA) ∈ F .

Proof. See [8].

Definition 1.3 Let m : F → [0, 1] be a
state on the family of all IF-events F and
τ : F → F be a mapping satisfying the fol-
lowing conditions:

(I) If A ∈ F , then τ(A) ∈ F and m(A) =
m(τ(A)).

(II) If A,B,C ∈ F and A ⊕ B = C, then
τ(C) = τ(A)⊕ τ(B).

Then a triplet (F ,m, τ) is called an IF-
dynamical system.

Let a mapping τ : F → F be defined by
τ(A) = τ((µA, νA)) = (µA ◦ T, νA ◦ T ). Then
(F ,mα, τ) is an IF-dynamical system.

2 Entropy of IF-partitions

We shall consider a family of all couples of
fuzzy sets

M = {(f, g); f, g : Ω→ [0, 1] are
S-measurable}.

We extend the definition of the operation ⊕
and � from F to M. Recall that

k⊕
i=1

(µAi , νAi) =

=

(
k∑
i=1

µAi ,

(
k∑
i=1

νAi

)
− (n− 1)

)

and operations ⊕,� fulfill the commutative,
associative and distributive law.
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Definition 2.1 By an IF-partition
we shall mean a finite collection
A = {(µA1 , νA1), ..., (µAk

, νAk
)} ⊂ M

such that

k⊕
i=1

(µAi , νAi) = (1, 0).

If A = {(µA1 , νA1), ..., (µAk
, νAk

)} and
B = {(µB1 , νB1), ..., (µBl

, νBl
)} are two IF-

partitions, then we define

A ∨ B = {(µAi , νAi)� (µBj , νBj );

i = 1, ..., k, j = 1, ..., l}
and we write B ≥ A (and say B is a re-
finement of A), if there exists a partition
{I(1), ..., I(k)} of the set {1, 2, ..., l} such that

(µAi , νAi) =
⊕
j∈I(i)

(µBj , νBj )

for every i = 1, ..., k.

Proposition 2.2 If A = {(µA1 , νA1), ...
..., (µAk

, νAk
)} and B = {(µB1 , νB1), ...

..., (µBl
, νBl

)} are two IF-partitions, then
τ(A) = {τ((µA1 , νA1)), ..., τ((µAk

, νAk
))} and

A∨B are IF-partitions, too. Further A∨B ≥
A.

Proof. Since

k⊕
i=1

τ((µAi , νAi)) =
k⊕
i=1

(µAi ◦ T, νAi ◦ T ) =

=

((
k∑
i=1

µAi

)
◦ T,

(
k∑
i=1

νAi − (n− 1)

)
◦ T
)

=

= (1 ◦ T, 0 ◦ T ) = (1, 0),

so τ(A) = {τ((µA1 , νA1)), ..., τ((µAk
, νAk

))} is
an IF-partition. Further A∨B = {(µAi , νAi)�
(µBj , νBj ); i = 1, ..., k, j = 1, ..., l}. Therefore

k⊕
i=1

l⊕
j=1

(µAi , νAi)� (µBj , νBj ) =

=
k⊕
i=1

l⊕
j=1

(µAiµBj , νAi + νBj − νAiνBj ) =

=

(
k∑
i=1

l∑
j=1

µAiµBj ,
k∑
i=1

l∑
j=1

νAi +
k∑
i=1

l∑
j=1

νBj−

−
k∑
i=1

l∑
j=1

νAiνBj − (kl − 1)

)
=

=

((
k∑
i=1

µAi

) l∑
j=1

µBj

 ,
l∑

j=1

(
k∑
i=1

νAi

)
+

k∑
i=1

 l∑
j=1

νBj

−

−
(

k∑
i=1

νAi

) l∑
j=1

νBj

− (kl − 1)

)
=

= (1, k(l − 1) + l(k − 1)−

−(l − 1)(k − 1)− (kl − 1)) = (1, 0).

Finally, let us mention thatA∨B is indexed by
{(i, j); i = 1, ..., n; j = 1, ...,m}. Therefore, if
we put I(i) = {(i, 1), ..., (i,m)}, then by the
equalities

(1, 0) =
l⊕

j=1

(µBj , νBj )

we obtain

(µAi , νAi) = (µAi , νAi)� (1, 0) =

= (µAi , νAi)�
 l⊕
j=1

(µBj , νBj )

 =

=
l⊕

j=1

(
(µAi , νAi)� (µBj , νBj )

)
=

=
⊕

(k,j)∈I(i)
((µAk

, νAk
)� (µBj , νBj ))

for every i = 1, ..., k. It follows A ∨ B ≥ A.

Proposition 2.3 If A = {(µA1 , νA1), ...
..., (µAk

, νAk
)} and B = {(µB1 , νB1), ...

..., (µBl
, νBl

)} are two IF-partitions, then
A[ = {µA1 , ..., µAk

} and A] = {1 − νA1 , ...
..., 1− νAk

} are fuzzy partitions, and

(A ∨ B)[ = A[ ∨ B[, (A ∨ B)] = A] ∨ B],

(τ(A))[ = τ(A[), (τ(A))] = τ(A]).
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Proof. Since A = {(µA1 , νA1), ..., (µAk
, νAk

)}
and B = {(µB1 , νB1), ... ..., (µBl

, νBl
)}, then

we have

A ∨ B = {(µAi , νAi)� (µBj , νBj );

i = 1, ..., k, j = 1, ..., l} =

= {(µAiµBj , νAi + νBj − νAiνBj );

i = 1, ..., k, j = 1, ..., l}
and

τ(A) = {(µAi ◦ T, 1− νAi ◦ T ); i = 1, ..., k}.

By [12]

(A∨B)[ = {µAiµBj ; i = 1, ..., k, j = 1, ..., l} =

= {µAi ; i = 1, ..., k}∨
∨{µBj ; j = 1, ..., l} = A[ ∨ B[

and

(A ∨ B)] = {1− νAi − νBj + νAiνBj ;

i = 1, ..., k, j = 1, ..., l} =

= {(1−νAi)(1−νBj ); i = 1, ..., k, j = 1, ..., l} =

= {1− νAi ; i = 1, ..., k}∨
∨{1− νBj ; j = 1, ..., l} = A] ∨ B].

Finally we have

(τ(A))[ = {µAi ◦ T ; i = 1, ..., k} =

= τ({µAi ; i = 1, ..., k}) = τ(A[)
and

(τ(A))] = {1− νAi ◦ T ; i = 1, ..., k} =

= τ({1− νAi ; i = 1, ..., k}) = τ(A[).

Definition 2.4 If A is an IF-partition, then
we define its entropy (with respect to a given
state mα)

Hα(A) = (1− α)H(A[) + αH(A]),

where H is the entropy of the fuzzy partition
(see equation (1)).

Proposition 2.5 If A = {A1, ..., Ak} and
B = {B1, ..., Bl} are two IF-partitions, then

Hα(A ∨ B) ≤ Hα(A) +Hα(B).

Proof. Put for fixed i ∈ {1, ..., k} and for all
j ∈ {1, ..., l}

λj = mα(Bj), xj =
mα(Ai �Bj)
mα(Bj)

,

where mα(Bj) > 0 (j = 1, ..., l). Since

l∑
j=1

λj =
l∑

j=1

mα(Bj) =

= mα

 l⊕
j=1

Bj

 = mα((1, 0)) = 1

and ϕ is a concave function, we have

ϕ(mα(Ai)) = ϕ(mα(Ai � (1, 0))) =

= ϕ

mα

Ai �
 l⊕
j=1

Bj

 =

= ϕ

mα

 l⊕
j=1

Ai �Bj
 =

= ϕ

 l∑
j=1

mα(Ai �Bj)
 =

= ϕ

 l∑
j=1

mα(Bj)
mα(Ai �Bj)
mα(Bj)

 =

= ϕ

 l∑
j=1

λjxj

 ≥ l∑
j=1

λjϕ(xj) =

=
l∑

j=1

mα(Bj)ϕ(xj)

for all i ∈ {1, ..., k}. Therefore

Hα(A) =
k∑
i=1

ϕ(mα(Ai)) ≥

≥
k∑
i=1

l∑
j=1

mα(Bj)ϕ(xj) =

=
k∑
i=1

l∑
j=1

mα(Ai �Bj) log
mα(Ai �Bj)
mα(Bj)

=
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=
k∑
i=1

l∑
j=1

ϕ(mα(Ai �Bj))−

−
l∑

j=1

ϕ(mα(Bj))
k∑
i=1

mα(Ai �Bj) =

= Hα(A ∨ B)−Hα(B).

So we have Hα(A ∨ B) ≤ Hα(A) +Hα(B).

3 Conditional entropy

Definition 3.1 If A and B are two IF-
partitions, then we define the conditional en-
tropy (with respect to a given state mα)

Hα(A|B) = (1− α)H(A[|B[) + αH(A]|B]),

where H is the conditional entropy of fuzzy
partitions (see equation (2)).

Proposition 3.2 If A,B, C are IF-partitions,
then the following properties are satisfied:

(i) If B ≤ C, then Hα(A|C) ≤ Hα(A|B);

(ii) Hα(B ∨ C|A) = Hα(B|A) +Hα(C|B ∨A).

Proof. Let A = {(µA1 , νA1), ..., (µAk
, νAk

)},
B = {(µB1 , νB1), ..., (µBl

, νBl
)} and C =

{(µC1 , νC1), ..., (µCm , νCm)}. Since B ≤ C,
there exists a partition {I(1), ..., I(l)} of the
set {1, ...,m} such that

(µBj , νBj ) =
⊕
t∈I(j)

(µCt , νCt) =

=

 ∑
t∈I(j)

µCt ,
∑
t∈I(j)

νCt − (|I(j)| − 1)


for every j = 1, ..., l. Therefore

µBj =
∑
t∈I(j)

µCt

and

1− νBj = 1−
∑
t∈I(j)

νCt + |I(j)| − 1 =

=
∑
t∈I(j)

(1− νCt)

for every j = 1, ..., l. So we obtain

B[ = {µB1 , ..., µBl
} ≤ {µC1 , ..., µCm} = C[

and
B] = {1− νB1 , ..., 1− νBl

} ≤
≤ {1− νC1 , ..., 1− νCm} = C].

By [12]

H(A[|C[) ≤ H(A[|B[) and
H(A]|C]) ≤ H(A]|B])

and then

Hα(A|C) = (1− α)H(A[|C[) + αH(A]|C]) ≤
≤ (1−α)H(A[|B[) +αH(A]|B]) = Hα(A|B).

Finally, since

H(B[ ∨ C[|A[) = H(B[|A[) +H(C[|B[ ∨ A[)
and

H(B] ∨ C]|A]) = H(B]|A]) +H](C]|B] ∨ A])
we have

Hα(B ∨ C|A) =

= (1− α)H(B[ ∨ C[|A[) + αH(B] ∨ C]|A]) =

= (1− α)H(B[|A[) + (1− α)H(C[|B[ ∨ A[)+
+αH(B]|A]) + αH](C]|B] ∨ A]) =

= Hα(B|A) +Hα(C|B ∨ A).

4 Entropy on IF-dynamical
systems

Proposition 4.1 For any IF-partition A
there exists

lim
n→∞

1
n
Hα

(
n−1∨
i=0

τ i(A)

)
.

Proof. By Proposition 2.5 Hα(B ∨ C) ≤
Hα(B) + Hα(C) for any IF-partitions B and

C. Put an = Hα

(
n−1∨
i=0

τ i(A)
)

for any n ∈ N.

Then an+m ≤ an + am for every n,m ∈ N
and this property guarantees the existence of
limit

lim
n→∞

1
n
an = lim

n→∞
1
n
Hα

(
n−1∨
i=0

τ i(A)

)
.
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Definition 4.2 For every IF-partition A we
define

hα(A, τ) = lim
n→∞

1
n
Hα

(
n−1∨
i=0

τ i(A)

)

and, if G ⊂ M is an arbitrary set, then the
entropy of IF-dynamical system (F ,mα, τ) is

Ghα(τ) = sup{hα(A, τ);A is an IF-partition,
A ⊂ G}.

Example 4.3 Let (Ω,S, P, T ) be a dynam-
ical system, τ((µA, νA)) = (µA ◦ T, νA ◦ T ),
G = {(χA, 1−χA);A ∈ S}. Then the entropy
of IF-dynamical system (F ,mα, τ) Ghα(τ) =
h(T ) is the Kolmogorov-Sinaj entropy.

Since

h(A[, τ) = lim
n→∞

1
nH

(
n−1∨
i=0

τ i(A[)
)

and

h(A], τ) = lim
n→∞

1
nH

(
n−1∨
i=0

τ i(A])
)

,

then we have

hα(A, τ) = (1− α)h(A[, τ) + αh(A], τ).

Theorem 4.4 Let C = {C1, ..., Ct} be a
measurable partition of Ω being a genera-

tor, i.e. σ

( ∞⋃
i=0

τ i(C)
)

= S. Then for every

IF-partition A = {(µA1 , νA1), ..., (µAk
, νAk

)}
there holds

hα(A, τ) ≤ hα(C, τ)+

+
∫

Ω

(
k∑
i=1

(1− α)ϕ(µAi) + αϕ(1− νAi)

)
dP.

Proof. See [5].

Of course this IF-entropy has the following
defect.

Proposition 4.5 Let G = {(µ, 1−µ);µ(ω) =
c ∈ [0, 1] for all ω ∈ Ω} ⊂ F , then

Ghα(τ) =∞.

Proof. Put A = {( 1
k , 1 − 1

k ), ..., ( 1
k , 1 − 1

k )},
where k ∈ N. Then A[ = A] = {1/k, ..., 1/k}
and

A[ ∨ τ(A[) = A] ∨ τ(A]) = {1/k2, ..., 1/k2},

hence

H(A[ ∨ τ(A[)) = H(A] ∨ τ(A])) =

= −
k2∑
i=1

1
k2

log
1
k2

= 2 log k,

and
Hα(A ∨ τ(A)) = 2 log k.

Similarly

Hα

(
n−1∨
i=0

τ i(A)

)
= n log k,

hence
hα(A, τ) = log k.

Since k ∈ N was arbitrary, we obtain
Ghα(τ) ≥ log k for every k. Therefore
Ghα(τ) =∞.

To eliminate this defect we used the Maličký-
Riečan modification of the notion of entropy
(see [12]).

5 Maličký-Riečan entropy on
IF-dynamical systems

Definition 5.1 Let A be an IF-partition.
Then we define its Maličký-Riečan entropy by
the formula

Hα(A, τ(A), ..., τk(A)) =

= inf{Hα(C); C ≥ A, C ≥ τ(A), ..., C ≥ τk(A)}.

Proposition 5.2 There exists

lim
n→∞

1
n
Hα(A, τ(A), ..., τn−1(A)).

Proof. Put

an = Hα(A, τ(A), ..., τn−1(A)).

Then

an+m = Hα(A, τ(A), ..., τn+m−1(A)) ≤

≤ Hα(A, τ(A), ..., τn−1(A))+

+Hα(τn(A), τn+1(A), ..., τn+m−1(A)) =

Hα(A, τ(A), ..., τn−1(A))+

Proceedings of IPMU’08 1659



+Hα(A, τ(A), ..., τm−1(A)) = an + am.

This property guarantees existence of

lim
n→∞

1
n
Hα(A, τ(A), ..., τn−1(A)).

Definition 5.3 For an IF-partition A define
the entropy

hα(A, τ) = lim
n→∞

1
n
Hα(A, τ(A), ..., τn−1(A)),

and for arbitrary G ⊂ F the Maličký-Riečan
entropy of an IF-dynamical system (F ,mα, τ)
by the formula

Ghα(τ) = sup{hα(A, τ);A is an IF-partition,
A ⊂ G}.

Proposition 5.4 It holds h(T ) ≤ Ghα(τ) ≤
Ghα(τ) if G = {(χE , 1− χE);E ∈ S}.

Proof. If A is an IF-partition, then by Propo-
sition 2.2

A ≤
n−1∨
i=0

τ i(A), τ(A) ≤
n−1∨
i=0

τ i(A), ...

... , τn−1(A) ≤
n−1∨
i=0

τ i(A),

hence Hα(A, τ(A), ..., τn−1(A)) ≤
Hα

(
n−1∨
i=0

τ i(A)
)

and Ghα(τ) ≤ Ghα(τ).

If G = {(χE , 1 − χE);E ∈ S}, then for every
crisp partition A the relations A ≤ C, τ(A) ≤
C, ..., τn−1(A) ≤ C imply

n−1∨
i=0

τ i(A) ≤ C.

Hence Hα

(
n−1∨
i=0

τ i(A)
)

≤ Hα(C), and

hα(A, τ) ≤ hα(A, τ), and h(T ) ≤ Ghα(τ)
(see Example 4.3).

Theorem 5.5 Let G consists of all IF-
events of the form

n∑
i=1

ai(χEi , 1− χEi), where

{E1, ..., En} is a set partition of Ω and ai ∈
[0, 1] ∩Q. Then hG(τ) = h(T ).

Proof. It suffices to prove hG(τ) ≤ h(T ). Let
A = {(µA1 , νA1), ..., (µAm , νAm)} be an IF-
partition. Every (µAj , νAj ); j = 1, 2, ...,m is
of the form

nj∑
i=1

aij(χEi , 1− χEi),

where aij ∈ [0, 1] ∩Q and B = {E1, ..., En} is
a set partition. There are natural sij and inte-
gers pij ∈ {0, 1, ..., sij} such that aij = pij/sij .
Let s be the smallest common multiple of all
sij ; i = 1, ..., n and j = 1, ...,m. There are in-
tegers rij ∈ {0, 1, ..., s} such that aij = rij/s.
Denote by Bn the set partition

B ∨ T−1(B) ∨ ... ∨ T−(n−1)(B),

which consists of some measurable sets
{U1, ..., Uk}. Let Aij be an IF-event defined
by the formula

Aij =
1
s

(χEi , 1−χEi); i = 1, ..., n, j = 1, ...,m.

If An = {Aij ; i = 1, ..., n, j = 1, ...,m}, then
An ≥ τ i(A) for all i = 0, 1, ..., n − 1. So we
have

Hα(A, τ(A), ..., τn−1(A)) ≤ H(An) =

= −
s∑
i=1

k∑
j=1

P (Uj)
s

log
P (Uj)
s

=

= −
k∑
j=1

s
P (Uj)
s

(logP (Uj)− log s) =

= −
k∑
j=1

P (Uj) logP (Uj) +
k∑
j=1

P (Uj) log s =

= log s−
k∑
j=1

P (Uj) logP (Uj) = log s+H(Bn).

Since s does not depend on n, we have

hα(A, τ) = lim
n→∞

1
n
Hα(A, τ(A), ..., τn−1(A)) ≤

≤ lim
n→∞

(
log s
n

+
1
n
H(Bn)

)
=

= 0 + lim
n→∞

1
n
H

(
n−1∨
i=0

T−i(B)

)
= h(B, T ).
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This implies the inequality Ghα(τ) ≤ h(T )
and the equality Ghα(τ) = h(T ).
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[11] B. Riečan, D. Mundici (2002). Probabil-
ity on MV-algebras. In Handbook of Mea-
sure Theory (E. Pap ed.), Amsterdam,
pages 869-909.
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