Maličký-Riečan entropy on IF-dynamical systems

Marek Ďurica
Department of Mathematics
Faculty of Natural Sciences
Matej Bel University
Tajovského 40
SK-974 01 Banská Bystrica
durica@fpv.umb.sk

Abstract

In this paper we study dynamical systems based on IF-events (see [1]). We define a special type of the notion of the entropy on this systems and its Maličký-Riečan modification (see [12]).

Keywords: IF-event, IF-dynamical system, IF-partition, MaličkýRiečan entropy.

1 Introduction

We start with classical dynamical systems $(\Omega, \mathcal{S}, P, T)$, where (Ω, \mathcal{S}, P) is a probability space and $T: \Omega \rightarrow \Omega$ is a measure preserving map, i.e. $T^{-1}(A) \in \mathcal{S}$ and $P\left(T^{-1}(A)\right)=$ $P(A)$ for any $A \in \mathcal{S}$. The entropy of the dynamical system is defined as follows (see [11], [12]). Consider measurable partition $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$, where $A_{i} \in \mathcal{S} ; i=$ $1, \ldots, k, A_{i} \cap A_{j}=\emptyset ; i \neq j, \bigcup_{i=1}^{k} A_{i}=\Omega$. Its entropy is the number

$$
H(\mathcal{A})=\sum_{i=1}^{k} \varphi\left(P\left(A_{i}\right)\right)
$$

where $\varphi(x)=-x \log x$, if $x>0$, and $\varphi(0)=0$. If $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $\mathcal{B}=$ $\left\{B_{1}, \ldots, B_{l}\right\}$ are two measurable partitions, then $T^{-1}(\mathcal{A})=\left\{T^{-1}\left(A_{1}\right), \ldots, T^{-1}\left(A_{k}\right)\right\}$ and $\mathcal{A} \vee \mathcal{B}=\{A \cap B ; A \in \mathcal{A}, B \in \mathcal{B}\}$ are measurable partitions, too. It can be proved that
there exists

$$
h(\mathcal{A}, T)=\lim _{n \rightarrow \infty} H\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A})\right) .
$$

The Kolmogorov-Sinaj entropy $h(T)$ of $(\Omega, \mathcal{S}, P, T)$ is defined as the supremum

$$
\begin{gathered}
h(T)=\sup \{h(\mathcal{A}, T) ; \mathcal{A} \text { is a measurable } \\
\text { partition }\} .
\end{gathered}
$$

The aim of the Kolmogorov-Sinaj entropy was to distinguish non-isomorphic dynamical systems. Two dynamical systems with different entropies cannot be isomorphic.

The notion of the entropy has been extended using fuzzy partitions instead of set partitions (see [11], [12], [2], [3]). Let \mathcal{T} be a tribe of fuzzy sets on $\Omega, m: \mathcal{T}-[0,1]$ is a state on this tribe and a mapping $\tau: \mathcal{T} \rightarrow \mathcal{T}$ is given satisfying the following conditions:
(i) If $f \in \mathcal{T}$, then $\tau(f) \in \mathcal{T}$ and $m(f)=$ $m(\tau(f))$.
(ii) If $f, g \in \mathcal{T}$ and $f+g \leq 1$, then $\tau(f+g)=$ $\tau(f)+\tau(g)$.

Then a triplet (\mathcal{T}, m, τ) is called fuzzy dynamical system. Fuzzy partition is a set of functions $\mathcal{A}=\left\{f_{1}, \ldots, f_{k}\right\} \subset \mathcal{T}$ such that $\sum_{i=1}^{k} f_{i}=1$. Then we define its entropy

$$
\begin{equation*}
H(\mathcal{A})=\sum_{i=1}^{k} \varphi\left(m\left(f_{i}\right)\right) \tag{1}
\end{equation*}
$$

and the conditional entropy

$$
\begin{equation*}
H(\mathcal{A} \mid \mathcal{B})=\sum_{i=1}^{k} \sum_{j=1}^{l} m\left(g_{j}\right) \varphi\left(\frac{m\left(f_{i} g_{j}\right)}{m\left(g_{j}\right)}\right) \tag{2}
\end{equation*}
$$

where $\mathcal{B}=\left\{g_{1}, \ldots, g_{l}\right\}$ is a fuzzy partition, too. Further

$$
h(\mathcal{A}, \tau)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)
$$

and, if $G \subset \mathcal{T}$ is an arbitrary non-empty set, then

$$
\begin{gathered}
h_{G}(\tau)=\sup \{h(\mathcal{A}, \tau) ; \mathcal{A} \text { is a fuzzy partition, } \\
\mathcal{A} \subset G\}
\end{gathered}
$$

is an entropy (Kolmogorov-Sinaj type) of the fuzzy dynamical system (\mathcal{T}, m, τ).
In [5] there was defined a special type of the entropy of dynamical systems based on IFevents. We start with a measurable space (Ω, \mathcal{S}). By an IF-event (see [1]) we consider a pair $A=\left(\mu_{A}, \nu_{A}\right)$ of \mathcal{S}-measurable functions $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$, such that $\mu_{A}+\nu_{A} \leq 1$. Denote by \mathcal{F} the family of all IF-events. On \mathcal{F} we define partial binary operation \oplus and binary operation \odot. Namely

$$
\begin{aligned}
& A \oplus B=\left(\mu_{A}, \nu_{A}\right) \oplus\left(\mu_{B}, \nu_{B}\right)= \\
& \quad=\left(\mu_{A}+\mu_{B}, \nu_{A}+\nu_{B}-1\right)
\end{aligned}
$$

whenever $\mu_{A}+\mu_{B} \leq 1$ and $0 \leq \nu_{A}+\nu_{B}-1$, and

$$
\begin{aligned}
& A \odot B=\left(\mu_{A}, \nu_{A}\right) \odot\left(\mu_{B}, \nu_{B}\right)= \\
& =\left(\mu_{A} \cdot \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \cdot \nu_{B}\right) .
\end{aligned}
$$

Further

$$
A_{n} \nearrow A \Longleftrightarrow \mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}
$$

where $A=\left(\mu_{A}, \nu_{A}\right), A_{n}=\left(\mu_{A_{n}}, \nu_{A_{n}}\right) \in \mathcal{F}$ ($n=1,2, \ldots$).

Definition 1.1 A mapping $m: \mathcal{F} \rightarrow[0,1]$ is called a state on the family of all IF-events, if the following conditions are satisfied:
(i) $m((1,0))=1, m((0,1))=0$;
(ii) If $A, B, C \in \mathcal{F}$ and $A \oplus B=C$, then $m(A)+m(B)=m(C) ;$
(iii) If $A_{n} \in \mathcal{F}(n=1,2, \ldots), A_{n} \nearrow A$, then $m\left(A_{n}\right) \nearrow m(A)$.

Theorem 1.2 To any state $m: \mathcal{F} \rightarrow[0,1]$ there exists $\alpha \in[0,1]$ and a probability measure $P: \mathcal{S} \rightarrow[0,1]$ such that

$$
\begin{gathered}
m_{\alpha}(A)=m(A)= \\
=(1-\alpha) \int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega} \nu_{A} d P\right)
\end{gathered}
$$

for any $A=\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}$.
Proof. See [8].

Definition 1.3 Let $m: \mathcal{F} \rightarrow[0,1]$ be a state on the family of all IF-events \mathcal{F} and $\tau: \mathcal{F} \rightarrow \mathcal{F}$ be a mapping satisfying the following conditions:
(I) If $A \in \mathcal{F}$, then $\tau(A) \in \mathcal{F}$ and $m(A)=$ $m(\tau(A))$.
(II) If $A, B, C \in \mathcal{F}$ and $A \oplus B=C$, then $\tau(C)=\tau(A) \oplus \tau(B)$.

Then a triplet (\mathcal{F}, m, τ) is called an IFdynamical system.

Let a mapping $\tau: \mathcal{F} \rightarrow \mathcal{F}$ be defined by $\tau(A)=\tau\left(\left(\mu_{A}, \nu_{A}\right)\right)=\left(\mu_{A} \circ T, \nu_{A} \circ T\right)$. Then $\left(\mathcal{F}, m_{\alpha}, \tau\right)$ is an IF-dynamical system.

2 Entropy of IF-partitions

We shall consider a family of all couples of fuzzy sets

$$
\begin{gathered}
\mathcal{M}=\{(f, g) ; f, g: \Omega \rightarrow[0,1] \text { are } \\
\mathcal{S} \text {-measurable }\} .
\end{gathered}
$$

We extend the definition of the operation \oplus and \odot from \mathcal{F} to \mathcal{M}. Recall that

$$
\begin{gathered}
\bigoplus_{i=1}^{k}\left(\mu_{A_{i}}, \nu_{A_{i}}\right)= \\
=\left(\sum_{i=1}^{k} \mu_{A_{i}},\left(\sum_{i=1}^{k} \nu_{A_{i}}\right)-(n-1)\right)
\end{gathered}
$$

and operations \oplus, \odot fulfill the commutative, associative and distributive law.

Definition 2.1 By an IF-partition we shall mean a finite collection $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\} \subset \mathcal{M}$ such that

$$
\bigoplus_{i=1}^{k}\left(\mu_{A_{i}}, \nu_{A_{i}}\right)=(1,0)
$$

If $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\} \quad$ and $\mathcal{B}=\left\{\left(\mu_{B_{1}}, \nu_{B_{1}}\right), \ldots,\left(\mu_{B_{l}}, \nu_{B_{l}}\right)\right\}$ are two IFpartitions, then we define

$$
\begin{aligned}
\mathcal{A} \vee \mathcal{B} & =\left\{\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot\left(\mu_{B_{j}}, \nu_{B_{j}}\right) ;\right. \\
i & =1, \ldots, k, j=1, \ldots, l\}
\end{aligned}
$$

and we write $\mathcal{B} \geq \mathcal{A}$ (and say \mathcal{B} is a refinement of \mathcal{A}), if there exists a partition $\{I(1), \ldots, I(k)\}$ of the set $\{1,2, \ldots, l\}$ such that

$$
\left(\mu_{A_{i}}, \nu_{A_{i}}\right)=\bigoplus_{j \in I(i)}\left(\mu_{B_{j}}, \nu_{B_{j}}\right)
$$

for every $i=1, \ldots, k$.
Proposition 2.2 If $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots\right.$ $\left.\ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\} \quad$ and $\mathcal{B}=\left\{\left(\mu_{B_{1}}, \nu_{B_{1}}\right), \ldots\right.$ $\left.\ldots,\left(\mu_{B_{l}}, \nu_{B_{l}}\right)\right\}$ are two IF-partitions, then $\tau(\mathcal{A})=\left\{\tau\left(\left(\mu_{A_{1}}, \nu_{A_{1}}\right)\right), \ldots, \tau\left(\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right)\right\}$ and $\mathcal{A} \vee \mathcal{B}$ are IF-partitions, too. Further $\mathcal{A} \vee \mathcal{B} \geq$ \mathcal{A}.

Proof. Since

$$
\begin{gathered}
\bigoplus_{i=1}^{k} \tau\left(\left(\mu_{A_{i}}, \nu_{A_{i}}\right)\right)=\bigoplus_{i=1}^{k}\left(\mu_{A_{i}} \circ T, \nu_{A_{i}} \circ T\right)= \\
=\left(\left(\sum_{i=1}^{k} \mu_{A_{i}}\right) \circ T,\left(\sum_{i=1}^{k} \nu_{A_{i}}-(n-1)\right) \circ T\right)= \\
=(1 \circ T, 0 \circ T)=(1,0)
\end{gathered}
$$

so $\tau(\mathcal{A})=\left\{\tau\left(\left(\mu_{A_{1}}, \nu_{A_{1}}\right)\right), \ldots, \tau\left(\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right)\right\}$ is an IF-partition. Further $\mathcal{A} \vee \mathcal{B}=\left\{\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot\right.$ $\left.\left(\mu_{B_{j}}, \nu_{B_{j}}\right) ; i=1, \ldots, k, j=1, \ldots, l\right\}$. Therefore

$$
\begin{gathered}
\bigoplus_{i=1}^{k} \bigoplus_{j=1}^{l}\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot\left(\mu_{B_{j}}, \nu_{B_{j}}\right)= \\
=\bigoplus_{i=1}^{k} \bigoplus_{j=1}^{l}\left(\mu_{A_{i}} \mu_{B_{j}}, \nu_{A_{i}}+\nu_{B_{j}}-\nu_{A_{i}} \nu_{B_{j}}\right)= \\
=\left(\sum_{i=1}^{k} \sum_{j=1}^{l} \mu_{A_{i}} \mu_{B_{j}}, \sum_{i=1}^{k} \sum_{j=1}^{l} \nu_{A_{i}}+\sum_{i=1}^{k} \sum_{j=1}^{l} \nu_{B_{j}}-\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.-\sum_{i=1}^{k} \sum_{j=1}^{l} \nu_{A_{i}} \nu_{B_{j}}-(k l-1)\right)= \\
=\left(\left(\sum_{i=1}^{k} \mu_{A_{i}}\right)\left(\sum_{j=1}^{l} \mu_{B_{j}}\right)\right. \\
\sum_{j=1}^{l}\left(\sum_{i=1}^{k} \nu_{A_{i}}\right)+\sum_{i=1}^{k}\left(\sum_{j=1}^{l} \nu_{B_{j}}\right)- \\
\left.-\left(\sum_{i=1}^{k} \nu_{A_{i}}\right)\left(\sum_{j=1}^{l} \nu_{B_{j}}\right)-(k l-1)\right)= \\
=(1, k(l-1)+l(k-1)- \\
-(l-1)(k-1)-(k l-1))=(1,0) .
\end{gathered}
$$

Finally, let us mention that $\mathcal{A} \vee \mathcal{B}$ is indexed by $\{(i, j) ; i=1, \ldots, n ; j=1, \ldots, m\}$. Therefore, if we put $I(i)=\{(i, 1), \ldots,(i, m)\}$, then by the equalities

$$
(1,0)=\bigoplus_{j=1}^{l}\left(\mu_{B_{j}}, \nu_{B_{j}}\right)
$$

we obtain

$$
\begin{aligned}
& \left(\mu_{A_{i}}, \nu_{A_{i}}\right)=\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot(1,0)= \\
= & \left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot\left(\bigoplus_{j=1}^{l}\left(\mu_{B_{j}}, \nu_{B_{j}}\right)\right)= \\
= & \bigoplus_{j=1}^{l}\left(\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot\left(\mu_{B_{j}}, \nu_{B_{j}}\right)\right)= \\
= & \bigoplus_{(k, j) \in I(i)}\left(\left(\mu_{A_{k}}, \nu_{A_{k}}\right) \odot\left(\mu_{B_{j}}, \nu_{B_{j}}\right)\right)
\end{aligned}
$$

for every $i=1, \ldots, k$. It follows $\mathcal{A} \vee \mathcal{B} \geq \mathcal{A}$.

Proposition 2.3 If $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots\right.$ $\left.\ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\}$ and $\mathcal{B}=\left\{\left(\mu_{B_{1}}, \nu_{B_{1}}\right), \ldots\right.$ $\left.\ldots,\left(\mu_{B_{l}}, \nu_{B_{l}}\right)\right\}$ are two IF-partitions, then $\mathcal{A}^{b}=\left\{\mu_{A_{1}}, \ldots, \mu_{A_{k}}\right\}$ and $\mathcal{A}^{\sharp}=\left\{1-\nu_{A_{1}}, \ldots\right.$ $\left.\ldots, 1-\nu_{A_{k}}\right\}$ are fuzzy partitions, and

$$
\begin{gathered}
(\mathcal{A} \vee \mathcal{B})^{b}=\mathcal{A}^{b} \vee \mathcal{B}^{b}, \quad(\mathcal{A} \vee \mathcal{B})^{\sharp}=\mathcal{A}^{\sharp} \vee \mathcal{B}^{\sharp}, \\
(\tau(\mathcal{A}))^{b}=\tau\left(\mathcal{A}^{b}\right), \quad(\tau(\mathcal{A}))^{\sharp}=\tau\left(\mathcal{A}^{\sharp}\right) .
\end{gathered}
$$

Proof. Since $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\}$ and $\mathcal{B}=\left\{\left(\mu_{B_{1}}, \nu_{B_{1}}\right), \ldots \ldots,\left(\mu_{B_{l}}, \nu_{B_{l}}\right)\right\}$, then we have

$$
\begin{gathered}
\mathcal{A} \vee \mathcal{B}=\left\{\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \odot\left(\mu_{B_{j}}, \nu_{B_{j}}\right) ;\right. \\
i=1, \ldots, k, j=1, \ldots, l\}= \\
=\left\{\left(\mu_{A_{i}} \mu_{B_{j}}, \nu_{A_{i}}+\nu_{B_{j}}-\nu_{A_{i}} \nu_{B_{j}}\right) ;\right. \\
\quad i=1, \ldots, k, j=1, \ldots, l\}
\end{gathered}
$$

and

$$
\tau(\mathcal{A})=\left\{\left(\mu_{A_{i}} \circ T, 1-\nu_{A_{i}} \circ T\right) ; i=1, \ldots, k\right\}
$$

By [12]

$$
\begin{gathered}
(\mathcal{A} \vee \mathcal{B})^{b}=\left\{\mu_{A_{i}} \mu_{B_{j}} ; i=1, \ldots, k, j=1, \ldots, l\right\}= \\
=\left\{\mu_{A_{i}} ; i=1, \ldots, k\right\} \vee \\
\vee\left\{\mu_{B_{j}} ; j=1, \ldots, l\right\}=\mathcal{A}^{b} \vee \mathcal{B}^{b}
\end{gathered}
$$

and

$$
\begin{gathered}
(\mathcal{A} \vee \mathcal{B})^{\sharp}=\left\{1-\nu_{A_{i}}-\nu_{B_{j}}+\nu_{A_{i}} \nu_{B_{j}} ;\right. \\
i=1, \ldots, k, j=1, \ldots, l\}= \\
=\left\{\left(1-\nu_{A_{i}}\right)\left(1-\nu_{B_{j}}\right) ; i=1, \ldots, k, j=1, \ldots, l\right\}= \\
=\left\{1-\nu_{A_{i}} ; i=1, \ldots, k\right\} \vee \\
\vee\left\{1-\nu_{B_{j}} ; j=1, \ldots, l\right\}=\mathcal{A}^{\sharp} \vee \mathcal{B}^{\sharp} .
\end{gathered}
$$

Finally we have

$$
\begin{aligned}
& (\tau(\mathcal{A}))^{b}=\left\{\mu_{A_{i}} \circ T ; i=1, \ldots, k\right\}= \\
& \quad=\tau\left(\left\{\mu_{A_{i}} ; i=1, \ldots, k\right\}\right)=\tau\left(\mathcal{A}^{b}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& (\tau(\mathcal{A}))^{\sharp}=\left\{1-\nu_{A_{i}} \circ T ; i=1, \ldots, k\right\}= \\
& \quad=\tau\left(\left\{1-\nu_{A_{i}} ; i=1, \ldots, k\right\}\right)=\tau\left(\mathcal{A}^{b}\right) .
\end{aligned}
$$

Definition 2.4 If \mathcal{A} is an IF-partition, then we define its entropy (with respect to a given state m_{α})

$$
H_{\alpha}(\mathcal{A})=(1-\alpha) H\left(\mathcal{A}^{b}\right)+\alpha H\left(\mathcal{A}^{\sharp}\right)
$$

where H is the entropy of the fuzzy partition (see equation (1)).

Proposition 2.5 If $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{l}\right\}$ are two IF-partitions, then

$$
H_{\alpha}(\mathcal{A} \vee \mathcal{B}) \leq H_{\alpha}(\mathcal{A})+H_{\alpha}(\mathcal{B})
$$

Proof. Put for fixed $i \in\{1, \ldots, k\}$ and for all $j \in\{1, \ldots, l\}$

$$
\lambda_{j}=m_{\alpha}\left(B_{j}\right), \quad x_{j}=\frac{m_{\alpha}\left(A_{i} \odot B_{j}\right)}{m_{\alpha}\left(B_{j}\right)}
$$

where $m_{\alpha}\left(B_{j}\right)>0(j=1, \ldots, l)$. Since

$$
\begin{gathered}
\sum_{j=1}^{l} \lambda_{j}=\sum_{j=1}^{l} m_{\alpha}\left(B_{j}\right)= \\
=m_{\alpha}\left(\bigoplus_{j=1}^{l} B_{j}\right)=m_{\alpha}((1,0))=1
\end{gathered}
$$

and φ is a concave function, we have

$$
\begin{gathered}
\varphi\left(m_{\alpha}\left(A_{i}\right)\right)=\varphi\left(m_{\alpha}\left(A_{i} \odot(1,0)\right)\right)= \\
=\varphi\left(m_{\alpha}\left(A_{i} \odot\left(\bigoplus_{j=1}^{l} B_{j}\right)\right)\right)= \\
=\varphi\left(m_{\alpha}\left(\bigoplus_{j=1}^{l} A_{i} \odot B_{j}\right)\right)= \\
=\varphi\left(\sum_{j=1}^{l} m_{\alpha}\left(A_{i} \odot B_{j}\right)\right)= \\
=\varphi\left(\sum_{j=1}^{l} m_{\alpha}\left(B_{j}\right) \frac{m_{\alpha}\left(A_{i} \odot B_{j}\right)}{m_{\alpha}\left(B_{j}\right)}\right)= \\
=\varphi\left(\sum_{j=1}^{l} \lambda_{j} x_{j}\right) \geq \sum_{j=1}^{l} \lambda_{j} \varphi\left(x_{j}\right)= \\
=\sum_{j=1}^{l} m_{\alpha}\left(B_{j}\right) \varphi\left(x_{j}\right)
\end{gathered}
$$

for all $i \in\{1, \ldots, k\}$. Therefore

$$
\begin{gathered}
H_{\alpha}(\mathcal{A})=\sum_{i=1}^{k} \varphi\left(m_{\alpha}\left(A_{i}\right)\right) \geq \\
\geq \sum_{i=1}^{k} \sum_{j=1}^{l} m_{\alpha}\left(B_{j}\right) \varphi\left(x_{j}\right)= \\
=\sum_{i=1}^{k} \sum_{j=1}^{l} m_{\alpha}\left(A_{i} \odot B_{j}\right) \log \frac{m_{\alpha}\left(A_{i} \odot B_{j}\right)}{m_{\alpha}\left(B_{j}\right)}=
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{i=1}^{k} \sum_{j=1}^{l} \varphi\left(m_{\alpha}\left(A_{i} \odot B_{j}\right)\right)- \\
-\sum_{j=1}^{l} \varphi\left(m_{\alpha}\left(B_{j}\right)\right) \sum_{i=1}^{k} m_{\alpha}\left(A_{i} \odot B_{j}\right)= \\
=H_{\alpha}(\mathcal{A} \vee \mathcal{B})-H_{\alpha}(\mathcal{B})
\end{gathered}
$$

So we have $H_{\alpha}(\mathcal{A} \vee \mathcal{B}) \leq H_{\alpha}(\mathcal{A})+H_{\alpha}(\mathcal{B})$.

3 Conditional entropy

Definition 3.1 If \mathcal{A} and \mathcal{B} are two IFpartitions, then we define the conditional entropy (with respect to a given state m_{α})

$$
H_{\alpha}(\mathcal{A} \mid \mathcal{B})=(1-\alpha) H\left(\mathcal{A}^{b} \mid \mathcal{B}^{b}\right)+\alpha H\left(\mathcal{A}^{\sharp} \mid \mathcal{B}^{\sharp}\right),
$$

where H is the conditional entropy of fuzzy partitions (see equation (2)).

Proposition 3.2 If $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are IF-partitions, then the following properties are satisfied:
(i) If $\mathcal{B} \leq \mathcal{C}$, then $H_{\alpha}(\mathcal{A} \mid \mathcal{C}) \leq H_{\alpha}(\mathcal{A} \mid \mathcal{B})$;
(ii) $H_{\alpha}(\mathcal{B} \vee \mathcal{C} \mid \mathcal{A})=H_{\alpha}(\mathcal{B} \mid \mathcal{A})+H_{\alpha}(\mathcal{C} \mid \mathcal{B} \vee \mathcal{A})$.

Proof. Let $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\}$, $\mathcal{B}=\left\{\left(\mu_{B_{1}}, \nu_{B_{1}}\right), \ldots,\left(\mu_{B_{l}}, \nu_{B_{l}}\right)\right\}$ and $\mathcal{C}=$ $\left\{\left(\mu_{C_{1}}, \nu_{C_{1}}\right), \ldots,\left(\mu_{C_{m}}, \nu_{C_{m}}\right)\right\}$. Since $\mathcal{B} \leq \mathcal{C}$, there exists a partition $\{I(1), \ldots, I(l)\}$ of the set $\{1, \ldots, m\}$ such that

$$
\begin{gathered}
\left(\mu_{B_{j}}, \nu_{B_{j}}\right)=\bigoplus_{t \in I(j)}\left(\mu_{C_{t}}, \nu_{C_{t}}\right)= \\
=\left(\sum_{t \in I(j)} \mu_{C_{t}}, \sum_{t \in I(j)} \nu_{C_{t}}-(|I(j)|-1)\right)
\end{gathered}
$$

for every $j=1, \ldots, l$. Therefore

$$
\mu_{B_{j}}=\sum_{t \in I(j)} \mu_{C_{t}}
$$

and

$$
\begin{aligned}
1-\nu_{B_{j}}= & 1-\sum_{t \in I(j)} \nu_{C_{t}}+|I(j)|-1= \\
= & \sum_{t \in I(j)}\left(1-\nu_{C_{t}}\right)
\end{aligned}
$$

for every $j=1, \ldots, l$. So we obtain

$$
\mathcal{B}^{b}=\left\{\mu_{B_{1}}, \ldots, \mu_{B_{l}}\right\} \leq\left\{\mu_{C_{1}}, \ldots, \mu_{C_{m}}\right\}=\mathcal{C}^{b}
$$

and

$$
\begin{aligned}
& \mathcal{B}^{\sharp}=\left\{1-\nu_{B_{1}}, \ldots, 1-\nu_{B_{l}}\right\} \leq \\
& \leq\left\{1-\nu_{C_{1}}, \ldots, 1-\nu_{C_{m}}\right\}=\mathcal{C}^{\sharp}
\end{aligned}
$$

By [12]

$$
\begin{gathered}
H\left(\mathcal{A}^{b} \mid \mathcal{C}^{b}\right) \leq H\left(\mathcal{A}^{b} \mid \mathcal{B}^{b}\right) \quad \text { and } \\
H\left(\mathcal{A}^{\sharp} \mid \mathcal{C}^{\sharp}\right) \leq H\left(\mathcal{A}^{\sharp} \mid \mathcal{B}^{\sharp}\right)
\end{gathered}
$$

and then

$$
\begin{aligned}
& H_{\alpha}(\mathcal{A} \mid \mathcal{C})=(1-\alpha) H\left(\mathcal{A}^{b} \mid \mathcal{C}^{b}\right)+\alpha H\left(\mathcal{A}^{\sharp} \mid \mathcal{C}^{\sharp}\right) \leq \\
& \leq(1-\alpha) H\left(\mathcal{A}^{b} \mid \mathcal{B}^{b}\right)+\alpha H\left(\mathcal{A}^{\sharp} \mid \mathcal{B}^{\sharp}\right)=H_{\alpha}(\mathcal{A} \mid \mathcal{B}) .
\end{aligned}
$$

Finally, since

$$
H\left(\mathcal{B}^{b} \vee \mathcal{C}^{b} \mid \mathcal{A}^{b}\right)=H\left(\mathcal{B}^{b} \mid \mathcal{A}^{b}\right)+H\left(\mathcal{C}^{b} \mid \mathcal{B}^{b} \vee \mathcal{A}^{b}\right)
$$

and

$$
H\left(\mathcal{B}^{\sharp} \vee \mathcal{C}^{\sharp} \mid \mathcal{A}^{\sharp}\right)=H\left(\mathcal{B}^{\sharp} \mid \mathcal{A}^{\sharp}\right)+H^{\sharp}\left(\mathcal{C}^{\sharp} \mid \mathcal{B}^{\sharp} \vee \mathcal{A}^{\sharp}\right)
$$

we have

$$
\begin{gathered}
H_{\alpha}(\mathcal{B} \vee \mathcal{C} \mid \mathcal{A})= \\
=(1-\alpha) H\left(\mathcal{B}^{b} \vee \mathcal{C}^{b} \mid \mathcal{A}^{b}\right)+\alpha H\left(\mathcal{B}^{\sharp} \vee \mathcal{C}^{\sharp} \mid \mathcal{A}^{\sharp}\right)= \\
=(1-\alpha) H\left(\mathcal{B}^{b} \mid \mathcal{A}^{b}\right)+(1-\alpha) H\left(\mathcal{C}^{b} \mid \mathcal{B}^{b} \vee \mathcal{A}^{b}\right)+ \\
+\alpha H\left(\mathcal{B}^{\sharp} \mid \mathcal{A}^{\sharp}\right)+\alpha H^{\sharp}\left(\mathcal{C}^{\sharp} \mid \mathcal{B}^{\sharp} \vee \mathcal{A}^{\sharp}\right)= \\
=H_{\alpha}(\mathcal{B} \mid \mathcal{A})+H_{\alpha}(\mathcal{C} \mid \mathcal{B} \vee \mathcal{A}) .
\end{gathered}
$$

4 Entropy on IF-dynamical systems

Proposition 4.1 For any IF-partition \mathcal{A} there exists

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)
$$

Proof. By Proposition $2.5 H_{\alpha}(\mathcal{B} \vee \mathcal{C}) \leq$ $H_{\alpha}(\mathcal{B})+H_{\alpha}(\mathcal{C})$ for any IF-partitions \mathcal{B} and \mathcal{C}. Put $a_{n}=H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)$ for any $n \in \mathbf{N}$. Then $a_{n+m} \leq a_{n}+a_{m}$ for every $n, m \in \mathbf{N}$ and this property guarantees the existence of limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)
$$

Definition 4.2 For every IF-partition \mathcal{A} we define

$$
h_{\alpha}(\mathcal{A}, \tau)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)
$$

and, if $G \subset \mathcal{M}$ is an arbitrary set, then the entropy of IF-dynamical system $\left(\mathcal{F}, m_{\alpha}, \tau\right)$ is ${ }_{G} h_{\alpha}(\tau)=\sup \left\{h_{\alpha}(\mathcal{A}, \tau) ; \mathcal{A}\right.$ is an IF-partition, $\mathcal{A} \subset G\}$.

Example 4.3 Let $(\Omega, \mathcal{S}, P, T)$ be a dynamical system, $\tau\left(\left(\mu_{A}, \nu_{A}\right)\right)=\left(\mu_{A} \circ T, \nu_{A} \circ T\right)$, $G=\left\{\left(\chi_{A}, 1-\chi_{A}\right) ; A \in \mathcal{S}\right\}$. Then the entropy of IF-dynamical system $\left(\mathcal{F}, m_{\alpha}, \tau\right){ }_{G} h_{\alpha}(\tau)=$ $h(T)$ is the Kolmogorov-Sinaj entropy.

Since

$$
\begin{gathered}
h\left(\mathcal{A}^{b}, \tau\right)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \tau^{i}\left(\mathcal{A}^{b}\right)\right) \quad \text { and } \\
h\left(\mathcal{A}^{\sharp}, \tau\right)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \tau^{i}\left(\mathcal{A}^{\sharp}\right)\right),
\end{gathered}
$$

then we have

$$
h_{\alpha}(\mathcal{A}, \tau)=(1-\alpha) h\left(\mathcal{A}^{b}, \tau\right)+\alpha h\left(\mathcal{A}^{\sharp}, \tau\right) .
$$

Theorem 4.4 Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{t}\right\}$ be a measurable partition of Ω being a generator, i.e. $\sigma\left(\bigcup_{i=0}^{\infty} \tau^{i}(\mathcal{C})\right)=\mathcal{S}$. Then for every IF-partition $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots,\left(\mu_{A_{k}}, \nu_{A_{k}}\right)\right\}$ there holds

$$
\begin{gathered}
h_{\alpha}(\mathcal{A}, \tau) \leq h_{\alpha}(\mathcal{C}, \tau)+ \\
+\int_{\Omega}\left(\sum_{i=1}^{k}(1-\alpha) \varphi\left(\mu_{A_{i}}\right)+\alpha \varphi\left(1-\nu_{A_{i}}\right)\right) d P
\end{gathered}
$$

Proof. See [5].
Of course this IF-entropy has the following defect.

Proposition 4.5 Let $G=\{(\mu, 1-\mu) ; \mu(\omega)=$ $c \in[0,1]$ for all $\omega \in \Omega\} \subset \mathcal{F}$, then

$$
{ }_{G} h_{\alpha}(\tau)=\infty
$$

Proof. Put $\mathcal{A}=\left\{\left(\frac{1}{k}, 1-\frac{1}{k}\right), \ldots,\left(\frac{1}{k}, 1-\frac{1}{k}\right)\right\}$, where $k \in \mathbf{N}$. Then $\mathcal{A}^{b}=\mathcal{A}^{\sharp}=\{1 / k, \ldots, 1 / k\}$ and

$$
\mathcal{A}^{b} \vee \tau\left(\mathcal{A}^{b}\right)=\mathcal{A}^{\sharp} \vee \tau\left(\mathcal{A}^{\sharp}\right)=\left\{1 / k^{2}, \ldots, 1 / k^{2}\right\},
$$

hence

$$
\begin{gathered}
H\left(\mathcal{A}^{b} \vee \tau\left(\mathcal{A}^{b}\right)\right)=H\left(\mathcal{A}^{\sharp} \vee \tau\left(\mathcal{A}^{\sharp}\right)\right)= \\
=-\sum_{i=1}^{k^{2}} \frac{1}{k^{2}} \log \frac{1}{k^{2}}=2 \log k,
\end{gathered}
$$

and

$$
H_{\alpha}(\mathcal{A} \vee \tau(\mathcal{A}))=2 \log k
$$

Similarly

$$
H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)=n \log k
$$

hence

$$
h_{\alpha}(\mathcal{A}, \tau)=\log k .
$$

Since $k \in \mathbf{N}$ was arbitrary, we obtain ${ }_{G} h_{\alpha}(\tau) \geq \log k$ for every k. Therefore ${ }_{G} h_{\alpha}(\tau)=\infty$.

To eliminate this defect we used the MaličkýRiečan modification of the notion of entropy (see [12]).

5 Maličký-Riečan entropy on IF-dynamical systems

Definition 5.1 Let \mathcal{A} be an IF-partition. Then we define its Maličký-Riečan entropy by the formula

$$
\begin{gathered}
H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{k}(\mathcal{A})\right)= \\
=\inf \left\{H_{\alpha}(\mathcal{C}) ; \mathcal{C} \geq \mathcal{A}, \mathcal{C} \geq \tau(\mathcal{A}), \ldots, \mathcal{C} \geq \tau^{k}(\mathcal{A})\right\}
\end{gathered}
$$

Proposition 5.2 There exists

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right)
$$

Proof. Put

$$
a_{n}=H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right)
$$

Then

$$
\begin{gathered}
a_{n+m}=H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n+m-1}(\mathcal{A})\right) \leq \\
\leq H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right)+ \\
+H_{\alpha}\left(\tau^{n}(\mathcal{A}), \tau^{n+1}(\mathcal{A}), \ldots, \tau^{n+m-1}(\mathcal{A})\right)= \\
H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right)+
\end{gathered}
$$

$$
+H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{m-1}(\mathcal{A})\right)=a_{n}+a_{m}
$$

This property guarantees existence of

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right)
$$

Definition 5.3 For an IF-partition \mathcal{A} define the entropy

$$
\overline{h_{\alpha}}(\mathcal{A}, \tau)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right)
$$

and for arbitrary $G \subset \mathcal{F}$ the Maličký-Riečan entropy of an IF-dynamical system ($\left.\mathcal{F}, m_{\alpha}, \tau\right)$ by the formula

$$
\begin{gathered}
{ }_{G} \overline{h_{\alpha}}(\tau)=\sup \left\{\overline{h_{\alpha}}(\mathcal{A}, \tau) ; \mathcal{A}\right. \text { is an IF-partition, } \\
\mathcal{A} \subset G\}
\end{gathered}
$$

Proposition 5.4 It holds $h(T) \leq{ }_{G} \overline{h_{\alpha}}(\tau) \leq$ ${ }_{G} h_{\alpha}(\tau)$ if $G=\left\{\left(\chi_{E}, 1-\chi_{E}\right) ; E \in \mathcal{S}\right\}$.

Proof. If \mathcal{A} is an IF-partition, then by Proposition 2.2

$$
\begin{gathered}
\mathcal{A} \leq \bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A}), \quad \tau(\mathcal{A}) \leq \bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A}) \\
\ldots \quad, \tau^{n-1}(\mathcal{A}) \leq \bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})
\end{gathered}
$$

hence $\quad H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right) \leq$ $H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right)$ and ${ }_{G} \overline{h_{\alpha}}(\tau) \leq{ }_{G} h_{\alpha}(\tau)$. If $G=\left\{\left(\chi_{E}, 1-\chi_{E}\right) ; E \in \mathcal{S}\right\}$, then for every crisp partition \mathcal{A} the relations $\mathcal{A} \leq \mathcal{C}, \tau(\mathcal{A}) \leq$ $\mathcal{C}, \ldots, \tau^{n-1}(\mathcal{A}) \leq \mathcal{C}$ imply $\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A}) \leq \mathcal{C}$. Hence $H_{\alpha}\left(\bigvee_{i=0}^{n-1} \tau^{i}(\mathcal{A})\right) \leq H_{\alpha}(\mathcal{C}), \quad$ and $h_{\alpha}(\mathcal{A}, \tau) \leq \overline{h_{\alpha}}(\mathcal{A}, \tau)$, and $h(T) \leq{ }_{G} \overline{h_{\alpha}}(\tau)$ (see Example 4.3).

Theorem 5.5 Let G consists of all IFevents of the form $\sum_{i=1}^{n} a_{i}\left(\chi_{E_{i}}, 1-\chi_{E_{i}}\right)$, where $\left\{E_{1}, \ldots, E_{n}\right\}$ is a set partition of Ω and $a_{i} \in$ $[0,1] \cap \mathbf{Q}$. Then $\bar{h}_{G}(\tau)=h(T)$.

Proof. It suffices to prove $\bar{h}_{G}(\tau) \leq h(T)$. Let $\mathcal{A}=\left\{\left(\mu_{A_{1}}, \nu_{A_{1}}\right), \ldots,\left(\mu_{A_{m}}, \nu_{A_{m}}\right)\right\}$ be an IFpartition. Every $\left(\mu_{A_{j}}, \nu_{A_{j}}\right) ; j=1,2, \ldots, m$ is of the form

$$
\sum_{i=1}^{n_{j}} a_{i j}\left(\chi_{E_{i}}, 1-\chi_{E_{i}}\right)
$$

where $a_{i j} \in[0,1] \cap \mathbf{Q}$ and $\mathcal{B}=\left\{E_{1}, \ldots, E_{n}\right\}$ is a set partition. There are natural $s_{i j}$ and integers $p_{i j} \in\left\{0,1, \ldots, s_{i j}\right\}$ such that $a_{i j}=p_{i j} / s_{i j}$. Let s be the smallest common multiple of all $s_{i j} ; i=1, \ldots, n$ and $j=1, \ldots, m$. There are integers $r_{i j} \in\{0,1, \ldots, s\}$ such that $a_{i j}=r_{i j} / s$. Denote by \mathcal{B}_{n} the set partition

$$
\mathcal{B} \vee T^{-1}(\mathcal{B}) \vee \ldots \vee T^{-(n-1)}(\mathcal{B})
$$

which consists of some measurable sets $\left\{U_{1}, \ldots, U_{k}\right\}$. Let $A_{i j}$ be an IF-event defined by the formula
$A_{i j}=\frac{1}{s}\left(\chi_{E_{i}}, 1-\chi_{E_{i}}\right) ; i=1, \ldots, n, j=1, \ldots, m$.
If $\mathcal{A}_{n}=\left\{A_{i j} ; i=1, \ldots, n, j=1, \ldots, m\right\}$, then $\mathcal{A}_{n} \geq \tau^{i}(\mathcal{A})$ for all $i=0,1, \ldots, n-1$. So we have

$$
\begin{gathered}
H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right) \leq H\left(\mathcal{A}_{n}\right)= \\
=-\sum_{i=1}^{s} \sum_{j=1}^{k} \frac{P\left(U_{j}\right)}{s} \log \frac{P\left(U_{j}\right)}{s}= \\
=-\sum_{j=1}^{k} s \frac{P\left(U_{j}\right)}{s}\left(\log P\left(U_{j}\right)-\log s\right)= \\
=-\sum_{j=1}^{k} P\left(U_{j}\right) \log P\left(U_{j}\right)+\sum_{j=1}^{k} P\left(U_{j}\right) \log s= \\
=\log s-\sum_{j=1}^{k} P\left(U_{j}\right) \log P\left(U_{j}\right)=\log s+H\left(\mathcal{B}_{n}\right) .
\end{gathered}
$$

Since s does not depend on n, we have

$$
\begin{gathered}
\overline{h_{\alpha}}(\mathcal{A}, \tau)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\alpha}\left(\mathcal{A}, \tau(\mathcal{A}), \ldots, \tau^{n-1}(\mathcal{A})\right) \leq \\
\leq \lim _{n \rightarrow \infty}\left(\frac{\log s}{n}+\frac{1}{n} H\left(\mathcal{B}_{n}\right)\right)= \\
=0+\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{B})\right)=h(\mathcal{B}, T)
\end{gathered}
$$

This implies the inequality ${ }_{G} \overline{h_{\alpha}}(\tau) \leq h(T)$ and the equality ${ }_{G} \overline{h_{\alpha}}(\tau)=h(T)$.

Acknowledgements

The paper was supported by Grant VEGA 1/0539/08.

References

[1] K. Atanassov (1999). Intuitionistic Fuzzy Sets: Theory and Applications. In Physica Verlag, New York.
[2] D. Dumitrescu (1995). Entropy of fuzzy dynamical systems. In Fuzzy Sets and Systems, volume 70, pages 45-57.
[3] D. Dumitrescu (1993). Fuzzy measures and the entropy of fuzzy partitions. In J. Math. Anal. Appl., volume 176, pages 359-373.
[4] M. Ďurica (2007). Entropy on IF-events. In Notes on IFS, submitted.
[5] M. Ďurica (2007). Hudetz entropy on IFdynamical systems. In Entropy, Special Issue: "Quantum Spaces: Where Locality Is not Necessary, Causality Might not Be, but Entropy Certainly Is", submitted.
[6] P. Grzegorzewski, E. Mrowka (2002). Probability of intuitionistic fuzzy events. In Soft Methods in Probability, Statistics and Data Analysis, Physica Verlag, New York, pages 105-115.
[7] M. Renčová, B. Riečan (2006). Probability on IF-sets: an elementary approach. In First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, London: University of Westminster, pages 8-17.
[8] B. Riečan (2006). On a problem of Radko Mesiar: general form of IF-probabilities. In Fuzzy Sets and Systems, volume 152, pages 1485-1490.
[9] B. Riečan (2005). On the entropy of IF dynamical systems. In Proceedings of
the Fifth International workshop on IFS and Generalized Nets, Warsaw, Poland, pages 32 8-336.
[10] B. Riečan (2004). Representation of probabilities on IFS events. In Advances in Soft Computing, Soft Methodology and Random Information Systems, Springer, Berlin, pages 243-246.
[11] B. Riečan, D. Mundici (2002). Probability on MV-algebras. In Handbook of Measure Theory (E. Pap ed.), Amsterdam, pages 869-909.
[12] B. Riečan, T. Neubrunn (1997). Integral, Measure and Ordering. In Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.

