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Abstract

In this work we study the functional
equation given by the following con-
dition

F(x,G(y, z)) = G(F(x, y),F(x, z))

for all x, y, z ∈ L∗, i.e. distributivity
equation.
The problem of distributivity is of
great interest both for particular as
well as fundamental reasons. This
relates for instance to the theory
of binary operations like triangular
norms, triangular conorms etc. In
this contribution we consider the dis-
tributivity between the operations
on bifuzzy set theory. Mainly, we
consider the decomposable opera-
tions (Theorem 1). In this class of
operations the distributivity equa-
tion is equivalent to the distributiv-
ity between underlying operations.
So, in this case we should consider
the distributivity in the class of op-
erations on the unit interval.

Keywords: Bifuzzy sets, interval
valued fuzzy sets, L-fuzzy sets, t-
norms, distributivity, decomposable
operations.

1 Introduction

In this paper we study the distributivity equa-
tion given by the following condition

∀
x,y,z∈L∗ F(x,G(y, z)) = G(F(x, y),F(x, z)).

The problem of distributivity has been posed
many years ago (cf. Aczél [1], pp. 318-319).
A new direction of investigations is mainly
concerned of distributivity between triangu-
lar norms and triangular conorms ([11] p.17,
[25]), aggregation functions ([5]), fuzzy im-
plications ([4], [23], [24]), uninorms and null-
norms ([17], [20], [21], [22]).

In Section 2 we put the definitions of a fuzzy
set, a bifuzzy set (an intuitionistic fuzzy set),
an interval valued fuzzy set and an L-fuzzy
set. Next, we recall relationships between
them.
In Sections 3 we put properties of binary oper-
ations and a description of decomposable op-
erations.
In Section 4 we recall the definition of left
and right distributivity. Next, solutions of
distributivity equations from described fam-
ilies are characterized.

2 Bifuzzy sets

First we put basic definitions.

Definition 1 ([27]). A fuzzy set A in a uni-
verse X is a mapping

A : X → [0, 1].

Example 1. The mapping A : R → [0, 1]
given by following formula

A(x) =
arctgx
π

+
1
2

is a fuzzy set on R.

Definition 2 (cf. [2], [3]). A bifuzzy set (an
intuitionistic fuzzy set) A in a universe X is

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1648–1653

Torremolinos (Málaga), June 22–27, 2008



a triple

A = {(x, µ(x), ν(x)) : x ∈ X}

where µ, ν : X → [0, 1] and µ(x) + ν(x) ≤ 1,
x ∈ X.

Example 2. The triple

A = {(x, µ(x), ν(x)) : x ∈ R}

where

µ(x) =
{

1
2x if x ∈ [0, 2],
0 otherwise,

ν(x) =
{

2
3 − 1

3x if x ∈ [−1, 2],
0 otherwise

is a bifuzzy set on R.

We use the name bifuzzy set instead of the
intuitionistic fuzzy set, because there is no
terminological difficulties with this name (cf.
[14]) and in fact, a bifuzzy set is described by
two fuzzy sets µ and ν.

Definition 3 (cf. [9]). An interval valued
fuzzy set A in a universe X is a mapping A :
X → Int([0, 1]), where Int([0, 1]) denotes the
set of all closed subintervals of [0, 1], i.e. a
mapping which assigns to each element x ∈ X
the interval [A(x), A(x)], where A(x), A(x) ∈
[0, 1] such that A(x) ≤ A(x).

Definition 4 ([13]). An L-fuzzy set A in a
universe X is a function A : X → L where L
is a lattice.

It was shown in [7] that bifuzzy sets, interval
valued fuzzy sets and L∗-fuzzy sets are equiv-
alent, where

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1},

(x1, x2) ≤ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥
y2 for all (x1, x2), (y1, y2) ∈ L∗.
The operation ∧ and ∨ on L∗ are defined as
follows

(x1, x2)∧(y1, y2) = (min(x1, y1),max(x2, y2)),

(x1, x2)∨(y1, y2) = (max(x1, y1),min(x2, y2)).

The greatest element in L∗ is 1L∗ = (1, 0).
The least element in L∗ is 0L∗ = (0, 1).
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Figure 1: Lattice L∗

3 Binary operation

Since bifuzzy sets, interval valued fuzzy sets
and L∗-fuzzy set are equivalent, in this paper
we will consider only the binary operations
F : (L∗)2 → L∗. First we recall some basic
properties of binary operations.

Definition 5 (c.f. [12]). A binary operation
F is idempotent in L∗ if

∀
x∈L∗ F(x, x) = x. (1)

It is associative if

∀
x,y,z∈L∗ F(x,F(y, z)) = F(F(x, y), z). (2)

It is commutative if

∀
x,y∈L∗ F(x, y) = F(y, x). (3)

It has a neutral element e ∈ L∗ if

∀
x∈L∗ F(x, e) = F(e, x) = x. (4)

The operation F is increasing in (L∗,≤) if

∀
x,y,z∈L∗ (x ≤ y)⇒ (F(x, z) ≤ F(y, z),

F(z, x) ≤ F(z, y)).
(5)

Lemma 1 ([6]). Let F : (L∗)2 → L∗ be an
increasing operation. If the operation F is
idempotent, then

∧ ≤ F ≤ ∨. (6)

Lemma 2 ([6]). Let F : (L∗)2 → L∗ be an
increasing operation. If the operation F has
a neutral element e = 1L∗ (e = 0L∗), then
F ≤ ∧ (F ≥ ∨).
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Corollary 1. Let F : (L∗)2 → L∗ be an
increasing operation. If the operation F is
idempotent and has a neutral element e = 1L∗

(e = 0L∗), then F = ∧ (F = ∨).

Definition 6. An operation F : (L∗)2 → L∗

is called decomposable if there exist opera-
tions F1, F2 : [0, 1]2 → [0, 1] such that for all
x, y ∈ L∗

F(x, y) = (F1(x1, y1), F2(x2, y2)),

where x = (x1, x2), y = (y1, y2).

Lemma 3. Increasing operations F1, F2 :
[0, 1]2 → [0, 1] lead to the decomposable op-
eration F if and only if F1 ≤ F ∗2 where F ∗2
is a dual operation to the operation F2, i.e.
F ∗2 (x, y) = 1− F2(1− x, 1− y).

Lemma 4. Let F : (L∗)2 → L∗ be a decom-
posable operation. The operation F is idem-
potent if and only if underlying operations
F1, F2 : [0, 1]2 → [0, 1] are idempotent.

Definition 7 (c.f. [8], [15]). A triangular
norm T on L∗ is an increasing, commutative,
associative operation T : (L∗)2 → L∗ with a
neutral element 1L∗ .
A triangular conorm S on L∗ is an increas-
ing, commutative, associative operation S :
(L∗)2 → L∗ with a neutral element 0L∗ .

Example 3. The following are examples of
t-norms on L∗

inf(x, y) = (min(x1, y1),max(x2, y2)),
T (x, y) = (max(0, x1 + y1 − 1),

min(1, x2 + y2)),

and t-conorm on L∗

sup(x, y) = (max(x1, y1),min(x2, y2)).

Remark 1 (c.f. [8]). A decomposable t-norm
T on L∗ is also called a t-representable t-
norm. In this case there exist a t-norm T and
t-conorm S on [0, 1] such that for all x, y ∈ L∗

T (x, y) = (T (x1, y1), S(x2, y2)).

Example 4. The operation

T (x, y) = (max(x1 +y1−1, 0), x2 +y2−x2y2)

is a decomposable t-norm, with the
 Lukasiewicz t-norm T and the product

t-conorm S.
However, the  Lukasiewicz t-norm

TW (x, y) = (max(0, x1 + y1 − 1),
min(1, x2 + 1− y1, y2 + 1− x1))

is not decomposable.
Remark 2 (c.f. [8]). A decomposable t-
conorm S on L∗ is also called t-representable
t-conorm. In this case there exist a t-conorm
S and t-norm T on [0, 1] such that for all
x, y ∈ L∗

S(x, y) = (S(x1, y1), T (x2, y2)).

Definition 8 (c.f. [9], [26]). An operation
U : (L∗)2 → L∗ is called a uninorm if it is
commutative, associative, increasing and has
a neutral element e ∈ L∗.
Remark 3 (c.f. [9]). A decomposable uni-
norm U on L∗ is also called t-representable
uninorm. In this case there exist uninorms
U1 and U2 on [0, 1] such that for all x, y ∈ L∗

U(x, y) = (U1(x1, y1), U2(x2, y2)).

4 Distributivity equation

Now we consider the distributivity between
operations on L∗ (left distributivity). The
considerations for right distributivity are sim-
ilar.
Definition 9 ([12]). An operation F is left
distributive over an operation G in L∗ if

∀
x,y,z∈L∗ F(x,G(y, z)) = G(F(x, y),F(x, z)).

(7)
An operation F is right distributive over an
operation G in L∗ if

∀
x,y,z∈L∗ F(G(y, z), x) = G(F(y, x),F(z, x)).

(8)

First we consider the distributivity equation
in the class of decomposable operations
Theorem 1. Let F ,G : (L∗)2 → L∗ be two
decomposable binary operations such that F =
(F1, F2), G = (G1, G2). Operation F is left
(right) distributive over the operation G if and
only if operation F1 is left (right) distributive
over the operation G1 and operation F2 is left
(right) distributive over the operation G2.
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Proof. Let operation F be left distributive
over the operation G. Then

(F1(x1, G1(y1, z1)), F2(x2, G2(y2, z2)))
= F((x1, x2), (G1(y1, z1), G2(y2, z2)))
= F((x1, x2),G((y1, y2), (z1, z2)))
= F(x,G(y, z))
= G(F(x, y),F(x, z))
= G(F((x1, x2), (y1, y2)),
F((x1, x2), (z1, z2)))

= G((F1(x1, y1), F2(x2, y2)),
(F1(x1, z1), F2(x2, z2)))

= (G1(F1(x1, y1), F1(x1, z1)),
G2(F2(x2, y2), F2(x2, z2))).

So, we have

F1(x1, G1(y1, z1)) = G1(F1(x1, y1), F1(x1, z1))

and

F2(x2, G2(y2, z2)) = G2(F2(x2, y2), F2(x2, z2))

which means that F1 is left distributive over
the G1 and F2 is left distributive over G2.
Conversely, if F1 is left distributive over the
G1 and F2 is left distributive over G2 then

F(x,G(y, z))
= F((x1, x2),G((y1, y2), (z1, z2)))
= F((x1, x2), (G1(y1, z1), G2(y2, z2)))
= (F1(x1, G1(y1, z1)), F2(x2, G2(y2, z2)))
= (G1(F1(x1, y1), F1(x1, z1)),

G2(F2(x2, y2), F2(x2, z2)))
= G((F1(x1, y1), F2(x2, y2)),

(F1(x1, z1), F2(x2, z2)))
= G(F((x1, x2), (y1, y2)),
F((x1, x2), (z1, z2)))

= G(F(x, y),F(x, z))

which means that operation F is left distribu-
tive over the operation G.
The proof for right distributivity is analo-
gous.

So, we may use the results from the papers
about the distributivity equation for t-norms,
t-conorms, uninorms and another operations
on [0, 1]. Belove we mention some of them and
their application to the distributivity between
operations on L∗.

Lemma 5 ([21]). Let T be a t-norm and S be
a t-conorm on [0, 1]. The operation T is left
(or right) distributive over the operation S if
and only if S = max.

Lemma 6 ([21]). Let T be a t-norm and S be
a t-conorm on [0, 1]. The operation S is left
(or right) distributive over the operation T if
and only if T = min.

Theorem 2. Let T be a decomposable t-norm
and S be a decomposable t-conorm on L∗. The
operation T is left (or right) distributive over
the operation S if and only if S = (max,min).

Corollary 2. Every increasing decomposable
operation is distributive over t-conorm S =
(max,min).

Theorem 3. Let T be a decomposable t-norm
and S be a decomposable t-conorm on L∗. The
operation S is left (or right) distributive over
the operation T if and only if T = (min,max).

Corollary 3. Every increasing decomposable
operation is distributive over t-norm T =
(min,max).

5 Distributivity in the class of
nondecomposable operations

In this section we consider the distributivity
equation in the class of more general opera-
tions, i.e. we omit the assumption that the
operations are decomposable. Our considera-
tion leads to the similar results as for opera-
tions on the unit interval.

Lemma 7 (c.f. [20]). Let F : (L∗)2 → L∗ has
a neutral element e in a subset Y ⊂ L∗ (i.e.
∀x∈Y F(e, x) = F(x, e) = x). If the operation
F is left (or right) distributive over an opera-
tion G : (L∗)2 → L∗ fulfilling G(e, e) = e, then
G is idempotent in Y .

Lemma 8 (c.f. [10]). If an operation F
with a neutral element s ∈ L∗ is left (or
right) distributive over an operation G such
that G(s, s) = s, then the operation G is idem-
potent.

Directly from Lemma 8 and Corollary 1 we
obtain

Theorem 4 ([10], Theorem 5). If an oper-
ation F with a neutral element s ∈ L∗ is
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left (or right) distributive over an operation
G with neutral element e = 0 (e = 1) and
G(s, s) = s, then G = ∨ (G = ∧).
Corollary 4. If a t-norm T is left (or right)
distributive over a t-conorm S, then S = ∨.
Corollary 5. If a t-conorm S is left (or right)
distributive over a t-norm T , then T = ∧.

6 Conclusion

In this paper we present the problem of dis-
tributivity between binary operations on L∗.
The main result is presented in Theorem 1.
Using this theorem we may transform all re-
sults concerning the problem of distributivity
equation for operations on the unit interval
into the field of operations on L∗.
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