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Abstract

In this paper we consider a spe-
cial class of t-norms 77, 7, on the
lattice £!, where £! is the under-
lying lattice of both intuitionistic
fuzzy set theory (Atanassov, 1983)
and interval-valued fuzzy set the-
ory (Sambuc, 1975). We investi-
gate under which conditions these t-
norms are meet-morphisms. Using
these results, we obtain a charac-
terization for t-norms on £! which
are both join- and meet-morphisms
and which satisfy an additional con-
dition.

Keywords: Triangular norm, join-
morphism, meet-morphism, Atanas-
sov’s intuitionistic fuzzy set.

1 Introduction

Atanassov’s intuitionistic fuzzy set theory
[1, 2] is an extension of fuzzy set theory in
which to each element of the universe a mem-
bership and a non-membership degree is as-
signed. Unlike in fuzzy set theory, the sum of
these two degrees is only required to be less
than or equal to 1. Interval-valued fuzzy set
theory [13, 16] is another extension of fuzzy
set theory in which to each element of the uni-
verse a closed subinterval of the unit interval
is assigned which approximates the unknown
membership degree. In [9] it is shown that
Atanassov’s intuitionistic fuzzy set theory is
equivalent to interval-valued fuzzy set theory

and that both are equivalent to L-fuzzy set
theory in the sense of Goguen [12] w.r.t. a
special lattice £1.

Triangular norms on the unit interval are all
join- and meet-morphism, since the unit in-
On the lattice £!, how-
ever, the situation is more complicated, as
there exist t-norms which are not a join- or
an inf-morphism. There exist several charac-
terizations for t-norms on £ which are join-
morphisms and which satisfy additional con-
ditions (see e.g. [5, 7, 8]). In this paper we
start the research on meet-morphisms. We
start from the class of t-norms 77, 1, intro-
duced in [8] and we investigate under which
conditions the t-norms of this class are meet-
morphisms. We also show that there are t-
norms in this class for which the t-norms Tj
and Ty involved in the construction are not
equal to each other. Finally, we give a char-
acterization of t-norms on £! which are join-
and meet-morphisms and which satisfy an ad-
ditional condition.

terval is a chain.

2 The lattice £

Definition 2.1 We define £ = (L', <,r),
where

LI:{[xl,l"z] | (z1,22) € [0,1)% and x1 < 29},
[gjl’xﬂ SLI [y17y2] — (1U1 S 1 cmd:zg S y2)7
fO’F all [Lvl,.’lj‘g], [ylqu] m LI~

Similarly as Lemma 2.1 in [9] it can be shown
that £! is a complete lattice.

Definition 2.2 [13, 16] An interval-valued
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fuzzy set on U is a mapping A : U — L1,

Definition 2.3 [1, 2| An intuitionistic fuzzy
set in the sense of Atanassov on U is a set

A= {(u, pa(u),va(v)) |ue U},

where pa(u) € [0,1] denotes the membership
degree and v4(u) € [0, 1] the non-membership
degree of u in A and where for all u € U,

wa(u) +va(u) <1.

An intuitionistic fuzzy set in the sense of
Atanassov A on U can be represented by the
L1-fuzzy set A given by

AU — L'
u = [pa(u), 1 —va(u)],
In Figure 1 the set L! is shown. Note that

r = [x1,72] € L is identified with the point
(331, l‘g) € R2.

y L2
[0,1] [1,1]
x = [z, Ty
T [----- )
I
1 .
[0,0] 1

Figure 1: The grey area is L.

In the sequel, if x € L, then we denote its
bounds by z; and z9, i.e. * = [z1,22]. The
length x5 — x; of the interval z € L is called
the degree of uncertainty and is denoted by
Zr. The smallest and the largest element of
L1 are given by 0,1 = [0,0] and 1,r = [1,1].
Note that, for ,y in L, 2 <, r y is equivalent
to x <;ry and x # y, i.e. either 1 < y; and
T9 < yo, or 1 < Y1 and x9 < yo. We define
the relation <;r by z <1y <= 71 <11
and xo < yo, for z,y in L!. We define for
further usage the set D = {[z1,z1] | 1 €

[0,1]}.
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Note that for any non-empty subset A of L'
it holds that

sup A = [sup{z; | 1 € [0,1] and
(Fze € [x1,1])([21,22] € A)},
sup{zz | z2 € [0,1] and
(3z1 € [0, z2])([z1, 2] € A)}];
inf A = [inf{z; | 1 € [0,1] and

1] and
x1,x9] € A)}.

inf{xs | z9 €

)
[0,
(Fz2 € [21,1])([z1, 22] € A)},
[0,
(3x1 € [0, z2])(

Theorem 2.4 (Characterization of
supremum in L) [7] Let A be an arbitrary
non-empty subset of L' and a € L'. Then
a =sup A if and only if

(Vx € A)(x <1 a)
and (V&l > O)(HZ € A)(Zl > a1 — 61)
and (Veg > 0)(3z € A)(22 > az — €2).

Definition 2.5 A t-norm on L' is a com-
mutative, associative, increasing mapping T :
(LN? — LT which satisfies T (1,1, 2) = x, for
allz € L.

A t-conorm on L' is a commutative, asso-
ciative, increasing mapping S : (L')? — L'
which satisfies S(0p1,2) = x, for all x € LY.

Example 2.6 [8, 10] We give some special
classes of t-norms on £!. Let T, T} and T be
t-norms on ([0, 1], <) such that T (z1,y1) <
To(x1,y1) for all zq1,y; in [0,1], and let t €
[0,1]. Then we have the following classes:

e t-representable t-norms: 77, 7, (x,y) =
[T1(x1,31), To(2,2)], for all z,y in L';

e pseudo-t-representable t-norms: 7p(z,y)
= [T(z1,y1), max(T(21,y2), T(z2,91))],
for all z,y in L’;

o Try(z,y) = [T(w1,y1), max(T(t,T(x2,

y21)), T(x1,y2), T(x2,91))], for all z,y in
LY

b ch(x7y) = [min(T(‘ThyQ)? T(‘T27y1))7
T(z2,y2)], for all ,y in L;
e Trynpi(w,y) = [Ti(x1,y1), max(Ta(t,

To(x2,y2)), To(x1,y2), Ta(x2,y1))], for all
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x,y in L, where T} and T, additionally
satisfy, for all x1,y; in [0, 1],

To(z1,y1) > To(t, To(z1,y1))
= Ti(x1,11) = To(z1,y1).

(1)

In Theorem 5 of [8] (see Theorem 2.7) it
is shown that 77, 7, ; is indeed a t-norm
on £ if T} and Ty satisfy (1).!

Let 7 be a t-norm on £f. We say that?

e 7 is a join-morphism if 7 (z,sup(y, z)) =
sup(7 (z,y),7 (z,2)), for all z,y, z in L?;

e 7 is a meet-morphism if 7 (z,inf(y, z)) =
inf(7 (z,y),7 (z,2)), for all z,y,z in L’;

e 7 is a sup-morphism if 7 (x,sup Z)
sup,e, T (z,2), for all z € L and @ C
ZC L',

e 7 is an inf-morphism if 7 (z,inf Z) =
inf,cz T(x,2), for all z € L' and @ C
ZC L',

T satisfies the residuation principle if
T(x,y) <pr z <= y <1 I7(z,z), for
all 2,9, z in LY, where Zr(z,z) = sup{y |
y € L' and 7 (x,y) <1 z}, for all z, 2 in
L.

Similarly as for t-norms on the unit interval, a
t-norm 7 on £! satisfies the residuation prin-
ciple if and only if 7 is a sup-morphism [7].

Theorem 2.7 [8] Let 7 : (L1)? — L' be a t-
norm such that, for all x € D and ys € [0, 1],
(T(z, [y2,92]))2 = (T(,[0,92]))2. Then T
satisfies the residuation principle if and only if
there exist two left-continuous t-norms Ty and
Ty on ([0,1],<) and a real number t € [0,1]
such that, for all z,y € L',

T (z,y) = [T1(z1,y1), max(Ta(t, To(72, y2)),
To(x1,y2), Ta(y1, 22))],

!Note that the condition in Theorem 5 of [8] that

Ti1 and T are left-continuous is not used to prove that
Tr,,15,¢ 1S & t-norm.

2Note that for simplicity we call a t-norm a join-
morphism if its partial mappings are join-morphisms,
and similarly for meet-, sup- and inf-morphisms.

and, for all x1,y1 in [0, 1],

Ty (x1,y1) = To(x1,y1),
if To(z1,91) > To(t, To(z1,91)),
Ti(z1,y1) < To(z1,y1), else.

If for a mapping f on [0, 1] and a mapping F'
on L' it holds that F(D) C D, and F([a,a]) =
[f(a), f(a)], for all a € [0,1], then we say that
F is a natural extension of f to L!. E.g. I,
Tr, Try and 7] are all natural extensions of
T to L.

Example 2.8 Let, for all z,y in [0, 1],
TW(ﬂf,y) = maX(Oa rT+y— 1)7
Tp(z,y) = zy,

Tp(x,y) = {

min(z,y), if max(x,y) =1,

0, else,
Sw(z,y) = min(1, z + y).

Then Ty, Tp and Tp are t-norms, and Sy
and Sp are t-conorms on ([0, 1], <). Let now,
for all =,y in L',

TW(.T, y) = [max((), T1+y1 — 1)’

max(0, 1 4+ y2 — 1,22 + y1 — 1)},
Tp(z,y) = [r1y1, max(z1y2, T2y1)],
Sw(z,y) = [min(1, 1 4+ y2, 22 + y1), 22 + y2|.
Then 7y and 7p are t-norms, and Sy is a
t-conorm on £!. Furthermore, Ty, Tp and
Sy are natural extensions of Ty, Tp and Sy

respectively. The t-norms Ty, Tp, 7y and
Tp satisfy the residuation principle.

We will also need the following result and def-
inition (see [3, 14, 15, 17, 18]).

Theorem 2.9 Let (Tg)aca be a family of
t-norms and (Jaq, €al)aca be a family of non-
empty, pairwise disjoint open subintervals of
[0,1]. Then the function T : [0,1]* — [0,1]
defined by, for all x,y in [0, 1],

Ao + (ea - aa)
'Ta<x_aa’ Y — aq >’
€q — Go € — Qg
if (xay) € [aaaeaPa
min(z,y), otherwise,

T(l’,y) =

is a t-norm on ([0,1], <).
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T2

[0,1]

(1,1]

T1

[0, 0]

Figure 2: The different positions of z,y €
Lla where 7,([0,1],[0,1]) = [0,1], Zx([0,1],
[0,1]) = [0,t] and 73([0,1],[0,1]) = [0, 0]. The
value of (7 (x,y))2 is calculated at the ending
points of the arrows.

Definition 2.10 Let (T,)aca be a family of
t-norms and (Jaa, €a|)aca be a family of non-
empty, pairwise disjoint open subintervals of
[0,1]. The t-norm T defined by (2) is called
the ordinal sum of the summands (aq, €as o),
a € A, and we will write

T = (<aa> €a, Ta>)a€A-

Let A be an arbitrary countable index-set and
T, a t-norm on L, for all & € A. Define, for
all a € A, the following sets and mappings:

Jo={x|z¢€ L' and a, <prx<prea},
where (aq,eq) € D? and a, <pI €q;

Jr={z |z e L and 21 > (ay)1

and x2 < (eq)2};
b, Jy— LT
1 — (Aa)1 T2 — (Qq )2
C o ! <a)a>1’ (ca)2 . <a)a>2 ’
Vr € Ju;
Ot L — J,

z = [(aa)1 + 21((ea)1 — (aa)1),
(aa)2 + 22((€a)2 — (aa)2)],
Vo e LY

T =0, ' 0T, 0 (P x D).

«
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Assume that J: N Jg = g, for any o, € A.

Our aim is to construct a t-norm 7 on L'

satisfying the residuation principle such that
_ !

Tl yensy =T

Assume that 7x([0, 1], [0,1]) = [0, t], for a cer-

tain k € A, where t € [0, 1]. Denote by A< the

set Ac = {a | a € Aand a, <pr a;} and by

As theset A ={a|a€ Aand ay >pr ag}.

If t € ]0,1[, then 7,([0,1],[0,1]) = [0, 1], for
all @ € A, and 7,([0,1],[0,1]) = [0,0], for
all « € As (see [6, Theorem 4.2]). If t =0

or t = 1, then we assume from now on that
these equalities hold.

Theorem 2.11 [6] Let, for all « € A, T,
[0,1)2 — [0,1] be the mapping defined by, for
all z1,y1 in [0, 1],

To(z1,y1) = (Ta([z1, 21], [y1, 1)1,
and let T be the ordinal sum of {(an)1, (€a)1,
T,), a € A. Define the mapping T : (L
LT by, for all x,y € L',

(T(x7y))1 = T<:C17y1)a
(T(x,9))2
(T2(max(e1, (a0)1), min(zs, (ea)2)],
[max(y1, (aa)1), min(ys, (ea)2)]))2;
if (v2 € ](aa)%( a) ] and yo > (aa)2
and y1 < (eq)1 and o € AL)
or (y2 € [(aq)2, (€q)2] and x2 > (aq)2
and 1 < (eq)1 and a € Ac)
or (1 € [(an)1, (ea)1] and y2 > (aq)2
and y1 < (eq)1 and a € As)
or (y1 € [(aa)1, (ea)1] and xo > (aq)2
and 1 < (eq)1 and a € As)
S (ea)l
S (ea)l

1)2_>

or (x9 > (aq)2 and x1
and y2 > (aq)2 and y1

and o = k),
min(ze,ys2), if the previous conditions do
not hold and (x2<(ax)2 or y2 <(ak)2),
min(za,y1), if the previous conditions do

not hold and x1 < y1,

min(ys, 1), else.

Then T is a t-norm on L' called the ordinal
sum of the summands (aq, €q,7n), @ € A, and
we write
T = (((aou eou 7;4>)04€A<; <a’k7 eka ’Z;f>7
(<aOé7 eoca 7-Oé>)OéEA>)‘
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In spite of the characterization given in The-
orem 2.7, no t-norms of the class 7r, 7, ; have
yet been found for which Ty # T5. In the
following example we show that there do ex-
ist different t-norms T} and T5 for which the
mapping 77, 1+ defined in Example 2.6 is a
t-norm on £'.

Example 2.12 Let Tl, Tg and Tg be t-norms
on ([0,1], <) such that Ty < T5. Let further-
more t € [0,1]. Define the t-norms Th and T»
by

Ty = (<O>ta Tl)? <t7 17T3>)7
Ty = ((0,,T3), (t,1,T3)).

Then Ta(z1,y1) > To(t, Ta(r1,y1)) = min(t,
TQ(.%'l,yl)) <~ Tg(xl,yl) >t —
min(x1,y1) > t, for all x1,y1 in [0,1]. It
can be easily wverified that Ty < Ty and
Ty (z1,y1) =AT2(wA1,y1), for all x1,y1 in ]t 1)2.
Clearly, if Ty # Ts, then T1 # Tb.

Let t € [0,1]. The mapping Tr, 1, de-
fined by Tr, 1, 1 (z,y) = [T1(21, y1), max(Ta(t,
T2<x27 yQ))? TQ(-Tl, y2)7 TQ(‘T% yl))}: fOT' all z,y
in L1, is a t-norm on L' (see Example 2.6).

3 Triangular norms on £! which
are meet-morphisms

Since ([0, 1], <) is a chain, any t-norm on the
unit interval is a join- and a meet-morphism.
Furthermore, it is well-known that continu-
ous t-norms on ([0,1],<) are sup- and inf-
morphisms. For t-norms on product lattices,
the following result holds.

Theorem 3.1 [4] Consider two bounded lat-
tices L1 = (L1,<r,) and Ly = (L2, <;2) and
a t-norm T on the product lattice L1 X Lo =
(L1 x Lo, <), where (x1,22) < (y1,Y2) <
(r1 <r, »1 and x2 <p, y2), for all (z1,x2),
(y1,y2) in Ly x La. The t-norm T is a
join-morphism (resp. meet-morphism) if and
only if there exist t-norms Ty on L1 and Ts
on Lo which are join-morphisms (resp. meet-
morphisms), such that for all (x1,x2), (y1,y2)
mn Ll X L2,

T ((x1,22), (y1,y2)) = [T1(21, 1), To(x2, y2))-

On L', the situation is more complicated.
Not all t-norms on £! are join- and meet-
morphisms. Consider the t-norm TT’P given
by Tz, (z,y) = [min(z1y2, z2y1), max(z2ys)],
for all 2,y in L!. Then we have 77,.([0.2,
0.5, sup([0.5,0.5], [0,1])) = 77,([0.2,0.5],
[0.5,1]) = [0.2,0.5] # [0.1,0.5] = sup([0.1,
0.25], [0,0.5]) = sup(’Z'T’P([O.2,O.5], [0.5,0.5]),
77,([0.2,0.5], [0,1])). So 77, is not a join-
morphism. Similarly the t-norm 77, is not a
meet-morphism.

Gehrke et al. [11] used the following definition
for a t-norm on £!: a commutative, associa-
tive binary operation 7 on £ is a t-norm if
for all z,y,z in L',

They showed that such a t-norm is increasing,
so their t-norms are a special case of the t-
norms on £ as defined in Definition 2.5.

Clearly, commutative, associative binary op-
erations on £! satisfying (G.1)-(G.5) are t-
norms on £/ which are join- and meet-mor-
phisms. The two additional conditions (G.1)
and (G.5) ensure that these t-norms are t-
representable, as is shown in the next theo-
rem.

Theorem 3.2 [11] For every commutative,
associative binary operation T on L' satis-
fying (G.1)-(G.5) there exists a t-norm T on
([0,1], <) such that, for all x,y in LT,

T (2,y) = [T(v1,91), T (2, y2)]-

We can extend this result as follows.

Theorem 3.3 For any t-norm T on L' sat-
isfying (G.2) and (G.5) there exist t-norms Ty
and Ty on ([0,1], <) such that, for all z,y in
L

T(x,y) = [T1(x1,y1), Ta (w2, y2)].

Proceedings of IPMU'08



Clearly, (G.5) is a rather restrictive condition.
We will show that if this condition is not im-
posed, then the class of t-norms on £! satis-
fying the other conditions is much larger.

For continuous t-norms on £/ we have the
following relationship between sup- and join-
morphism, and inf- and meet-morphisms.

Theorem 3.4 Let T be a continuous t-norm
on L. Then

(i) T is a sup-morphism if and only if T
18 a join-morphism;

(i) T is an inf-morphism if and only if T
s a meet-morphism.

We extend Theorem 2.7 to t-norms on L£!
which are join-morphisms.

Theorem 3.5 Let T : (L1)2 — L be a t-
norm such that, for all x € D and y2 € [0, 1],
(T(.Z’, [y27y2]))2 = (T(.%', [anQ]))Q' Then T s

a join-morphism if and only if there exist two
t-norms Ty and Ty on (]0,1],<) and a real
number t € [0,1] such that, for all z,y € L',

T (z,y) = [T1(z1,y1), max(Ta(t, Ta(z2, y2)),
To(x1,92), Ta(y1, 22))],

and, for all z1,y1 in [0,1],

Ti(z1,y1) = To(z1,91),
if To(w1,91) > To(t, To(x1,y1)),
Ti(z1,91) < To(x1,y1), else.

Now we characterize the t-norms on £! be-
longing to the class 77, 1, which are meet-
morphisms. First we need some lemmas.

Lemma 3.6 Assume that Tr, 1,4 is a meet-
morphism. Then Ts(t,y1) = min(t,y1), for
all y1 € [0, 1].

Corollary 3.7  Assume that I7, 1,1 @5 a
meet-morphism.  Then there exists two t-

norms Ty and Ty on ([0,1], <) such that

T2 = (<Oat7TI>7 <ta 1a T2>)

Proceedings of IPMU'08

Lemma 3.8 Assume that I, 1, s a meet
morphism. Then the t-norm Ty in the repre-
sentation of Ty given in Corollary 3.7 is equal
to the minimum.

Corollary 3.9  Assume that Ip, 1, @5 a
meet-morphism. Then there exists a t-norm
T1 on ([0,1], <) such that

Ty = ((0,¢,7}), (t,1, min)).

Lemma 3.10 Assume that there exists a
t-norm Ty on ([0,1], <) such that Ty = ({0, t,
T1), (t,1,min)), then Tp, 1,4 s a meet-mor-
phism.

Now we obtain the main theorem.

Theorem 3.11 For any t-norms 11 and T3
on ([0,1],<) and t € [0,1], T, 1+ is @ meet-
morphism if and only if there exists a t-norm
Ty on ([0,1], <) such that Ty = ((0,t,T}), (t,1,

min)).

If we assume that T} = Ty, then we do not
only obtain that 77 is the ordinal sum of two
t-norms on ([0, 1], <), but we can also write
the t-norm 77, 1, = 71, + as an ordinal sum
of two t-norms on £!. This is shown in the
next theorem.

Theorem 3.12 For any t-norm T on ([0, 1],
<) and t € [0,1], Tr+ is a meet-morphism if
and only if there exists a t-norm Ty on ([0, 1],
<) such that

TTﬂf = (Q; <O[,Ia [ta t]7 TT1,T1>; <[t’ t]a Ler, Tmin>)?
where, for all z,y in L',

TTAI,T“1 (z,y) = [T1($1,y1)7T1(932,y2)],
Tinin(7,y) = [min(z1, y1), max(min(z1, y2),

min(z2, y1))]-

By combining Theorems 2.7 and 3.11, we ob-
tain the following result.

Theorem 3.13 Let T : (L')? — L' be a t-
norm such that, for all x € D and yz € [0, 1],
(7T (z,[y2,y2]))2 = (T (x,[0,y2]))2. Then T is
a join-morphism and a meet-morphism if and
only if there exist two t-norms Ty and Ty on
([0,1],<) and a real number t € [0,1] such
that
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(1) Ti(z1,y1) < To(x1,31), for all x1,y1 in
[0, 1],

(ii) Ty (x1,y1) = Ta(x1,91), for all x1,y1 in
[0,1] such that To(x1,y1) > t,

(iii) there exists a t-normAfl on ([0,1], <)
such that Ty = ((0,¢,T1), (t,1, min)),

(iv) for all x,y in L',

T (2,y) = [T1(z1,y1), max(Th(t,
To(w2,y2)), To(w1,y2), To(2,y1))].

4 Conclusion

In this paper we have investigated the class
17, 15t of t-norms on L' which were intro-
duced in [8]. We have found examples of t-
norms in this class for which T7 # T5. We
have found that a t-norm 77, 1, is a meet-
morphism if and only if T, can be represented
as the ordinal sum of any t-norm on ([0, 1], <)
and the minimum. If we restrict ourselves
to the case when T7 = Tb, then 77, 1, ; can
itself be written as the ordinal sum of a t-
representable t-norm on £/ and the pseudo-
t-representable extension of the minimum on
([0,1], <) to £'. We have found a character-
ization of t-norms on £ which are join- and
meet-morphisms and which satisfy an addi-
tional condition. For continuous t-norms 7 on
L' we have found that 7 is a join-morphism
if and only if 7 is a sup-morphism (or, equiv-
alently, 7 satisfies the residuation principle);
a similar relationship was found between inf-
and meet-morphisms.
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