Triangular norms which are meet-morphisms in Atanassov's intuitionistic fuzzy set theory

Glad Deschrijver

Fuzziness and Uncertainty Modelling Research Unit, Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 (S9), B-9000 Gent, Belgium Glad.Deschrijver@UGent.be http://www.fuzzy.UGent.be

Abstract

In this paper we consider a special class of t-norms $\mathcal{T}_{T_1,T_2,t}$ on the lattice \mathcal{L}^I , where \mathcal{L}^I is the underlying lattice of both intuitionistic fuzzy set theory (Atanassov, 1983) and interval-valued fuzzy set theory (Sambuc, 1975). We investigate under which conditions these tnorms are meet-morphisms. Using these results, we obtain a characterization for t-norms on \mathcal{L}^I which are both join- and meet-morphisms and which satisfy an additional condition.

Keywords: Triangular norm, joinmorphism, meet-morphism, Atanassov's intuitionistic fuzzy set.

1 Introduction

Atanassov's intuitionistic fuzzy set theory [1, 2] is an extension of fuzzy set theory in which to each element of the universe a membership and a non-membership degree is assigned. Unlike in fuzzy set theory, the sum of these two degrees is only required to be less than or equal to 1. Interval-valued fuzzy set theory [13, 16] is another extension of fuzzy set theory in which to each element of the universe a closed subinterval of the unit interval is assigned which approximates the unknown membership degree. In [9] it is shown that Atanassov's intuitionistic fuzzy set theory is equivalent to interval-valued fuzzy set theory and that both are equivalent to *L*-fuzzy set theory in the sense of Goguen [12] w.r.t. a special lattice \mathcal{L}^{I} .

Triangular norms on the unit interval are all join- and meet-morphism, since the unit interval is a chain. On the lattice \mathcal{L}^{I} , however, the situation is more complicated, as there exist t-norms which are not a join- or an inf-morphism. There exist several characterizations for t-norms on \mathcal{L}^{I} which are joinmorphisms and which satisfy additional conditions (see e.g. [5, 7, 8]). In this paper we start the research on meet-morphisms. We start from the class of t-norms $\mathcal{T}_{T_1,T_2,t}$ introduced in [8] and we investigate under which conditions the t-norms of this class are meetmorphisms. We also show that there are tnorms in this class for which the t-norms T_1 and T_2 involved in the construction are not equal to each other. Finally, we give a characterization of t-norms on \mathcal{L}^{I} which are joinand meet-morphisms and which satisfy an additional condition.

2 The lattice \mathcal{L}^{I}

Definition 2.1 We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}}),$ where

$$L^{I} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, 1]^{2} \text{ and } x_{1} \leq x_{2} \}, \\ [x_{1}, x_{2}] \leq_{L^{I}} [y_{1}, y_{2}] \iff (x_{1} \leq y_{1} \text{ and } x_{2} \leq y_{2}), \\ \text{for all } [x_{1}, x_{2}], [y_{1}, y_{2}] \text{ in } L^{I}.$$

Similarly as Lemma 2.1 in [9] it can be shown that \mathcal{L}^{I} is a complete lattice.

Definition 2.2 [13, 16] An interval-valued

fuzzy set on U is a mapping $A: U \to L^I$.

Definition 2.3 [1, 2] An intuitionistic fuzzy set in the sense of Atanassov on U is a set

$$A = \{ (u, \mu_A(u), \nu_A(u)) \mid u \in U \}$$

where $\mu_A(u) \in [0,1]$ denotes the membership degree and $\nu_A(u) \in [0,1]$ the non-membership degree of u in A and where for all $u \in U$, $\mu_A(u) + \nu_A(u) \leq 1$.

An intuitionistic fuzzy set in the sense of Atanassov A on U can be represented by the \mathcal{L}^{I} -fuzzy set A given by

$$\begin{array}{rcl} A & : & U & \to & L^I & : \\ & & u & \mapsto & \left[\mu_A(u), 1 - \nu_A(u) \right] \end{array}$$

In Figure 1 the set L^{I} is shown. Note that $x = [x_1, x_2] \in L^{I}$ is identified with the point $(x_1, x_2) \in \mathbb{R}^2$.

Figure 1: The grey area is L^{I} .

In the sequel, if $x \in L^{I}$, then we denote its bounds by x_{1} and x_{2} , i.e. $x = [x_{1}, x_{2}]$. The length $x_{2} - x_{1}$ of the interval $x \in L^{I}$ is called the degree of uncertainty and is denoted by x_{π} . The smallest and the largest element of \mathcal{L}^{I} are given by $0_{\mathcal{L}^{I}} = [0, 0]$ and $1_{\mathcal{L}^{I}} = [1, 1]$. Note that, for x, y in $L^{I}, x <_{L^{I}} y$ is equivalent to $x \leq_{L^{I}} y$ and $x \neq y$, i.e. either $x_{1} < y_{1}$ and $x_{2} \leq y_{2}$, or $x_{1} \leq y_{1}$ and $x_{2} < y_{2}$. We define the relation $\ll_{L^{I}}$ by $x \ll_{L^{I}} y \iff x_{1} < y_{1}$ and $x_{2} < y_{2}$, for x, y in L^{I} . We define for further usage the set $D = \{[x_{1}, x_{1}] \mid x_{1} \in [0, 1]\}$. Note that for any non-empty subset A of L^{I} it holds that

$$\begin{split} \sup A &= [\sup\{x_1 \mid x_1 \in [0,1] \text{ and} \\ &\quad (\exists x_2 \in [x_1,1])([x_1,x_2] \in A)\}, \\ &\quad \sup\{x_2 \mid x_2 \in [0,1] \text{ and} \\ &\quad (\exists x_1 \in [0,x_2])([x_1,x_2] \in A)\}]; \\ \inf A &= [\inf\{x_1 \mid x_1 \in [0,1] \text{ and} \\ &\quad (\exists x_2 \in [x_1,1])([x_1,x_2] \in A)\}, \\ &\quad \inf\{x_2 \mid x_2 \in [0,1] \text{ and} \\ &\quad (\exists x_1 \in [0,x_2])([x_1,x_2] \in A)\}]. \end{split}$$

Theorem 2.4 (Characterization of supremum in \mathcal{L}^{I}) [7] Let A be an arbitrary non-empty subset of L^{I} and $a \in L^{I}$. Then $a = \sup A$ if and only if

$$\begin{aligned} (\forall x \in A)(x \leq_{L^{I}} a) \\ and \ (\forall \varepsilon_{1} > 0)(\exists z \in A)(z_{1} > a_{1} - \varepsilon_{1}) \\ and \ (\forall \varepsilon_{2} > 0)(\exists z \in A)(z_{2} > a_{2} - \varepsilon_{2}) \end{aligned}$$

Definition 2.5 A t-norm on \mathcal{L}^{I} is a commutative, associative, increasing mapping \mathcal{T} : $(L^{I})^{2} \rightarrow L^{I}$ which satisfies $\mathcal{T}(1_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.

A t-conorm on \mathcal{L}^{I} is a commutative, associative, increasing mapping $\mathcal{S} : (L^{I})^{2} \to L^{I}$ which satisfies $\mathcal{S}(0_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.

Example 2.6 [8, 10] We give some special classes of t-norms on \mathcal{L}^{I} . Let T, T_{1} and T_{2} be t-norms on $([0,1],\leq)$ such that $T_{1}(x_{1},y_{1}) \leq T_{2}(x_{1},y_{1})$ for all x_{1},y_{1} in [0,1], and let $t \in [0,1]$. Then we have the following classes:

- t-representable t-norms: $\mathcal{T}_{T_1,T_2}(x,y) = [T_1(x_1,y_1),T_2(x_2,y_2)],$ for all x, y in L^I ;
- pseudo-t-representable t-norms: $\mathcal{T}_T(x, y)$ = $[T(x_1, y_1), \max(T(x_1, y_2), T(x_2, y_1))],$ for all x, y in L^I ;
- $T_{T,t}(x,y) = [T(x_1,y_1), \max(T(t,T(x_2, y_2)), T(x_1,y_2), T(x_2,y_1))],$ for all x, y in L^I ;
- $T'_T(x,y) = [\min(T(x_1,y_2), T(x_2,y_1)), T(x_2,y_2)], \text{ for all } x, y \text{ in } L^I;$
- $\mathcal{T}_{T_1,T_2,t}(x,y) = [T_1(x_1,y_1), \max(T_2(t, T_2(x_2,y_2)), T_2(x_1,y_2), T_2(x_2,y_1))],$ for all

x, y in L^{I} , where T_{1} and T_{2} additionally satisfy, for all x_{1}, y_{1} in [0, 1],

$$T_2(x_1, y_1) > T_2(t, T_2(x_1, y_1)) \implies T_1(x_1, y_1) = T_2(x_1, y_1).$$
(1)

In Theorem 5 of [8] (see Theorem 2.7) it is shown that $\mathcal{T}_{T_1,T_2,t}$ is indeed a t-norm on \mathcal{L}^I if T_1 and T_2 satisfy (1).¹

Let \mathcal{T} be a t-norm on \mathcal{L}^{I} . We say that²

- \mathcal{T} is a join-morphism if $\mathcal{T}(x, \sup(y, z)) = \sup(\mathcal{T}(x, y), \mathcal{T}(x, z))$, for all x, y, z in L^{I} ;
- \mathcal{T} is a meet-morphism if $\mathcal{T}(x, \inf(y, z)) = \inf(\mathcal{T}(x, y), \mathcal{T}(x, z))$, for all x, y, z in L^{I} ;
- \mathcal{T} is a sup-morphism if $\mathcal{T}(x, \sup Z) = \sup_{z \in Z} \mathcal{T}(x, z)$, for all $x \in L^{I}$ and $\emptyset \subset Z \subseteq L^{I}$;
- \mathcal{T} is an inf-morphism if $\mathcal{T}(x, \inf Z) = \inf_{z \in Z} \mathcal{T}(x, z)$, for all $x \in L^{I}$ and $\emptyset \subset Z \subseteq L^{I}$;
- \mathcal{T} satisfies the residuation principle if $\mathcal{T}(x,y) \leq_{L^{I}} z \iff y \leq_{L^{I}} \mathcal{I}_{\mathcal{T}}(x,z)$, for all x, y, z in L^{I} , where $\mathcal{I}_{\mathcal{T}}(x,z) = \sup\{y \mid y \in L^{I} \text{ and } \mathcal{T}(x,y) \leq_{L^{I}} z\}$, for all x, z in L^{I} .

Similarly as for t-norms on the unit interval, a t-norm \mathcal{T} on \mathcal{L}^{I} satisfies the residuation principle if and only if \mathcal{T} is a sup-morphism [7].

Theorem 2.7 [8] Let $\mathcal{T} : (L^I)^2 \to L^I$ be a tnorm such that, for all $x \in D$ and $y_2 \in [0, 1]$, $(\mathcal{T}(x, [y_2, y_2]))_2 = (\mathcal{T}(x, [0, y_2]))_2$. Then \mathcal{T} satisfies the residuation principle if and only if there exist two left-continuous t-norms T_1 and T_2 on $([0, 1], \leq)$ and a real number $t \in [0, 1]$ such that, for all $x, y \in L^I$,

$$\mathcal{T}(x,y) = [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)), T_2(x_1,y_2), T_2(y_1,x_2))],$$

and, for all x_1, y_1 in [0, 1],

$$\begin{cases} T_1(x_1, y_1) = T_2(x_1, y_1), \\ if \ T_2(x_1, y_1) > T_2(t, T_2(x_1, y_1)), \\ T_1(x_1, y_1) \le T_2(x_1, y_1), \ else. \end{cases}$$

If for a mapping f on [0, 1] and a mapping Fon L^{I} it holds that $F(D) \subseteq \overline{D}$, and F([a, a]) =[f(a), f(a)], for all $a \in [0, 1]$, then we say that F is a natural extension of f to L^{I} . E.g. $\mathcal{T}_{T,T}$, \mathcal{T}_{T} , $\mathcal{T}_{T,t}$ and \mathcal{T}'_{T} are all natural extensions of T to L^{I} .

Example 2.8 Let, for all x, y in [0, 1],

$$T_W(x, y) = \max(0, x + y - 1),$$

$$T_P(x, y) = xy,$$

$$T_D(x, y) = \begin{cases} \min(x, y), & \text{if } \max(x, y) = 1, \\ 0, & \text{else}, \end{cases}$$

$$S_W(x, y) = \min(1, x + y).$$

Then T_W , T_P and T_D are t-norms, and S_W and S_P are t-conorms on ([0, 1], \leq). Let now, for all x, y in L^I ,

$$\begin{aligned} \mathcal{T}_W(x,y) &= [\max(0,x_1+y_1-1),\\ \max(0,x_1+y_2-1,x_2+y_1-1)],\\ \mathcal{T}_P(x,y) &= [x_1y_1,\max(x_1y_2,x_2y_1)],\\ \mathcal{S}_W(x,y) &= [\min(1,x_1+y_2,x_2+y_1),x_2+y_2]. \end{aligned}$$

Then \mathcal{T}_W and \mathcal{T}_P are t-norms, and \mathcal{S}_W is a t-conorm on \mathcal{L}^I . Furthermore, \mathcal{T}_W , \mathcal{T}_P and \mathcal{S}_W are natural extensions of T_W , T_P and \mathcal{S}_W respectively. The t-norms T_W , T_P , \mathcal{T}_W and \mathcal{T}_P satisfy the residuation principle.

We will also need the following result and definition (see [3, 14, 15, 17, 18]).

Theorem 2.9 Let $(T_{\alpha})_{\alpha \in A}$ be a family of t-norms and $(]a_{\alpha}, e_{\alpha}[]_{\alpha \in A}$ be a family of nonempty, pairwise disjoint open subintervals of [0, 1]. Then the function $T : [0, 1]^2 \rightarrow [0, 1]$ defined by, for all x, y in [0, 1],

$$T(x,y) = \begin{cases} a_{\alpha} + (e_{\alpha} - a_{\alpha}) \\ \cdot T_{\alpha} \left(\frac{x - a_{\alpha}}{e_{\alpha} - a_{\alpha}}, \frac{y - a_{\alpha}}{e_{\alpha} - a_{\alpha}} \right), \\ if(x,y) \in [a_{\alpha}, e_{\alpha}]^{2}, \\ \min(x,y), \ otherwise, \end{cases}$$
(2)

is a t-norm on $([0,1],\leq)$.

¹Note that the condition in Theorem 5 of [8] that T_1 and T_2 are left-continuous is not used to prove that $\mathcal{T}_{T_1,T_2,t}$ is a t-norm.

 $^{^{2}}$ Note that for simplicity we call a t-norm a joinmorphism if its partial mappings are join-morphisms, and similarly for meet-, sup- and inf-morphisms.

Figure 2: The different positions of $x, y \in L^{I}$, where $\mathcal{T}_{\alpha}([0,1],[0,1]) = [0,1], \mathcal{T}_{k}([0,1], [0,1]) = [0,t]$ and $\mathcal{T}_{\beta}([0,1],[0,1]) = [0,0]$. The value of $(\mathcal{T}(x,y))_{2}$ is calculated at the ending points of the arrows.

Definition 2.10 Let $(T_{\alpha})_{\alpha \in A}$ be a family of t-norms and $(]a_{\alpha}, e_{\alpha}[]_{\alpha \in A}$ be a family of nonempty, pairwise disjoint open subintervals of [0,1]. The t-norm T defined by (2) is called the ordinal sum of the summands $\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle$, $\alpha \in A$, and we will write

$$T = (\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle)_{\alpha \in A}.$$

Let A be an arbitrary countable index-set and \mathcal{T}_{α} a t-norm on \mathcal{L}^{I} , for all $\alpha \in A$. Define, for all $\alpha \in A$, the following sets and mappings:

$$J_{\alpha} = \{x \mid x \in L^{I} \text{ and } a_{\alpha} \leq_{L^{I}} x \leq_{L^{I}} e_{\alpha}\},$$
where $(a_{\alpha}, e_{\alpha}) \in D^{2}$ and $a_{\alpha} <_{L^{I}} e_{\alpha};$

$$J_{\alpha}^{*} = \{x \mid x \in L^{I} \text{ and } x_{1} > (a_{\alpha})_{1}$$
and $x_{2} \leq (e_{\alpha})_{2}\};$

$$\Phi_{\alpha} : J_{\alpha} \to L^{I} :$$

$$x \mapsto \left[\frac{x_{1} - (a_{\alpha})_{1}}{(e_{\alpha})_{1} - (a_{\alpha})_{1}}, \frac{x_{2} - (a_{\alpha})_{2}}{(e_{\alpha})_{2} - (a_{\alpha})_{2}}\right],$$

$$\forall x \in J_{\alpha};$$

$$\Phi_{\alpha}^{-1} : L^{I} \to J_{\alpha} :$$

$$x \mapsto [(a_{\alpha})_{1} + x_{1}((e_{\alpha})_{1} - (a_{\alpha})_{1}), (a_{\alpha})_{2} + x_{2}((e_{\alpha})_{2} - (a_{\alpha})_{2})],$$

$$\forall x \in L^{I};$$

$$\mathcal{T}_{\alpha}' = \Phi_{\alpha}^{-1} \circ \mathcal{T}_{\alpha} \circ (\Phi_{\alpha} \times \Phi_{\alpha}).$$

Assume that $J^*_{\alpha} \cap J^*_{\beta} = \emptyset$, for any $\alpha, \beta \in A$. Our aim is to construct a t-norm \mathcal{T} on \mathcal{L}^I satisfying the residuation principle such that $\mathcal{T}|_{J^*_{\alpha} \times J^*_{\alpha}} = \mathcal{T}'_i$.

Assume that $\mathcal{T}_k([0,1],[0,1]) = [0,t]$, for a certain $k \in A$, where $t \in [0,1]$. Denote by A_{\leq} the set $A_{\leq} = \{\alpha \mid \alpha \in A \text{ and } a_{\alpha} <_{L^I} a_k\}$ and by A_{\geq} the set $A_{\geq} = \{\alpha \mid \alpha \in A \text{ and } a_{\alpha} >_{L^I} a_k\}$. If $t \in]0,1[$, then $\mathcal{T}_{\alpha}([0,1],[0,1]) = [0,1]$, for all $\alpha \in A_{\leq}$, and $\mathcal{T}_{\alpha}([0,1],[0,1]) = [0,0]$, for all $\alpha \in A_{\geq}$ (see [6, Theorem 4.2]). If t = 0or t = 1, then we assume from now on that these equalities hold.

Theorem 2.11 [6] Let, for all $\alpha \in A$, $T_{\alpha} : [0,1]^2 \rightarrow [0,1]$ be the mapping defined by, for all x_1, y_1 in [0,1],

$$T_{\alpha}(x_1, y_1) = (\mathcal{T}_{\alpha}([x_1, x_1], [y_1, y_1]))_1$$

and let T be the ordinal sum of $\langle (a_{\alpha})_1, (e_{\alpha})_1, T_{\alpha} \rangle$, $\alpha \in A$. Define the mapping $\mathcal{T} : (L^I)^2 \to L^I$ by, for all $x, y \in L^I$,

$$\begin{aligned} (\mathcal{T}(x,y))_1 &= T(x_1,y_1) \\ (\mathcal{T}(x,y))_2 \end{aligned}$$

=

$$\left\{ \begin{array}{l} (\mathcal{T}_{\alpha}'([\max(x_{1},(a_{\alpha})_{1}),\min(x_{2},(e_{\alpha})_{2})],\\ [\max(y_{1},(a_{\alpha})_{1}),\min(y_{2},(e_{\alpha})_{2})]))_{2},\\ if(x_{2}\in](a_{\alpha})_{2},(e_{\alpha})_{2}] \ and\ y_{2}>(a_{\alpha})_{2}\\ and\ y_{1}\leq (e_{\alpha})_{1} \ and\ \alpha\in A_{<})\\ or\ (y_{2}\in](a_{\alpha})_{2},(e_{\alpha})_{2}] \ and\ x_{2}>(a_{\alpha})_{2}\\ and\ x_{1}\leq (e_{\alpha})_{1} \ and\ \alpha\in A_{<})\\ or\ (x_{1}\in](a_{\alpha})_{1},(e_{\alpha})_{1}] \ and\ y_{2}>(a_{\alpha})_{2}\\ and\ y_{1}\leq (e_{\alpha})_{1} \ and\ \alpha\in A_{>})\\ or\ (y_{1}\in](a_{\alpha})_{1},(e_{\alpha})_{1}] \ and\ x_{2}>(a_{\alpha})_{2}\\ and\ x_{1}\leq (e_{\alpha})_{1} \ and\ \alpha\in A_{>})\\ or\ (y_{1}\in](a_{\alpha})_{1},(e_{\alpha})_{1}] \ and\ x_{2}>(a_{\alpha})_{2}\\ and\ x_{1}\leq (e_{\alpha})_{1} \ and\ \alpha\in A_{>})\\ or\ (x_{2}>(a_{\alpha})_{2} \ and\ x_{1}\leq (e_{\alpha})_{1}\\ and\ y_{2}>(a_{\alpha})_{2} \ and\ y_{1}\leq (e_{\alpha})_{1}\\ and\ \alpha=k),\\ \min(x_{2},y_{2}),\ if\ the\ previous\ conditions\ do\\ not\ hold\ and\ (x_{2}\leq (a_{k})_{2} \ or\ y_{2}\leq (a_{k})_{2}),\\ \min(x_{2},y_{1}),\ if\ the\ previous\ conditions\ do\\ \end{array} \right.$$

not hold and $x_1 \leq y_1$, min (y_2, x_1) , else.

Then \mathcal{T} is a t-norm on \mathcal{L}^{I} called the ordinal sum of the summands $\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha} \rangle$, $\alpha \in A$, and we write

$$\mathcal{T} = ((\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha} \rangle)_{\alpha \in A_{<}}; \langle a_{k}, e_{k}, \mathcal{T}_{k} \rangle; (\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha} \rangle)_{\alpha \in A_{>}}).$$

Proceedings of IPMU'08

In spite of the characterization given in Theorem 2.7, no t-norms of the class $\mathcal{T}_{T_1,T_2,t}$ have yet been found for which $T_1 \neq T_2$. In the following example we show that there do exist *different* t-norms T_1 and T_2 for which the mapping $\mathcal{T}_{T_1,T_2,t}$ defined in Example 2.6 is a t-norm on \mathcal{L}^I .

Example 2.12 Let \hat{T}_1 , \hat{T}_2 and \hat{T}_3 be t-norms on $([0,1], \leq)$ such that $\hat{T}_1 \leq \hat{T}_2$. Let furthermore $t \in [0,1]$. Define the t-norms T_1 and T_2 by

$$T_1 = (\langle 0, t, \hat{T}_1 \rangle, \langle t, 1, \hat{T}_3 \rangle),$$

$$T_2 = (\langle 0, t, \hat{T}_2 \rangle, \langle t, 1, \hat{T}_3 \rangle).$$

Let $t \in [0,1]$. The mapping $\mathcal{T}_{T_1,T_2,t}$ defined by $\mathcal{T}_{T_1,T_2,t}(x,y) = [T_1(x_1,y_1), \max(T_2(t, T_2(x_2,y_2)), T_2(x_1,y_2), T_2(x_2,y_1))]$, for all x, y in L^I , is a t-norm on \mathcal{L}^I (see Example 2.6).

3 Triangular norms on \mathcal{L}^{I} which are meet-morphisms

Since $([0,1], \leq)$ is a chain, any t-norm on the unit interval is a join- and a meet-morphism. Furthermore, it is well-known that continuous t-norms on $([0,1], \leq)$ are sup- and inf-morphisms. For t-norms on product lattices, the following result holds.

Theorem 3.1 [4] Consider two bounded lattices $\mathcal{L}_1 = (L_1, \leq_{L_1})$ and $\mathcal{L}_2 = (L_2, \leq_{L^2})$ and a t-norm \mathcal{T} on the product lattice $\mathcal{L}_1 \times \mathcal{L}_2 =$ $(L_1 \times L_2, \leq)$, where $(x_1, x_2) \leq (y_1, y_2) \iff$ $(x_1 \leq_{L_1} y_1 \text{ and } x_2 \leq_{L_2} y_2)$, for all (x_1, x_2) , (y_1, y_2) in $L_1 \times L_2$. The t-norm \mathcal{T} is a join-morphism (resp. meet-morphism) if and only if there exist t-norms T_1 on \mathcal{L}_1 and T_2 on \mathcal{L}_2 which are join-morphisms (resp. meetmorphisms), such that for all (x_1, x_2) , (y_1, y_2) in $L_1 \times L_2$,

$$\mathcal{T}((x_1, x_2), (y_1, y_2)) = [T_1(x_1, y_1), T_2(x_2, y_2)].$$

On \mathcal{L}^{I} , the situation is more complicated. Not all t-norms on \mathcal{L}^{I} are join- and meetmorphisms. Consider the t-norm $\mathcal{T}'_{T_{P}}$ given by $\mathcal{T}'_{T_{P}}(x,y) = [\min(x_{1}y_{2}, x_{2}y_{1}), \max(x_{2}y_{2})],$ for all x, y in L^{I} . Then we have $\mathcal{T}'_{T_{P}}([0.2, 0.5], \sup([0.5, 0.5], [0, 1])) = \mathcal{T}'_{T_{P}}([0.2, 0.5], [0.5, 1]) = [0.2, 0.5] \neq [0.1, 0.5] = \sup([0.1, 0.25], [0, 0.5]) = \sup(\mathcal{T}'_{T_{P}}([0.2, 0.5], [0, 1])).$ So $\mathcal{T}'_{T_{P}}$ is not a joinmorphism. Similarly the t-norm $\mathcal{T}_{T_{P}}$ is not a meet-morphism.

Gehrke *et al.* [11] used the following definition for a t-norm on \mathcal{L}^I : a commutative, associative binary operation \mathcal{T} on \mathcal{L}^I is a t-norm if for all x, y, z in L^I ,

 $\begin{array}{ll} ({\rm G.1}) \ \ \mathcal{T}(D,D) \subseteq D, \\ ({\rm G.2}) \ \ \mathcal{T}(x,\sup(y,z)) = \sup(\mathcal{T}(x,y),\mathcal{T}(x,z)), \\ ({\rm G.3}) \ \ \mathcal{T}(x,\inf(y,z)) = \inf(\mathcal{T}(x,y),\mathcal{T}(x,z)), \\ ({\rm G.4}) \ \ \mathcal{T}(1_{\mathcal{L}^{I}},x) = x, \\ ({\rm G.5}) \ \ \mathcal{T}([0,1],x) = [0,x_2]. \end{array}$

They showed that such a t-norm is increasing, so their t-norms are a special case of the t-norms on \mathcal{L}^{I} as defined in Definition 2.5.

Clearly, commutative, associative binary operations on \mathcal{L}^{I} satisfying (G.1)–(G.5) are tnorms on \mathcal{L}^{I} which are join- and meet-morphisms. The two additional conditions (G.1) and (G.5) ensure that these t-norms are trepresentable, as is shown in the next theorem.

Theorem 3.2 [11] For every commutative, associative binary operation \mathcal{T} on \mathcal{L}^{I} satisfying (G.1)-(G.5) there exists a t-norm T on $([0,1], \leq)$ such that, for all x, y in L^{I} ,

$$\mathcal{T}(x,y) = [T(x_1,y_1), T(x_2,y_2)].$$

We can extend this result as follows.

Theorem 3.3 For any t-norm \mathcal{T} on \mathcal{L}^{I} satisfying (G.2) and (G.5) there exist t-norms T_{1} and T_{2} on ([0,1], \leq) such that, for all x, y in L^{I} ,

$$\mathcal{T}(x,y) = [T_1(x_1,y_1), T_2(x_2,y_2)].$$

Clearly, (G.5) is a rather restrictive condition. We will show that if this condition is not imposed, then the class of t-norms on \mathcal{L}^{I} satisfying the other conditions is much larger.

For continuous t-norms on \mathcal{L}^{I} we have the following relationship between sup- and join-morphism, and inf- and meet-morphisms.

Theorem 3.4 Let \mathcal{T} be a continuous t-norm on \mathcal{L}^{I} . Then

- (i) T is a sup-morphism if and only if T is a join-morphism;
- (ii) \mathcal{T} is an inf-morphism if and only if \mathcal{T} is a meet-morphism.

We extend Theorem 2.7 to t-norms on \mathcal{L}^{I} which are join-morphisms.

Theorem 3.5 Let $\mathcal{T} : (L^I)^2 \to L^I$ be a tnorm such that, for all $x \in D$ and $y_2 \in [0,1]$, $(\mathcal{T}(x, [y_2, y_2]))_2 = (\mathcal{T}(x, [0, y_2]))_2$. Then \mathcal{T} is a join-morphism if and only if there exist two t-norms T_1 and T_2 on $([0,1], \leq)$ and a real number $t \in [0,1]$ such that, for all $x, y \in L^I$,

$$\begin{aligned} \mathcal{T}(x,y) &= [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)) \\ & T_2(x_1,y_2), T_2(y_1,x_2))], \end{aligned}$$

and, for all x_1, y_1 in [0, 1],

$$\begin{cases} T_1(x_1, y_1) = T_2(x_1, y_1), \\ if \ T_2(x_1, y_1) > T_2(t, T_2(x_1, y_1)), \\ T_1(x_1, y_1) \le T_2(x_1, y_1), \ else. \end{cases}$$

Now we characterize the t-norms on \mathcal{L}^{I} belonging to the class $\mathcal{T}_{T_{1},T_{2},t}$ which are meetmorphisms. First we need some lemmas.

Lemma 3.6 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meetmorphism. Then $T_2(t, y_1) = \min(t, y_1)$, for all $y_1 \in [0, 1]$.

Corollary 3.7 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism. Then there exists two t-norms \hat{T}_1 and \hat{T}_2 on $([0,1],\leq)$ such that

$$T_2 = (\langle 0, t, \hat{T}_1 \rangle, \langle t, 1, \hat{T}_2 \rangle).$$

Proceedings of IPMU'08

Lemma 3.8 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet morphism. Then the t-norm \hat{T}_2 in the representation of T_2 given in Corollary 3.7 is equal to the minimum.

Corollary 3.9 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism. Then there exists a t-norm \hat{T}_1 on $([0,1],\leq)$ such that

$$T_2 = (\langle 0, t, \hat{T}_1 \rangle, \langle t, 1, \min \rangle).$$

Lemma 3.10 Assume that there exists a t-norm \hat{T}_1 on $([0,1], \leq)$ such that $T_2 = (\langle 0,t, \hat{T}_1 \rangle, \langle t, 1, \min \rangle)$, then $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism.

Now we obtain the main theorem.

Theorem 3.11 For any t-norms T_1 and T_2 on $([0,1], \leq)$ and $t \in [0,1]$, $\mathcal{T}_{T_1,T_2,t}$ is a meetmorphism if and only if there exists a t-norm \hat{T}_1 on $([0,1], \leq)$ such that $T_2 = (\langle 0, t, \hat{T}_1 \rangle, \langle t, 1, \min \rangle)$.

If we assume that $T_1 = T_2$, then we do not only obtain that T_1 is the ordinal sum of two t-norms on $([0,1], \leq)$, but we can also write the t-norm $\mathcal{T}_{T_1,T_1,t} = \mathcal{T}_{T_1,t}$ as an ordinal sum of two t-norms on \mathcal{L}^I . This is shown in the next theorem.

Theorem 3.12 For any t-norm T on $([0, 1], \leq)$ and $t \in [0, 1], T_{T,t}$ is a meet-morphism if and only if there exists a t-norm \hat{T}_1 on $([0, 1], \leq)$ such that

$$\mathcal{T}_{T,t} = (\emptyset; \langle 0_{\mathcal{L}^{I}}, [t,t], \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}} \rangle; \langle [t,t], 1_{\mathcal{L}^{I}}, \mathcal{T}_{\min} \rangle),$$

where, for all x, y in L^{I} ,

$$\begin{split} \mathcal{T}_{\hat{T}_1,\hat{T}_1}(x,y) &= [\hat{T}_1(x_1,y_1),\hat{T}_1(x_2,y_2)],\\ \mathcal{T}_{\min}(x,y) &= [\min(x_1,y_1),\max(\min(x_1,y_2),\\ \min(x_2,y_1))]. \end{split}$$

By combining Theorems 2.7 and 3.11, we obtain the following result.

Theorem 3.13 Let $\mathcal{T} : (L^I)^2 \to L^I$ be a tnorm such that, for all $x \in D$ and $y_2 \in [0, 1]$, $(\mathcal{T}(x, [y_2, y_2]))_2 = (\mathcal{T}(x, [0, y_2]))_2$. Then \mathcal{T} is a join-morphism and a meet-morphism if and only if there exist two t-norms T_1 and T_2 on $([0, 1], \leq)$ and a real number $t \in [0, 1]$ such that

- (i) $T_1(x_1, y_1) \leq T_2(x_1, y_1)$, for all x_1, y_1 in [0, 1],
- (ii) $T_1(x_1, y_1) = T_2(x_1, y_1)$, for all x_1, y_1 in [0, 1] such that $T_2(x_1, y_1) > t$,
- (iii) there exists a t-norm \hat{T}_1 on $([0,1],\leq)$ such that $T_2 = (\langle 0,t,\hat{T}_1 \rangle, \langle t,1,\min \rangle),$
- (iv) for all x, y in L^{I} ,

$$\begin{aligned} \mathcal{T}(x,y) &= [T_1(x_1,y_1), \max(T_2(t,\\ T_2(x_2,y_2)), T_2(x_1,y_2), T_2(x_2,y_1))]. \end{aligned}$$

4 Conclusion

In this paper we have investigated the class $\mathcal{T}_{T_1,T_2,t}$ of t-norms on \mathcal{L}^I which were introduced in [8]. We have found examples of tnorms in this class for which $T_1 \neq T_2$. We have found that a t-norm $\mathcal{T}_{T_1,T_2,t}$ is a meetmorphism if and only if T_2 can be represented as the ordinal sum of any t-norm on $([0,1],\leq)$ and the minimum. If we restrict ourselves to the case when $T_1 = T_2$, then $\mathcal{T}_{T_1,T_1,t}$ can itself be written as the ordinal sum of a trepresentable t-norm on \mathcal{L}^{I} and the pseudot-representable extension of the minimum on ([0,1],<) to \mathcal{L}^{I} . We have found a characterization of t-norms on \mathcal{L}^{I} which are join- and meet-morphisms and which satisfy an additional condition. For continuous t-norms \mathcal{T} on \mathcal{L}^{I} we have found that \mathcal{T} is a join-morphism if and only if \mathcal{T} is a sup-morphism (or, equivalently, \mathcal{T} satisfies the residuation principle); a similar relationship was found between infand meet-morphisms.

References

- K. T. Atanassov, Intuitionistic fuzzy sets, 1983, VII ITKR's Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, New York, 1999.
- [3] A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math., 76 (1954) 631–646.

- [4] B. De Baets and R. Mesiar, Triangular norms on product lattices, *Fuzzy Sets and Systems*, **104**(1) (1999) 61–75.
- [5] G. Deschrijver, A representation of tnorms in interval-valued L-fuzzy set theory, *Fuzzy Sets and Systems*, in press.
- [6] G. Deschrijver, Ordinal sums in intervalvalued fuzzy set theory, New Mathematics and Natural Computation, 1(2) (2005) 243–259.
- [7] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, *IEEE Transactions on Fuzzy Systems*, **12**(1) (2004) 45–61.
- [8] G. Deschrijver and E. E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, *International Journal of Uncertainty*, *Fuzziness and Knowledge-Based Systems*, **11**(6) (2003) 691–709.
- [9] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, *Fuzzy Sets and Systems*, 133(2) (2003) 227–235.
- [10] G. Deschrijver and E. E. Kerre, Implicators based on binary aggregation operators in interval-valued fuzzy set theory, *Fuzzy Sets and Systems*, **153**(2) (2005) 229–248.
- [11] M. Gehrke, C. L. Walker and E. A. Walker, Some comments on interval valued fuzzy sets, *International Journal of Intelligent Systems*, **11**(10) (1996) 751– 759.
- [12] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18(1) (1967) 145–174.
- [13] M. B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, *Fuzzy Sets and Systems*, **21**(1) (1987) 1–17.

- [14] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, *Fuzzy Sets and Systems*, **126**(2) (2002) 199–205.
- [15] C.-H. Ling, Representation of associative functions, *Publ. Math. Debrecen*, **12** (1965) 189–212.
- [16] R. Sambuc, Fonctions Φ-floues. Application à l'aide au diagnostic en pathologie thyroidienne, Ph.D. thesis, Université de Marseille, France, 1975.
- [17] S. Saminger, On ordinal sums of triangular norms on bounded lattices, *Fuzzy Sets* and Systems, **157**(10) (2006) 1403–1416.
- [18] B. Schweizer and A. Sklar, Associative functions and abstract semigroups, *Publ. Math. Debrecen*, **10** (1963) 69–81.