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Abstract

In this paper we consider a spe-
cial class of t-norms TT1,T2,t on the
lattice LI , where LI is the under-
lying lattice of both intuitionistic
fuzzy set theory (Atanassov, 1983)
and interval-valued fuzzy set the-
ory (Sambuc, 1975). We investi-
gate under which conditions these t-
norms are meet-morphisms. Using
these results, we obtain a charac-
terization for t-norms on LI which
are both join- and meet-morphisms
and which satisfy an additional con-
dition.

Keywords: Triangular norm, join-
morphism, meet-morphism, Atanas-
sov’s intuitionistic fuzzy set.

1 Introduction

Atanassov’s intuitionistic fuzzy set theory
[1, 2] is an extension of fuzzy set theory in
which to each element of the universe a mem-
bership and a non-membership degree is as-
signed. Unlike in fuzzy set theory, the sum of
these two degrees is only required to be less
than or equal to 1. Interval-valued fuzzy set
theory [13, 16] is another extension of fuzzy
set theory in which to each element of the uni-
verse a closed subinterval of the unit interval
is assigned which approximates the unknown
membership degree. In [9] it is shown that
Atanassov’s intuitionistic fuzzy set theory is
equivalent to interval-valued fuzzy set theory

and that both are equivalent to L-fuzzy set
theory in the sense of Goguen [12] w.r.t. a
special lattice LI .

Triangular norms on the unit interval are all
join- and meet-morphism, since the unit in-
terval is a chain. On the lattice LI , how-
ever, the situation is more complicated, as
there exist t-norms which are not a join- or
an inf-morphism. There exist several charac-
terizations for t-norms on LI which are join-
morphisms and which satisfy additional con-
ditions (see e.g. [5, 7, 8]). In this paper we
start the research on meet-morphisms. We
start from the class of t-norms TT1,T2,t intro-
duced in [8] and we investigate under which
conditions the t-norms of this class are meet-
morphisms. We also show that there are t-
norms in this class for which the t-norms T1

and T2 involved in the construction are not
equal to each other. Finally, we give a char-
acterization of t-norms on LI which are join-
and meet-morphisms and which satisfy an ad-
ditional condition.

2 The lattice LI

Definition 2.1 We define LI = (LI ,≤LI ),
where

LI ={[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2]≤LI [y1, y2]⇐⇒ (x1 ≤ y1 and x2 ≤ y2),

for all [x1, x2], [y1, y2] in LI .

Similarly as Lemma 2.1 in [9] it can be shown
that LI is a complete lattice.

Definition 2.2 [13, 16] An interval-valued
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fuzzy set on U is a mapping A : U → LI .

Definition 2.3 [1, 2] An intuitionistic fuzzy
set in the sense of Atanassov on U is a set

A = {(u, µA(u), νA(u)) | u ∈ U},

where µA(u) ∈ [0, 1] denotes the membership
degree and νA(u) ∈ [0, 1] the non-membership
degree of u in A and where for all u ∈ U ,
µA(u) + νA(u) ≤ 1.

An intuitionistic fuzzy set in the sense of
Atanassov A on U can be represented by the
LI -fuzzy set A given by

A : U → LI :
u 7→ [µA(u), 1− νA(u)],

In Figure 1 the set LI is shown. Note that
x = [x1, x2] ∈ LI is identified with the point
(x1, x2) ∈ R2.

[0, 0]

[1, 1][0, 1]

x1

x2

x = [x1, x2]

x1
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Figure 1: The grey area is LI .

In the sequel, if x ∈ LI , then we denote its
bounds by x1 and x2, i.e. x = [x1, x2]. The
length x2 − x1 of the interval x ∈ LI is called
the degree of uncertainty and is denoted by
xπ. The smallest and the largest element of
LI are given by 0LI = [0, 0] and 1LI = [1, 1].
Note that, for x, y in LI , x <LI y is equivalent
to x ≤LI y and x 6= y, i.e. either x1 < y1 and
x2 ≤ y2, or x1 ≤ y1 and x2 < y2. We define
the relation ≪LI by x ≪LI y ⇐⇒ x1 < y1

and x2 < y2, for x, y in LI . We define for
further usage the set D = {[x1, x1] | x1 ∈
[0, 1]}.

Note that for any non-empty subset A of LI

it holds that

sup A = [sup{x1 | x1 ∈ [0, 1] and
(∃x2 ∈ [x1, 1])([x1, x2] ∈ A)},
sup{x2 | x2 ∈ [0, 1] and
(∃x1 ∈ [0, x2])([x1, x2] ∈ A)}];

inf A = [inf{x1 | x1 ∈ [0, 1] and
(∃x2 ∈ [x1, 1])([x1, x2] ∈ A)},
inf{x2 | x2 ∈ [0, 1] and
(∃x1 ∈ [0, x2])([x1, x2] ∈ A)}].

Theorem 2.4 (Characterization of
supremum in LI) [7] Let A be an arbitrary
non-empty subset of LI and a ∈ LI . Then
a = sup A if and only if

(∀x ∈ A)(x ≤LI a)
and (∀ε1 > 0)(∃z ∈ A)(z1 > a1 − ε1)
and (∀ε2 > 0)(∃z ∈ A)(z2 > a2 − ε2).

Definition 2.5 A t-norm on LI is a com-
mutative, associative, increasing mapping T :
(LI)2 → LI which satisfies T (1LI , x) = x, for
all x ∈ LI .

A t-conorm on LI is a commutative, asso-
ciative, increasing mapping S : (LI)2 → LI

which satisfies S(0LI , x) = x, for all x ∈ LI .

Example 2.6 [8, 10] We give some special
classes of t-norms on LI . Let T , T1 and T2 be
t-norms on ([0, 1],≤) such that T1(x1, y1) ≤
T2(x1, y1) for all x1, y1 in [0, 1], and let t ∈
[0, 1]. Then we have the following classes:

• t-representable t-norms: TT1,T2(x, y) =
[T1(x1, y1), T2(x2, y2)], for all x, y in LI ;

• pseudo-t-representable t-norms: TT (x, y)
= [T (x1, y1), max(T (x1, y2), T (x2, y1))],
for all x, y in LI ;

• TT,t(x, y) = [T (x1, y1), max(T (t, T (x2,
y2)), T (x1, y2), T (x2, y1))], for all x, y in
LI ;

• T ′
T (x, y) = [min(T (x1, y2), T (x2, y1)),

T (x2, y2)], for all x, y in LI ;

• TT1,T2,t(x, y) = [T1(x1, y1), max(T2(t,
T2(x2, y2)), T2(x1, y2), T2(x2, y1))], for all
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x, y in LI , where T1 and T2 additionally
satisfy, for all x1, y1 in [0, 1],

T2(x1, y1) > T2(t, T2(x1, y1))
=⇒ T1(x1, y1) = T2(x1, y1).

(1)

In Theorem 5 of [8] (see Theorem 2.7) it
is shown that TT1,T2,t is indeed a t-norm
on LI if T1 and T2 satisfy (1).1

Let T be a t-norm on LI . We say that2

• T is a join-morphism if T (x, sup(y, z)) =
sup(T (x, y), T (x, z)), for all x, y, z in LI ;

• T is a meet-morphism if T (x, inf(y, z)) =
inf(T (x, y), T (x, z)), for all x, y, z in LI ;

• T is a sup-morphism if T (x, sup Z) =
supz∈Z T (x, z), for all x ∈ LI and ∅ ⊂
Z ⊆ LI ;

• T is an inf-morphism if T (x, inf Z) =
infz∈Z T (x, z), for all x ∈ LI and ∅ ⊂
Z ⊆ LI ;

• T satisfies the residuation principle if
T (x, y) ≤LI z ⇐⇒ y ≤LI IT (x, z), for
all x, y, z in LI , where IT (x, z) = sup{y |
y ∈ LI and T (x, y) ≤LI z}, for all x, z in
LI .

Similarly as for t-norms on the unit interval, a
t-norm T on LI satisfies the residuation prin-
ciple if and only if T is a sup-morphism [7].

Theorem 2.7 [8] Let T : (LI)2 → LI be a t-
norm such that, for all x ∈ D and y2 ∈ [0, 1],
(T (x, [y2, y2]))2 = (T (x, [0, y2]))2. Then T
satisfies the residuation principle if and only if
there exist two left-continuous t-norms T1 and
T2 on ([0, 1],≤) and a real number t ∈ [0, 1]
such that, for all x, y ∈ LI ,

T (x, y) = [T1(x1, y1), max(T2(t, T2(x2, y2)),
T2(x1, y2), T2(y1, x2))],

1Note that the condition in Theorem 5 of [8] that
T1 and T2 are left-continuous is not used to prove that
TT1,T2,t is a t-norm.

2Note that for simplicity we call a t-norm a join-
morphism if its partial mappings are join-morphisms,
and similarly for meet-, sup- and inf-morphisms.

and, for all x1, y1 in [0, 1],
T1(x1, y1) = T2(x1, y1),

if T2(x1, y1) > T2(t, T2(x1, y1)),
T1(x1, y1) ≤ T2(x1, y1), else.

If for a mapping f on [0, 1] and a mapping F
on LI it holds that F (D) ⊆ D̄, and F ([a, a]) =
[f(a), f(a)], for all a ∈ [0, 1], then we say that
F is a natural extension of f to LI . E.g. TT,T ,
TT , TT,t and T ′

T are all natural extensions of
T to LI .

Example 2.8 Let, for all x, y in [0, 1],

TW (x, y) = max(0, x + y − 1),
TP (x, y) = xy,

TD(x, y) =

{
min(x, y), if max(x, y) = 1,

0, else,

SW (x, y) = min(1, x + y).

Then TW , TP and TD are t-norms, and SW

and SP are t-conorms on ([0, 1],≤). Let now,
for all x, y in LI ,

TW (x, y) = [max(0, x1 + y1 − 1),
max(0, x1 + y2 − 1, x2 + y1 − 1)],

TP (x, y) = [x1y1, max(x1y2, x2y1)],
SW (x, y) = [min(1, x1 + y2, x2 + y1), x2 + y2].

Then TW and TP are t-norms, and SW is a
t-conorm on LI . Furthermore, TW , TP and
SW are natural extensions of TW , TP and SW

respectively. The t-norms TW , TP , TW and
TP satisfy the residuation principle.

We will also need the following result and def-
inition (see [3, 14, 15, 17, 18]).

Theorem 2.9 Let (Tα)α∈A be a family of
t-norms and (]aα, eα[)α∈A be a family of non-
empty, pairwise disjoint open subintervals of
[0, 1]. Then the function T : [0, 1]2 → [0, 1]
defined by, for all x, y in [0, 1],

T (x, y) =



aα + (eα − aα)

· Tα

(
x− aα

eα − aα
,

y − aα

eα − aα

)
,

if (x, y) ∈ [aα, eα]2,
min(x, y), otherwise,

(2)
is a t-norm on ([0, 1],≤).
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Figure 2: The different positions of x, y ∈
LI , where Tα([0, 1], [0, 1]) = [0, 1], Tk([0, 1],
[0, 1]) = [0, t] and Tβ([0, 1], [0, 1]) = [0, 0]. The
value of (T (x, y))2 is calculated at the ending
points of the arrows.

Definition 2.10 Let (Tα)α∈A be a family of
t-norms and (]aα, eα[)α∈A be a family of non-
empty, pairwise disjoint open subintervals of
[0, 1]. The t-norm T defined by (2) is called
the ordinal sum of the summands 〈aα, eα, Tα〉,
α ∈ A, and we will write

T = (〈aα, eα, Tα〉)α∈A.

Let A be an arbitrary countable index-set and
Tα a t-norm on LI , for all α ∈ A. Define, for
all α ∈ A, the following sets and mappings:

Jα = {x | x ∈ LI and aα ≤LI x ≤LI eα},
where (aα, eα) ∈ D2 and aα <LI eα;

J∗α = {x | x ∈ LI and x1 > (aα)1
and x2 ≤ (eα)2};

Φα : Jα → LI :

x 7→
[

x1 − (aα)1
(eα)1 − (aα)1

,
x2 − (aα)2

(eα)2 − (aα)2

]
,

∀x ∈ Jα;

Φ−1
α : LI → Jα :

x 7→ [(aα)1 + x1((eα)1 − (aα)1),
(aα)2 + x2((eα)2 − (aα)2)],

∀x ∈ LI ;

T ′
α = Φ−1

α ◦ Tα ◦ (Φα × Φα).

Assume that J∗α ∩ J∗β = ∅, for any α, β ∈ A.
Our aim is to construct a t-norm T on LI

satisfying the residuation principle such that
T ∣∣

J∗α×J∗α
= T ′

i .

Assume that Tk([0, 1], [0, 1]) = [0, t], for a cer-
tain k ∈ A, where t ∈ [0, 1]. Denote by A< the
set A< = {α | α ∈ A and aα <LI ak} and by
A> the set A> = {α | α ∈ A and aα >LI ak}.
If t ∈ ]0, 1[, then Tα([0, 1], [0, 1]) = [0, 1], for
all α ∈ A<, and Tα([0, 1], [0, 1]) = [0, 0], for
all α ∈ A> (see [6, Theorem 4.2]). If t = 0
or t = 1, then we assume from now on that
these equalities hold.

Theorem 2.11 [6] Let, for all α ∈ A, Tα :
[0, 1]2 → [0, 1] be the mapping defined by, for
all x1, y1 in [0, 1],

Tα(x1, y1) = (Tα([x1, x1], [y1, y1]))1,

and let T be the ordinal sum of 〈(aα)1, (eα)1,
Tα〉, α ∈ A. Define the mapping T : (LI)2 →
LI by, for all x, y ∈ LI ,

(T (x, y))1 = T (x1, y1),
(T (x, y))2

=



(T ′
α([max(x1, (aα)1), min(x2, (eα)2)],

[max(y1, (aα)1), min(y2, (eα)2)]))2,
if (x2 ∈ ](aα)2, (eα)2] and y2 > (aα)2

and y1 ≤ (eα)1 and α ∈ A<)
or (y2 ∈ ](aα)2, (eα)2] and x2 > (aα)2

and x1 ≤ (eα)1 and α ∈ A<)
or (x1 ∈ ](aα)1, (eα)1] and y2 > (aα)2

and y1 ≤ (eα)1 and α ∈ A>)
or (y1 ∈ ](aα)1, (eα)1] and x2 > (aα)2

and x1 ≤ (eα)1 and α ∈ A>)
or (x2 > (aα)2 and x1 ≤ (eα)1

and y2 > (aα)2 and y1 ≤ (eα)1
and α = k),

min(x2, y2), if the previous conditions do
not hold and (x2≤(ak)2 or y2≤(ak)2),

min(x2, y1), if the previous conditions do
not hold and x1 ≤ y1,

min(y2, x1), else.

Then T is a t-norm on LI called the ordinal
sum of the summands 〈aα, eα, Tα〉, α ∈ A, and
we write

T = ((〈aα, eα, Tα〉)α∈A< ; 〈ak, ek, Tk〉;
(〈aα, eα, Tα〉)α∈A>).
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In spite of the characterization given in The-
orem 2.7, no t-norms of the class TT1,T2,t have
yet been found for which T1 6= T2. In the
following example we show that there do ex-
ist different t-norms T1 and T2 for which the
mapping TT1,T2,t defined in Example 2.6 is a
t-norm on LI .

Example 2.12 Let T̂1, T̂2 and T̂3 be t-norms
on ([0, 1],≤) such that T̂1 ≤ T̂2. Let further-
more t ∈ [0, 1]. Define the t-norms T1 and T2

by

T1 = (〈0, t, T̂1〉, 〈t, 1, T̂3〉),
T2 = (〈0, t, T̂2〉, 〈t, 1, T̂3〉).

Then T2(x1, y1) > T2(t, T2(x1, y1)) = min(t,
T2(x1, y1)) ⇐⇒ T2(x1, y1) > t =⇒
min(x1, y1) > t, for all x1, y1 in [0, 1]. It
can be easily verified that T1 ≤ T2 and
T1(x1, y1) = T2(x1, y1), for all x1, y1 in ]t, 1]2.
Clearly, if T̂1 6= T̂2, then T1 6= T2.

Let t ∈ [0, 1]. The mapping TT1,T2,t de-
fined by TT1,T2,t(x, y) = [T1(x1, y1), max(T2(t,
T2(x2, y2)), T2(x1, y2), T2(x2, y1))], for all x, y
in LI , is a t-norm on LI (see Example 2.6).

3 Triangular norms on LI which
are meet-morphisms

Since ([0, 1],≤) is a chain, any t-norm on the
unit interval is a join- and a meet-morphism.
Furthermore, it is well-known that continu-
ous t-norms on ([0, 1],≤) are sup- and inf-
morphisms. For t-norms on product lattices,
the following result holds.

Theorem 3.1 [4] Consider two bounded lat-
tices L1 = (L1,≤L1) and L2 = (L2,≤L2) and
a t-norm T on the product lattice L1 × L2 =
(L1 × L2,≤), where (x1, x2) ≤ (y1, y2) ⇐⇒
(x1 ≤L1 y1 and x2 ≤L2 y2), for all (x1, x2),
(y1, y2) in L1 × L2. The t-norm T is a
join-morphism (resp. meet-morphism) if and
only if there exist t-norms T1 on L1 and T2

on L2 which are join-morphisms (resp. meet-
morphisms), such that for all (x1, x2), (y1, y2)
in L1 × L2,

T ((x1, x2), (y1, y2)) = [T1(x1, y1), T2(x2, y2)].

On LI , the situation is more complicated.
Not all t-norms on LI are join- and meet-
morphisms. Consider the t-norm T ′

TP
given

by T ′
TP

(x, y) = [min(x1y2, x2y1), max(x2y2)],
for all x, y in LI . Then we have T ′

TP
([0.2,

0.5], sup([0.5, 0.5], [0, 1])) = T ′
TP

([0.2, 0.5],
[0.5, 1]) = [0.2, 0.5] 6= [0.1, 0.5] = sup([0.1,
0.25], [0, 0.5]) = sup(T ′

TP
([0.2, 0.5], [0.5, 0.5]),

T ′
TP

([0.2, 0.5], [0, 1])). So T ′
TP

is not a join-
morphism. Similarly the t-norm TTP

is not a
meet-morphism.

Gehrke et al. [11] used the following definition
for a t-norm on LI : a commutative, associa-
tive binary operation T on LI is a t-norm if
for all x, y, z in LI ,

(G.1) T (D, D) ⊆ D,

(G.2) T (x, sup(y, z)) = sup(T (x, y), T (x, z)),

(G.3) T (x, inf(y, z)) = inf(T (x, y), T (x, z)),

(G.4) T (1LI , x) = x,

(G.5) T ([0, 1], x) = [0, x2].

They showed that such a t-norm is increasing,
so their t-norms are a special case of the t-
norms on LI as defined in Definition 2.5.

Clearly, commutative, associative binary op-
erations on LI satisfying (G.1)–(G.5) are t-
norms on LI which are join- and meet-mor-
phisms. The two additional conditions (G.1)
and (G.5) ensure that these t-norms are t-
representable, as is shown in the next theo-
rem.

Theorem 3.2 [11] For every commutative,
associative binary operation T on LI satis-
fying (G.1)–(G.5) there exists a t-norm T on
([0, 1],≤) such that, for all x, y in LI ,

T (x, y) = [T (x1, y1), T (x2, y2)].

We can extend this result as follows.

Theorem 3.3 For any t-norm T on LI sat-
isfying (G.2) and (G.5) there exist t-norms T1

and T2 on ([0, 1],≤) such that, for all x, y in
LI ,

T (x, y) = [T1(x1, y1), T2(x2, y2)].
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Clearly, (G.5) is a rather restrictive condition.
We will show that if this condition is not im-
posed, then the class of t-norms on LI satis-
fying the other conditions is much larger.

For continuous t-norms on LI we have the
following relationship between sup- and join-
morphism, and inf- and meet-morphisms.

Theorem 3.4 Let T be a continuous t-norm
on LI . Then

(i) T is a sup-morphism if and only if T
is a join-morphism;

(ii) T is an inf-morphism if and only if T
is a meet-morphism.

We extend Theorem 2.7 to t-norms on LI

which are join-morphisms.

Theorem 3.5 Let T : (LI)2 → LI be a t-
norm such that, for all x ∈ D and y2 ∈ [0, 1],
(T (x, [y2, y2]))2 = (T (x, [0, y2]))2. Then T is
a join-morphism if and only if there exist two
t-norms T1 and T2 on ([0, 1],≤) and a real
number t ∈ [0, 1] such that, for all x, y ∈ LI ,

T (x, y) = [T1(x1, y1), max(T2(t, T2(x2, y2)),
T2(x1, y2), T2(y1, x2))],

and, for all x1, y1 in [0, 1],
T1(x1, y1) = T2(x1, y1),

if T2(x1, y1) > T2(t, T2(x1, y1)),
T1(x1, y1) ≤ T2(x1, y1), else.

Now we characterize the t-norms on LI be-
longing to the class TT1,T2,t which are meet-
morphisms. First we need some lemmas.

Lemma 3.6 Assume that TT1,T2,t is a meet-
morphism. Then T2(t, y1) = min(t, y1), for
all y1 ∈ [0, 1].

Corollary 3.7 Assume that TT1,T2,t is a
meet-morphism. Then there exists two t-
norms T̂1 and T̂2 on ([0, 1],≤) such that

T2 = (〈0, t, T̂1〉, 〈t, 1, T̂2〉).

Lemma 3.8 Assume that TT1,T2,t is a meet
morphism. Then the t-norm T̂2 in the repre-
sentation of T2 given in Corollary 3.7 is equal
to the minimum.

Corollary 3.9 Assume that TT1,T2,t is a
meet-morphism. Then there exists a t-norm
T̂1 on ([0, 1],≤) such that

T2 = (〈0, t, T̂1〉, 〈t, 1, min〉).
Lemma 3.10 Assume that there exists a
t-norm T̂1 on ([0, 1],≤) such that T2 = (〈0, t,
T̂1〉, 〈t, 1, min〉), then TT1,T2,t is a meet-mor-
phism.

Now we obtain the main theorem.

Theorem 3.11 For any t-norms T1 and T2

on ([0, 1],≤) and t ∈ [0, 1], TT1,T2,t is a meet-
morphism if and only if there exists a t-norm
T̂1 on ([0, 1],≤) such that T2 = (〈0, t, T̂1〉, 〈t, 1,
min〉).
If we assume that T1 = T2, then we do not
only obtain that T1 is the ordinal sum of two
t-norms on ([0, 1],≤), but we can also write
the t-norm TT1,T1,t = TT1,t as an ordinal sum
of two t-norms on LI . This is shown in the
next theorem.

Theorem 3.12 For any t-norm T on ([0, 1],
≤) and t ∈ [0, 1], TT,t is a meet-morphism if
and only if there exists a t-norm T̂1 on ([0, 1],
≤) such that

TT,t = (∅; 〈0LI , [t, t], TT̂1,T̂1
〉; 〈[t, t], 1LI , Tmin〉),

where, for all x, y in LI ,

TT̂1,T̂1
(x, y) = [T̂1(x1, y1), T̂1(x2, y2)],

Tmin(x, y) = [min(x1, y1), max(min(x1, y2),
min(x2, y1))].

By combining Theorems 2.7 and 3.11, we ob-
tain the following result.

Theorem 3.13 Let T : (LI)2 → LI be a t-
norm such that, for all x ∈ D and y2 ∈ [0, 1],
(T (x, [y2, y2]))2 = (T (x, [0, y2]))2. Then T is
a join-morphism and a meet-morphism if and
only if there exist two t-norms T1 and T2 on
([0, 1],≤) and a real number t ∈ [0, 1] such
that
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(i) T1(x1, y1) ≤ T2(x1, y1), for all x1, y1 in
[0, 1],

(ii) T1(x1, y1) = T2(x1, y1), for all x1, y1 in
[0, 1] such that T2(x1, y1) > t,

(iii) there exists a t-norm T̂1 on ([0, 1],≤)
such that T2 = (〈0, t, T̂1〉, 〈t, 1, min〉),

(iv) for all x, y in LI ,

T (x, y) = [T1(x1, y1), max(T2(t,
T2(x2, y2)), T2(x1, y2), T2(x2, y1))].

4 Conclusion

In this paper we have investigated the class
TT1,T2,t of t-norms on LI which were intro-
duced in [8]. We have found examples of t-
norms in this class for which T1 6= T2. We
have found that a t-norm TT1,T2,t is a meet-
morphism if and only if T2 can be represented
as the ordinal sum of any t-norm on ([0, 1],≤)
and the minimum. If we restrict ourselves
to the case when T1 = T2, then TT1,T1,t can
itself be written as the ordinal sum of a t-
representable t-norm on LI and the pseudo-
t-representable extension of the minimum on
([0, 1],≤) to LI . We have found a character-
ization of t-norms on LI which are join- and
meet-morphisms and which satisfy an addi-
tional condition. For continuous t-norms T on
LI we have found that T is a join-morphism
if and only if T is a sup-morphism (or, equiv-
alently, T satisfies the residuation principle);
a similar relationship was found between inf-
and meet-morphisms.
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