Convergence of P -observables

Katarína Čunderlíková
Faculty of Natural Sciences
Matej Bel University
Department of Mathematics
Tajovského 40
SK-974 01 Banská Bystrica
lendelov@fpv.umb.sk

Abstract

In [2] K. T. Atanassov and B. Riečan studied a new type of probability on the family of IF-events $\mathcal{N}=$ $\left\{\left(\mu_{A}, \nu_{A}\right) ; \mu_{A}, \nu_{A}: \Omega \rightarrow[0,1], \mu_{A}+\right.$ $\left.\nu_{A} \leq 1\right\}$, where μ_{A}, ν_{A} are \mathcal{S} measurable functions, using following pair of connectives $$
\begin{aligned} a \oplus b & =a+b-a \cdot b, \\ a \odot b & =a \cdot b \end{aligned}
$$

They called it the P-probability. In this paper we define three types of convergence of P-observables. We show the relation between convergence of P-observables and convergence of corresponding random variables. Keywords: Convergence in distribution, Convergence in measure m, Convergence m-almost everywhere, P-probability, P-observable.

1 Introduction

Recently the probability on IF-events has been constructed. Let (Ω, \mathcal{S}, P) be a classical probability space. An IF-event $A=\left(\mu_{A}, \nu_{A}\right)$ is a couple of \mathcal{S}-measurable function with respect to a σ-algebra of subsets of Ω such that $\mu_{A}(\omega)+\nu_{A}(\omega) \leq 1$ for each $\omega \in \Omega([1])$.
In [4] P. Grzegorzewski and E. Mrówka defined the probability on the family $\mathcal{N}=\left\{\left(\mu_{A}, \nu_{A}\right) ; \mu_{A}, \nu_{A}\right.$ are $\mathcal{S}-$
measurable and $\left.\mu_{A}+\nu_{A} \leq 1\right\}$ as a mapping \mathcal{P} from the family \mathcal{N} to the set of all compact intervals in \mathbf{R} by the formula

$$
\mathcal{P}\left(\left(\mu_{A}, \nu_{A}\right)\right)=\left[\int_{\Omega} \mu_{A} d P, 1-\int_{\Omega} \nu_{A} d P\right] .
$$

This IF-probability was axiomatically characterized by B. Riečan (see[13]).
More general situation was studied in [12], where author introduced the notion of IFprobability on the family $\mathcal{F}=\{(f, g) ; f, g \in$ \mathcal{T}, \mathcal{T} is Lukasiewicz tribe and $f+g \leq 1\}$ as a mapping \mathcal{P} from the family \mathcal{F} to the family \mathcal{J} of all closed intervals $[a, b]$ such that $0 \leq a \leq b \leq 1$. Variant of Central limit theorem and Weak law of large numbers were proved as an illustration of method applied on these IF-events. It can see in the papers [10], [11].
More general situation was used in [9]. The authors defined the probability on the family $\mathcal{M}=\{(a, b) \in M, a+b \leq u\}$, where M is σ complete MV-algebra, which can be identified with the unit interval of a unique ℓ-group G with strong unit u, in symbols,

$$
M=\Gamma(G, u)=([0, u], 0, u, \neg, \oplus, \odot)
$$

where

$$
\begin{aligned}
{[0, u] } & =\{a \in G ; 0 \leq a \leq u\}, \\
\neg a=u-a & , \quad a \oplus b=(a+b) \wedge u, \\
a \odot b & =(a+b-u) \vee 0
\end{aligned}
$$

(see [15]). We say that G is the ℓ-group (with strong unit u) corresponding to M.

By an ℓ-group we shall mean a lattice-ordered Abelian group. For any ℓ-group G, an element $u \in G$ is said to be a strong unit of G, if for all $a \in G$ there is an integer $n \geq 1$ such that $n u \geq a$. Convergence of IF-observables and Strong law of large numbers for IF-events were proved as an illustration of method applied on these IF-events. It can see in the papers [6], [7].
Later M. Krachounov defined an IFprobability theory based on the connectives

$$
\begin{aligned}
& a \oplus b=\max (a, b) \\
& a \odot b=\min (a, b)
\end{aligned}
$$

(see [5]). B. Riečan called it M-probability theory and he studied the notion of Mobservable and the notion of joint M observable. He proved the Central limit theorem for this kind of independent IFobservables, too. It can see in a paper [14].

In [2] K. T. Atanassov and B. Riečan studied a new type of probability on the family of IFevents
$\mathcal{N}=\left\{\left(\mu_{A}, \nu_{A}\right) ; \mu_{A}, \nu_{A}: \Omega \rightarrow[0,1], \mu_{A}+\nu_{A} \leq 1\right\}$, where μ_{A}, ν_{A} are \mathcal{S}-measurable functions, using following pair of connectives

$$
\begin{aligned}
& a \oplus b=a+b-a \cdot b \\
& a \odot b=a \cdot b
\end{aligned}
$$

They called it the P-probability and they proved the Central limit theorem.

In this paper we define three types of convergence of P-observables. We show the relation between convergence of P-observables and convergence of corresponding random variables. In Section 2 we introduce the operations on \mathcal{N} and \mathcal{J}, where \mathcal{J} is the family of all closed intervals $[a, b]$ such that $0 \leq a \leq b \leq$

1. We introduce the notion of P-probability on \mathcal{N} and the notion of independence of P observables, too.

2 Basic notions

Now we introduce operations on \mathcal{N}. Let $A=$ $\left(\mu_{A}, \nu_{A}\right), B=\left(\mu_{B}, \nu_{B}\right)$. Then we define
$A \oplus_{P} B=\left(\mu_{A}+\mu_{B}-\mu_{A} \cdot \mu_{B}, \nu_{A} \cdot \nu_{B}\right)$,

$$
A \odot_{P} B=\left(\mu_{A} \cdot \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \cdot \nu_{B}\right)
$$

If $A_{n}=\left(\mu_{A_{n}}, \nu_{A_{n}}\right)$, then we write

$$
A_{n} \nearrow A \Longleftrightarrow \mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}
$$

An P-probability \mathcal{P} on \mathcal{N} is a mapping from \mathcal{N} to the family \mathcal{J} of all closed intervals $[a, b]$ such that $0 \leq a \leq b \leq 1$. Here we define

$$
\begin{gathered}
{[a, b]+[c, d]=[a+c, b+d]} \\
{\left[a_{n}, b_{n}\right] \nearrow[a, b] \Longleftrightarrow a_{n} \nearrow a, b_{n} \nearrow b .}
\end{gathered}
$$

By an P-probability on \mathcal{N} we understand each function $\mathcal{P}: \mathcal{N} \rightarrow \mathcal{J}$ satisfying the following properties:
(i) $\mathcal{P}((1,0))=[1,1] ; \mathcal{P}((0,1))=[0,0]$;
(ii) if $A \odot_{P} B=(0,1)$ and $A, B \in \mathcal{N}$, then $\mathcal{P}\left(A \oplus_{P} B\right)=\mathcal{P}(A)+\mathcal{P}(B) ;$
(iii) if $A_{n} \nearrow A$, then $\mathcal{P}\left(A_{n}\right) \nearrow \mathcal{P}(A)$.

By an P-state we understand each mapping $m: \mathcal{N} \rightarrow[0,1]$ satisfying the following properties:
(i) $m((1,0))=1, m((0,1))=0$;
(ii) $A \odot_{P} B=(0,1) \Longrightarrow m\left(A \oplus_{P} B\right)=$ $m(A)+m(B)$;
(iii) $A_{n} \nearrow A \Longrightarrow m\left(A_{n}\right) \nearrow m(A)$.

The next important notions are the notion of P-observable and the notion of independence.
By an P-observable on \mathcal{N} we understand any mapping $x: \mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ satisfying the following conditions:
(i) $x(\mathbf{R})=(1,0), x(\emptyset)=(0,1)$;
(ii) if $A \cap B=\emptyset$, then $x(A) \odot_{P} x(B)=(0,1)$ and $x(A \cup B)=x(A) \oplus_{P} x(B)$;
(iii) if $A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow x(A)$.

By an joint P-observable of P-observables $x, y: \mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ we understand each mapping $h: \mathcal{B}\left(\mathbf{R}^{2}\right) \rightarrow \mathcal{N}$ satisfying the following conditions:
(i) $h\left(\mathbf{R}^{\mathbf{2}}\right)=(1,0), h(\emptyset)=(0,1)$;
(ii) if $A \cap B=\emptyset$, then $h(A) \odot_{P} h(B)=(0,1)$ and $h(A \cup B)=h(A) \oplus_{P} h(B)$;
(iii) $A_{n} \nearrow A \Longrightarrow h\left(A_{n}\right) \nearrow h(A)$;
(iv) $h(C \times D)=x(C) \cdot y(D)$ for any $C, D \in$ $\mathcal{B}(\mathbf{R})$.

Here $C \cdot D=\left(\mu_{C}, \nu_{C}\right) \cdot\left(\mu_{D}, \nu_{D}\right)=\left(\mu_{C} \cdot \mu_{D}, 1-\right.$ $\left.\left(1-\nu_{C}\right) \cdot\left(1-\nu_{D}\right)\right)$.

We say that \mathbf{P}-observables x_{1}, \ldots, x_{n} are independent, if for each $C_{1}, \ldots, C_{n} \in \mathcal{B}(R)$ holds
$m\left(h_{n}\left(C_{1} \times \ldots \times C_{n}\right)\right)=m\left(x_{1}\left(C_{1}\right)\right) \cdot \ldots \cdot m\left(x\left(C_{n}\right)\right)$, where $h_{n}: \mathcal{B}\left(\mathbf{R}^{n}\right) \rightarrow \mathcal{N}$ is the joint P observable of P -observables x_{1}, \ldots, x_{n} and $m: \mathcal{N} \rightarrow[0,1]$ is the P-state.

3 Convergence on P-probability

In this section we introduce the notion of a function of several P-observables and define three types of convergence for P-observables. We show the relation between convergence of sequence of P-observables and sequence of corresponding random variables, too.

If we have several independent observables and a Borel measurable function, we can define the observable, which is the function of several observables. About this says the following definition.

Definition 3.1 Let $x_{1}, \ldots, x_{n}: \mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ be the independent P-observables and g_{n} : $\mathbf{R}^{n} \rightarrow \mathbf{R}$ be a Borel measurable function. Then the P-observable $y_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right)$: $\mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ is defined by the equality

$$
y_{n}=h_{n} \circ g_{n}^{-1}
$$

where $h_{n}: \mathcal{B}\left(\mathbf{R}^{n}\right) \quad \rightarrow \mathcal{N}$ is the n dimensional P-observable (joint P-observable of x_{1}, \ldots, x_{n}).

Example 3.2 Let $x_{1}, \ldots, x_{n}: \mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ be independent P-observables and $h_{n}: \mathcal{B}\left(\mathbf{R}^{n}\right) \rightarrow$ \mathcal{N} be their joint P-observable. Then

1. the P-observable $y_{n}=\frac{\sqrt{n}}{\sigma}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}-a\right)$ is defined by the equality

$$
y_{n}=h_{n} \circ g_{n}^{-1}
$$

where $g_{n}\left(u_{1}, \ldots, u_{n}\right)=\frac{\sqrt{n}}{\sigma}\left(\frac{1}{n} \sum_{i=1}^{n} u_{i}-a\right)$;
2. the P-observable $y_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is defined by the equality

$$
y_{n}=h_{n} \circ g_{n}^{-1}
$$

where $g_{n}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} u_{i}$;
3. the P-observable $y_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-E\left(x_{i}\right)\right)$ is defined by the equality

$$
y_{n}=h_{n} \circ g_{n}^{-1}
$$

where
$g_{n}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(u_{i}-E\left(x_{i}\right)\right)$.

Also we need the notion of P-distribution function.

Definition 3.3 Let $m: \mathcal{N} \rightarrow[0,1]$ be an $P-$ state and $x: \mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ be an P-observable. Then a mapping $F: \mathbf{R} \rightarrow[0,1]$ defined by formula

$$
F(t)=m \circ x((-\infty, t))
$$

for each $t \in \mathbf{R}$, is called a distribution function.

Definition 3.4 Let $\left(y_{i}\right)_{1}^{\infty}$ be a sequence of $P-$ observables and m be an P-state.
(i) The sequence is said to be convergent in distribution to a function $F: \mathbf{R} \rightarrow[0,1]$ if for each $t \in \mathbf{R}$

$$
\lim _{n \rightarrow \infty}\left(m \circ y_{n}\right)((-\infty, t))=F(t)
$$

(ii) The sequence is said to be convergent in measure m to 0 if for each $0<\varepsilon, \varepsilon \in \mathbf{R}$

$$
\lim _{n \rightarrow \infty}\left(m \circ y_{n}\right)((-\varepsilon, \varepsilon))=1
$$

(iii) We say that the sequence converges malmost everywhere to 0 , if
$\lim _{p \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} m\left(\bigwedge_{n=k}^{k+i} y_{n}\left(-\frac{1}{p}, \frac{1}{p}\right)\right)=1$.
Theorem 3.5 Let $\left(y_{i}\right)_{1}^{\infty}$ be a sequence of P observables, $y_{n}: \mathcal{B}(R) \rightarrow \mathcal{N}, h_{n}: \mathcal{B}\left(\mathbf{R}^{n}\right) \rightarrow$ \mathcal{N} their joint P-observable. For each $n=$ $1,2, \ldots$ let $g_{n}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a Borel function. Let further the P-observable $y_{n}: \mathcal{B}(\mathbf{R}) \rightarrow \mathcal{N}$ be given by $y_{n}=h_{n} \circ g_{n}^{-1}=g_{n}\left(x_{1}, \ldots, x_{n}\right)$, $n=1,2, \ldots$. Then there exists a probability space (X, \mathcal{S}, P) and a sequence $\left(\xi_{n}\right)_{1}^{\infty}$ of random variables, $\xi_{n}: X \rightarrow \mathbf{R}$ such that if $\eta_{n}=g_{n}\left(\xi_{1}, \ldots, \xi_{n}\right), n=1,2, \ldots$, then
(i) the sequence y_{1}, y_{2}, \ldots converges in distribution to a function F if and only if so does the sequence $\eta_{1}, \eta_{2}, \ldots$;
(ii) y_{1}, y_{2}, \ldots converges to 0 in measure m if and only if $\eta_{1}, \eta_{2}, \ldots$ converges to 0 in measure P;
(iii) if $\eta_{1}, \eta_{2}, \ldots$ converges P-almost everywhere to 0 , then y_{1}, y_{2}, \ldots converges m almost everywhere to 0 .

Proof. Put $X=\mathbf{R}^{N}, \mathcal{S}=\sigma(\mathcal{C})$, where \mathcal{C} is the family of all cylinders in R^{N}. Put $m_{n}=$ $m \circ h_{n}$. Then $\left\{m_{n} ; n \in N\right\}$ form a consistent family of probability measures $m_{n}: \mathcal{B}\left(\mathbf{R}^{n}\right) \rightarrow$ $[0,1]$, i.e.
$m_{n+1}(A \times R)=m_{n}(A), A \in \mathcal{B}\left(\mathbf{R}^{n}\right), n=1,2, \ldots$
By the Kolmogorov theorem there exists exactly one probability measure $P: \sigma(\mathcal{C}) \rightarrow$ $[0,1]$ such that

$$
P \circ \pi_{n}^{-1}=m_{n}, n=1,2, \ldots
$$

where $\pi_{n}: \mathbf{R}^{N} \rightarrow \mathbf{R}^{n}$ is the projection. Put
$\left.\xi_{n}: \mathbf{R}^{N} \rightarrow \mathbf{R}, \xi_{n}\left(\left(u_{i}\right)_{i=1}^{\infty}\right)\right)=u_{n}, n=1,2, \ldots$
Then

$$
\begin{aligned}
P\left(\eta_{n}^{-1}(A)\right) & =P\left(\left(g_{n}\left(\xi_{1}, \ldots, \xi_{n}\right)\right)^{-1}(A)\right)= \\
& =P\left(\pi_{n}^{-1}\left(g_{n}^{-1}(A)\right)\right)= \\
& =m\left(h_{n}\left(g_{n}^{-1}(A)\right)\right)=m\left(y_{n}(A)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
m\left(y_{n}(-\infty, t)\right) & =P\left(\eta_{n}^{-1}(-\infty, t)\right) \\
m\left(y_{n}((-\varepsilon, \varepsilon))\right) & =P\left(\eta_{n}^{-1}((-\varepsilon, \varepsilon))\right)
\end{aligned}
$$

what implies (i) and (ii). Let now η_{n} converges to $0 P$-almost everywhere. We have

$$
\begin{aligned}
& P\left(\bigcap_{n=k}^{k+i} \eta_{n}^{-1}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right)= \\
= & m\left(h _ { k + i } \left(\bigcap _ { n = k } ^ { k + i } \left\{\left(t_{1}, .,,, t_{k+i}\right):\right.\right.\right. \\
& \left.\left.\left.g_{n}\left(t_{1}, \ldots, t_{n}\right) \in\left(-\frac{1}{p}, \frac{1}{p}\right)\right\}\right)\right) \leq \\
\leq & m\left(\bigwedge _ { n = k } ^ { k + i } h _ { k + i } \left(\left\{\left(t_{1}, \ldots, t_{k+i}\right):\right.\right.\right. \\
& \left.\left.\left.\left(t_{1}, \ldots, t_{n}\right) \in g_{n}^{-1}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right\}\right)\right)= \\
= & m\left(\bigwedge_{n=k}^{k+i} h_{n} \circ g_{n}^{-1}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right)= \\
= & m\left(\bigwedge_{n=1}^{k+i} y_{n}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right) .
\end{aligned}
$$

Therefore
$1 \leq \lim _{p \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} m\left(\bigwedge_{n=k}^{k+i} y_{n}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right) \leq 1$,
hence $\left(y_{n}\right)_{n=1}^{\infty}$ converges to $0 m$-almost everywhere.

4 Conclusion

The paper is concerned in the P-probability theory. We showed that there exist relation between convergence of P-observables and convergence their corresponding random variables.

Acknowledgements

This paper was supported by Grant VEGA 1/0539/08.

References

[1] K. T. Atanassov (1999). Intuitionistic Fuzzy sets : Theory and Applications. In Physica Verlag, New York.
[2] K. T. Atanassov - B. Riečan (2007). On two new types of probability on IFevents. (Submitted to Notes on IFS).
[3] K. Čunderlíková - Lendelová - B. Riečan. The probability theory on B-structures. (Accepted in FSS).
[4] P. Grzegorzewski - E. Mrówka (2002). Probability of intuitionistic fuzzy events. In Soft Metods in Probability, Statistics and Data Analysis (P. Grzegorzewski et al. eds.), Physica Verlag, New York, pages 105-115.
[5] M. Krachounov (2006). Intuitionistic probability and intuitionistic fuzzy sets. In First Intern. Workshop on IFS (ElDarzi et al. eds.), Univ. of Westminster, London, pages 714-717.
[6] K. Lendelová (2005). Convergence of IFobservables. In Issues in the Representation and Processing of Uncertain and Imprecise Information - Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized nets, and Related Topics, pages 232-240.
[7] K. Lendelová (2006). Strong law of large numbers for IF-events. In Proceedings of the Eleventh International Conference IPMU 2006, July, 2-7, 2006, Paris, France, pages 2363-2366.
[8] K. Lendelová (2006). Conditional IFprobability. In Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, pages 275-283.
[9] K. Lendelová, - J. Petrovičová, (2005). Representation of IF-probability on MValgebras. In Soft Computing - A Fusion of Foundation, Methodologies and Applications, Springer-Verlag.
[10] K. Lendelová - B. Riečan (2004). Weak law of large numbers for IF-events. In Current Issues in Data and Knowledge Engineering (Bernard De Baets et al. eds.), EXIT, Warszawa, pagrs 309-314.
[11] J. Petrovičová - B. Riečan (2005). On the central limit theorem on IFS-events. In Mathware \mathcal{E} Soft Computing, 1.
[12] B. Riečan (2004). Representation of Probabilities on IFS Events. In Soft Methodology and Random Information Systems (López-Diáz et al. eds.), Springer, Berlin Heidelberg New York, pages 243-248.
[13] B. Riečan (2003). A descriptive definition of the probability on intuitionistic fuzzy sets. In EUSFLAT '2003 (M. Wagenecht, R. Hampet eds.), Zittau-Goerlitz Univ. Appl. Sci., pages 263-266.
[14] B.Riečan (2007). Probability theory on IF-events. In A volume in honor of Daniele Mundici's 60th birthday. Lecture Notes in Computer Science, Springer, Berlin.
[15] B. Riečan - D. Mundici (2002). Probability on MV-algebras. In Handbook of Measure Theory (E. Pap ed.), Elsevier, Amsterdam, pages 869-909.
[16] B. Riečan - T. Neubrunn (1997), Integral, Measure, and Ordering. In Kluwer, Dordrecht and Ister Science, Bratislava.
[17] L. A. Zadeh (1968). Probability measures of fuzzy events. In J. Math. Anal. Appl., 23, pages 421-427.

