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Abstract

In [2] K. T. Atanassov and B. Riečan
studied a new type of probability
on the family of IF-events N =
{(µA, νA) ; µA, νA : Ω → [0, 1], µA +
νA ≤ 1}, where µA, νA are S-
measurable functions, using follow-
ing pair of connectives

a⊕ b = a + b− a · b,
a¯ b = a · b

They called it the P-probability. In
this paper we define three types of
convergence of P-observables. We
show the relation between conver-
gence of P-observables and conver-
gence of corresponding random vari-
ables.

Keywords: Convergence in distri-
bution, Convergence in measure m,
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P-probability, P-observable.

1 Introduction

Recently the probability on IF-events has
been constructed. Let (Ω,S, P ) be a classical
probability space. An IF-event A = (µA, νA)
is a couple of S-measurable function with re-
spect to a σ-algebra of subsets of Ω such that
µA(ω) + νA(ω) ≤ 1 for each ω ∈ Ω ([1]).

In [4] P. Grzegorzewski and E. Mrówka
defined the probability on the fam-
ily N = {(µA, νA) ; µA, νA are S −

measurable and µA + νA ≤ 1} as a mapping
P from the family N to the set of all compact
intervals in R by the formula

P((µA, νA)) =
[ ∫

Ω
µA dP , 1−

∫
Ω

νA dP

]
.

This IF-probability was axiomatically charac-
terized by B. Riečan (see[13]).

More general situation was studied in [12],
where author introduced the notion of IF-
probability on the family F = {(f, g) ; f, g ∈
T , T is Lukasiewicz tribe and f + g ≤ 1} as
a mapping P from the family F to the fam-
ily J of all closed intervals [a, b] such that
0 ≤ a ≤ b ≤ 1. Variant of Central limit the-
orem and Weak law of large numbers were
proved as an illustration of method applied
on these IF-events. It can see in the papers
[10], [11].

More general situation was used in [9]. The
authors defined the probability on the family
M = {(a, b) ∈ M, a + b ≤ u}, where M is σ-
complete MV-algebra, which can be identified
with the unit interval of a unique `-group G
with strong unit u, in symbols,

M = Γ(G, u) = ([0, u], 0, u,¬,⊕,¯)

where

[0, u] = {a ∈ G ; 0 ≤ a ≤ u},
¬ a = u− a , a⊕ b = (a + b) ∧ u,

a¯ b = (a + b− u) ∨ 0

(see [15]). We say that G is the `-group (with
strong unit u) corresponding to M .
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By an `-group we shall mean a lattice-ordered
Abelian group. For any `-group G, an ele-
ment u ∈ G is said to be a strong unit of G,
if for all a ∈ G there is an integer n ≥ 1 such
that nu ≥ a. Convergence of IF-observables
and Strong law of large numbers for IF-events
were proved as an illustration of method ap-
plied on these IF-events. It can see in the
papers [6], [7].

Later M. Krachounov defined an IF-
probability theory based on the connectives

a⊕ b = max(a, b),
a¯ b = min(a, b)

(see [5]). B. Riečan called it M-probability
theory and he studied the notion of M-
observable and the notion of joint M-
observable. He proved the Central limit
theorem for this kind of independent IF-
observables, too. It can see in a paper [14].

In [2] K. T. Atanassov and B. Riečan studied
a new type of probability on the family of IF-
events

N = {(µA, νA) ; µA, νA : Ω → [0, 1], µA+νA ≤ 1},
where µA, νA are S-measurable functions, us-
ing following pair of connectives

a⊕ b = a + b− a · b,
a¯ b = a · b

They called it the P-probability and they
proved the Central limit theorem.

In this paper we define three types of conver-
gence of P-observables. We show the relation
between convergence of P-observables and
convergence of corresponding random vari-
ables. In Section 2 we introduce the opera-
tions on N and J , where J is the family of
all closed intervals [a, b] such that 0 ≤ a ≤ b ≤
1. We introduce the notion of P-probability
on N and the notion of independence of P-
observables, too.

2 Basic notions

Now we introduce operations on N . Let A =
(µA, νA), B = (µB, νB). Then we define

A⊕P B = (µA + µB − µA · µB, νA · νB),

A¯P B = (µA · µB, νA + νB − νA · νB).

If An = (µAn , νAn), then we write

An ↗ A ⇐⇒ µAn ↗ µA, νAn ↘ νA.

An P-probability P on N is a mapping from
N to the family J of all closed intervals [a, b]
such that 0 ≤ a ≤ b ≤ 1. Here we define

[a, b] + [c, d] = [a + c, b + d],

[an, bn] ↗ [a, b] ⇐⇒ an ↗ a, bn ↗ b.

By an P-probability on N we understand
each function P : N → J satisfying the fol-
lowing properties:

(i) P((1, 0)) = [1, 1] ; P((0, 1)) = [0, 0];

(ii) if A ¯P B = (0, 1) and A,B ∈ N , then
P(A⊕P B) = P(A) + P(B);

(iii) if An ↗ A, then P(An) ↗ P(A).

By an P-state we understand each mapping
m : N → [0, 1] satisfying the following prop-
erties:

(i) m((1, 0)) = 1, m((0, 1)) = 0;

(ii) A ¯P B = (0, 1) =⇒ m(A ⊕P B) =
m(A) + m(B);

(iii) An ↗ A =⇒ m(An) ↗ m(A).

The next important notions are the notion of
P-observable and the notion of independence.

By an P-observable on N we understand
any mapping x : B(R) → N satisfying the
following conditions:

(i) x(R) = (1, 0), x(∅) = (0, 1);

(ii) if A∩B = ∅, then x(A)¯P x(B) = (0, 1)
and x(A ∪B) = x(A)⊕P x(B);

(iii) if An ↗ A, then x(An) ↗ x(A).

By an joint P-observable of P-observables
x, y : B(R) → N we understand each map-
ping h : B(R2) → N satisfying the following
conditions:
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(i) h(R2) = (1, 0), h(∅) = (0, 1);

(ii) if A∩B = ∅, then h(A)¯P h(B) = (0, 1)
and h(A ∪B) = h(A)⊕P h(B);

(iii) An ↗ A =⇒ h(An) ↗ h(A);

(iv) h(C × D) = x(C) · y(D) for any C, D ∈
B(R).

Here C ·D = (µC , νC)·(µD, νD) = (µC ·µD, 1−
(1− νC) · (1− νD)).

We say that P-observables x1, . . . , xn are
independent, if for each C1, ..., Cn ∈ B(R)
holds

m(hn(C1×...×Cn)) = m(x1(C1))·. . .·m(x(Cn)),

where hn : B(Rn) → N is the joint P-
observable of P-observables x1, . . . , xn and
m : N → [0, 1] is the P-state.

3 Convergence on P-probability

In this section we introduce the notion of a
function of several P-observables and define
three types of convergence for P-observables.
We show the relation between convergence
of sequence of P-observables and sequence of
corresponding random variables, too.

If we have several independent observables
and a Borel measurable function, we can de-
fine the observable, which is the function of
several observables. About this says the fol-
lowing definition.

Definition 3.1 Let x1, . . . , xn : B(R) → N
be the independent P-observables and gn :
Rn → R be a Borel measurable function.
Then the P-observable yn = gn(x1, . . . , xn) :
B(R) → N is defined by the equality

yn = hn ◦ g−1
n

where hn : B(Rn) → N is the n-
dimensional P- observable (joint P-observable
of x1, . . . , xn).

Example 3.2 Let x1, . . . , xn : B(R) → N be
independent P-observables and hn : B(Rn) →
N be their joint P-observable. Then

1. the P-observable yn =
√

n
σ

(
1
n

n∑
i=1

xi − a
)

is defined by the equality

yn = hn ◦ g−1
n

where gn(u1, . . . , un) =
√

n
σ

(
1
n

n∑
i=1

ui− a
)
;

2. the P-observable yn = 1
n

n∑
i=1

xi is defined

by the equality

yn = hn ◦ g−1
n

where gn(u1, . . . , un) = 1
n

n∑
i=1

ui;

3. the P-observable yn = 1
n

n∑
i=1

(xi − E(xi))

is defined by the equality

yn = hn ◦ g−1
n

where
gn(u1, . . . , un) = 1

n

n∑
i=1

(ui −E(xi)).

Also we need the notion of P-distribution
function.

Definition 3.3 Let m : N → [0, 1] be an P-
state and x : B(R) → N be an P-observable.
Then a mapping F : R → [0, 1] defined by
formula

F (t) = m ◦ x((−∞, t)),

for each t ∈ R, is called a distribution func-
tion.

Definition 3.4 Let (yi)∞1 be a sequence of P-
observables and m be an P-state.

(i) The sequence is said to be convergent in
distribution to a function F : R → [0, 1]
if for each t ∈ R

lim
n→∞ (m ◦ yn)((−∞, t)) = F (t).

(ii) The sequence is said to be convergent in
measure m to 0 if for each 0 < ε, ε ∈ R

lim
n→∞ (m ◦ yn)((−ε, ε)) = 1.
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(iii) We say that the sequence converges m-
almost everywhere to 0, if

lim
p→∞ lim

k→∞
lim
i→∞

m

( k+i∧
n=k

yn

(
− 1

p
,
1
p

))
= 1.

Theorem 3.5 Let (yi)∞1 be a sequence of P-
observables, yn : B(R) → N , hn : B(Rn) →
N their joint P-observable. For each n =
1, 2, ... let gn : Rn → R be a Borel function.
Let further the P-observable yn : B(R) → N
be given by yn = hn ◦ g−1

n = gn(x1, ..., xn),
n = 1, 2, .... Then there exists a probabil-
ity space (X,S, P ) and a sequence (ξn)∞1 of
random variables, ξn : X → R such that if
ηn = gn(ξ1, ..., ξn), n = 1, 2, ..., then

(i) the sequence y1, y2, ... converges in distri-
bution to a function F if and only if so
does the sequence η1, η2, ...;

(ii) y1, y2, ... converges to 0 in measure m if
and only if η1, η2, ... converges to 0 in
measure P ;

(iii) if η1, η2, ... converges P -almost every-
where to 0, then y1, y2, ... converges m-
almost everywhere to 0.

Proof. Put X = RN , S = σ(C), where C is
the family of all cylinders in RN . Put mn =
m ◦ hn. Then {mn; n ∈ N} form a consistent
family of probability measures mn : B(Rn) →
[0, 1], i.e.

mn+1(A×R) = mn(A), A ∈ B(Rn), n = 1, 2, ...

By the Kolmogorov theorem there exists ex-
actly one probability measure P : σ(C) →
[0, 1] such that

P ◦ π−1
n = mn, n = 1, 2, ...

where πn : RN → Rn is the projection. Put

ξn : RN → R, ξn((ui)∞i=1)) = un, n = 1, 2, ...

Then

P (η−1
n (A)) = P ((gn(ξ1, ..., ξn))−1(A)) =

= P (π−1
n (g−1

n (A))) =
= m(hn(g−1

n (A))) = m(yn(A)).

Therefore

m(yn(−∞, t)) = P (η−1
n (−∞, t)),

m(yn((−ε, ε))) = P (η−1
n ((−ε, ε))),

what implies (i) and (ii). Let now ηn con-
verges to 0 P -almost everywhere. We have

P

( k+i⋂
n=k

η−1
n

((
− 1

p
,
1
p

)))
=

= m

(
hk+i

( k+i⋂
n=k

{
(t1, ., , , tk+i) :

gn(t1, ..., tn) ∈
(
− 1

p
,
1
p

)}))
≤

≤ m

( k+i∧
n=k

hk+i

({
(t1, ..., tk+i) :

(t1, ..., tn) ∈ g−1
n

((
− 1

p
,
1
p

))}))
=

= m

( k+i∧
n=k

hn ◦ g−1
n

((
− 1

p
,
1
p

)))
=

= m

( k+i∧
n=1

yn

((
− 1

p
,
1
p

)))
.

Therefore

1 ≤ lim
p→∞ lim

k→∞
lim
i→∞

m

( k+i∧
n=k

yn

((
−1

p
,
1
p

)))
≤ 1,

hence (yn)∞n=1 converges to 0 m-almost every-
where.

4 Conclusion

The paper is concerned in the P-probability
theory. We showed that there exist rela-
tion between convergence of P-observables
and convergence their corresponding random
variables.
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The probability theory on B-structures.
(Accepted in FSS).

[4] P. Grzegorzewski - E. Mrówka (2002).
Probability of intuitionistic fuzzy events.
In Soft Metods in Probability, Statis-
tics and Data Analysis (P. Grzegorzewski
et al. eds.), Physica Verlag, New York,
pages 105-115.

[5] M. Krachounov (2006). Intuitionistic
probability and intuitionistic fuzzy sets.
In First Intern. Workshop on IFS (El-
Darzi et al. eds.), Univ. of Westminster,
London , pages 714 - 717.
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