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Abstract

Recently, many papers have ap-
peared dealing with the distribu-
tivity of fuzzy implications over t-
norms, t-conorms and uninorms (see
[3, 19, 4, 6, 16, 17, 5]). These
equations have a very important
role to play in efficient inferencing
in approximate reasoning, especially
fuzzy control systems (see [7]). In
this work we discuss distributivity of
functions over some t-representable
t-norms in Atanassov’s intuitionis-
tic fuzzy sets theory. In particular,
some solutions which are implication
operations are presented.

Keywords: Atanassov’s intuition-
istic fuzzy sets, fuzzy implication, t-
norm, functional equations.

1 Introduction

Distributivity of fuzzy implications over dif-
ferent fuzzy logic connectives has been stud-
ied in the recent past by many authors. This
topic was introduced by Combs and Andrews
in [7] wherein they exploit the following clas-
sical tautology

(p ∧ q)→ r ≡ (p→ r) ∨ (q → r)

in their inference mechanism towards reduc-
tion in the complexity of fuzzy “If-Then”
rules. Subsequently, there were many dis-
cussions in the journal IEEE Transaction on
Fuzzy Systems, most of them pointing out the

need for a theoretical investigation required
for employing such equations in a practice.

It was Trillas and Alsina [19], who were the
first to investigate the generalized version of
the above law

I(T (x, y), z) = S(I(x, z), I(y, z)), (1)

where T, S are a t-norm and a t-conorm on
([0, 1],≤), respectively, and I is a fuzzy impli-
cation on ([0, 1],≤). Using similar techniques
as above, Balasubramaniam and Rao [6] con-
sidered the following dual equations of (1):

I(S(x, y), z) = T (I(x, z), I(y, z)), (2)
I(x, T1(y, z)) = T2(I(x, y), I(x, z)), (3)
I(x, S1(y, z)) = S2(I(x, y), I(x, z)), (4)

where T, T1, T2 and S, S1, S2 are t-norms and
t-conorms on ([0, 1],≤), respectively, and I is
an S- or R-implication on ([0, 1],≤). Mean-
while, Baczyński in [3, 4] considered the func-
tional equation (3), both independently and
along with other equations, and characterized
functions I in the case when T1 = T2 is a strict
t-norm. It should be noted that the general-
izations of the above equations for uninorms
were recently studied by Ruiz and Torrens in
[16, 17].

In this paper we will consider the distribu-
tivity equations in Atanassov’s intuitionistic
fuzzy sets theory. We are interested in de-
scribing all solutions for t-representable t-
norms (t-conorms) generated from continu-
ous and Archimedean t-norms (t-conorms).
Due to the page limit, we will concentrate
only on the equation (3), when T1 = T2 is
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a t-representable t-norm generated from the
product t-norm and I is any binary function
defined on the special lattice LI .

2 Intuitionistic and interval-valued
fuzzy sets theories

Intuitionistic fuzzy sets were introduced by
Atanassov as an one possible extension of the
fuzzy sets theory in the following way.

Definition 1 ([2]). An intuitionistic fuzzy set
A on X is a set

A = {(x, µA(x), νA(x)) : x ∈ X},

where µA, νA : X → [0, 1] are called, respec-
tively, the membership function and the non-
membership function. Moreover they satisfy
the condition

µA(x) + νA(x) ≤ 1, x ∈ X.

An intuitionistic fuzzy set A on X can be rep-
resented by the L∗-fuzzy set A in the sense of
Goguen given by

A : X → L∗

x 7→ (µA(x), νA(x)), x ∈ X,

where L∗ = (L∗,≤L∗) is the following com-
plete lattice

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1}
(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≥ y2

with the units 0L∗ = (0, 1) and 1L∗ = (1, 0).

Another extension of the fuzzy sets theory is
interval-valued fuzzy sets theory introduced,
independently, by Sambuc and Gorza lczany.
We define LI = (LI ,≤LI ), where

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2}
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2

It can be shown that LI = (LI ,≤LI ) is a com-
plete lattice with the units 0LI = (0, 0) and
1LI = (1, 1).

Definition 2 ([18, 12]). An interval-valued
fuzzy set on X is a mapping A : X → LI .

In fact, an interval-valued fuzzy set can be
seen as a LI -fuzzy set in the sense of Goguen.

Deschrijver and Kerre [8] showed that intu-
itionistic fuzzy sets theory is equivalent to
interval-valued fuzzy sets theory. Therefore
we can investigate operations over intuition-
istic fuzzy sets by Atanassov in terms of L∗
or LI . In this article, we will develop our in-
vestigations in the terms of LI = (LI ,≤LI ),
since the main results will be easier to show.

We assume that the reader is familiar with the
classical results concerning basic fuzzy logic
connectives, but we briefly mention some of
the results employed in the rest of the work.
By Φ we denote the family of all increasing
bijections ϕ : [0, 1]→ [0, 1]. We say that func-
tions f, g : [0, 1]n → [0, 1], where n ∈ N, are
Φ-conjugate, if there exists ϕ ∈ Φ such that
g = fϕ, where

fϕ(x1, . . . , xn) := ϕ−1 (f(ϕ(x1), . . . , ϕ(xn))) ,

for all x1, . . . , xn ∈ [0, 1].

Definition 3. Let L = (L,≤L, 0L, 1L) be a
complete lattice. An associative, commuta-
tive, increasing operation T : L2 → L is called
a t-norm on L if 1L is the neutral element
of T .

Definition 4. We say that a t-norm T on
([0, 1],≤) is strict, if it is continuous and
strictly monotone, i.e., T (x, y) < T (x, z)
whenever x > 0 and y < z.

The following characterization of strict t-
norms is well known in the literature.

Theorem 5 ([13], Proposition 5.9). For a
function T : [0, 1]2 → [0, 1] the following state-
ments are equivalent:

(i) T is a strict t-norm.

(ii) T is Φ-conjugate with the product t-norm
TP, i.e., there exists ϕ ∈ Φ, which is
uniquely determined up to a positive con-
stant exponent, such that

T (x, y) = (TP)ϕ(x, y) = ϕ−1(ϕ(x)·ϕ(y)),

for all x, y ∈ [0, 1].
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T-norms on LI can be defined in many ways.
In our article we shall consider the following
special class of t-norms.
Definition 6 (see [9]). A t-norm T on LI is
called t-representable if there exist t-norms T1

and T2 on ([0, 1],≤) such that

T1(x, y) ≤ T2(x, y), x, y ∈ [0, 1]

and for all (x1, x2), (y1, y2) ∈ LI

T ((x1, x2), (y1, y2)) = (T1(x1, y1), T2(x2, y2)).

It should be noted, that not all t-norms on LI

are t-representable (see [9]).

In the scientific literature one can find sev-
eral methods for constructing implications in
the intuitionistic, as well interval-valued fuzzy
sets theory. One possible definition of an im-
plication on LI is based on the notation from
fuzzy sets theory introduced by Fodor and
Roubens in 1994.
Definition 7 (cf. [11], Definition 1.15). Let
L = (L,≤L, 0L, 1L) be a complete lattice.
A function I : L2 → L is called an implication
on L if it satisfies the following conditions:

I is decreasing in the first variable,
I is increasing in the second variable,

I(0L, 0L) = I(1L, 1L) = 1L, I(1L, 0L) = 0L.

Directly from the above definition we can de-
duce, that each implication I on L satisfies
the following properties, called left and right
boundary condition, respectively:

I(0L, y) = 1L, y ∈ L, (5)
I(x, 1L) = 1L , x ∈ L. (6)

Therefore, I satisfies also the normality con-
dition I(0, 1) = 1. Consequently, every impli-
cation restricted to the set {0L, 1L}2 coincides
with the classical implication.

When L = ([0, 1],≤), then I is called a fuzzy
implication. If L = L∗, then I is called an
intuitionistic fuzzy implication, while when
L = LI , then I is called an interval-valued
fuzzy implication and will denoted by I. De-
tailed investigations on different classes of im-
plications on above lattices and their algebraic
properties were presented in [15] and [10].

Finally, the first and the second projection
mappings pr1 and pr2 on LI are defined as

pr1(x1, x2) = x1, pr2(x1, x2) = x2,

for all (x1, x2) ∈ LI .

3 Some new results pertaining to
functional equations

Here we show some new results related to the
following functional equation:

f(x1 · y1, x2 · y2) = f(x1, x2) · f(y1, y2). (7)

The presented facts, which are important in
the proof of the main results, can be seen as
the generalizations of the classical facts from
the theory of functional equations (see [1]).

Recall, that a function f from one metric
space (X, dX) to another metric space (Y, dY )
is continuous at the point x0 ∈ X if for
any positive real number ε, there exists a
positive real number δ such that all x ∈
X satisfying dX(x0, x) < δ will also satisfy
dY (f(x0), f(x)) < ε. On L∗ or LI we can
consider different metrics generated from dis-
tances on R2. From now on, we assume that
LI is equipped with the classical Euclidean
distance. For more discussion about continu-
ity in L∗ and, consequently, in LI see [9].

Proposition 8. For a continuous function
f : LI → [0, 1] the following statements are
equivalent:

(i) f satisfies the functional equation (7) for
all (x1, x2), (y1, y2) ∈ LI .

(ii) Either f = 0, or f = 1, or there exists a
unique constant c ∈ (0,∞) such that

f(a, b) = ac, (8)

or
f(a, b) = bc, (9)

or there exist unique constants c1, c2 ∈
(0,∞) such that

f(a, b) = ac1 · bc2 , (10)

for all (a, b) ∈ LI .
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Proof. (ii) =⇒ (i) It is a direct calculation
that all the above functions are continuous
and satisfy the functional equation (7).

(i) =⇒ (ii) Let a function f : LI → [0, 1] sat-
isfy (7) for all (x1, x2), (y1, y2) ∈ LI .

Setting x1 = y1 = 0 in (7) we get

f(0, x2 · y2) = f(0, x2) · f(0, y2).

Consider now the following function of one
variable g0 := f(0, ·). By our assumptions,
since f is continuous, g0 is the continuous
function from [0, 1] to [0, 1] such that

g0(x2 · y2) = g0(x2) · g0(y2),

for all x2, y2 ∈ [0, 1]. By the well known con-
tinuous solutions of the above multiplicative
Cauchy functional equation for real numbers
on the restricted domain (see [1] or [14], The-
orem 13.1.6) we get that either f(0, b) = 0 for
all b ∈ [0, 1], or f(0, b) = 1 for all b ∈ [0, 1], or
there exists a unique constant c ∈ (0,∞) such
that f(0, b) = bc for all b ∈ [0, 1].

If f(0, b) = 1 for all b ∈ [0, 1], then putting
x1 = 0 in (7) we obtain

f(0, x2 · y2) = f(0, x2) · f(y1, y2),

hence
1 = 1 · f(y1, y2),

therefore f(y1, y2) = 1 for all (y1, y2) ∈ LI , so
f = 1.

If f(0, b) = bc for all b ∈ [0, 1], then putting
x1 = 0 in (7) we obtain

f(0, x2 · y2) = f(0, x2) · f(y1, y2),

hence
(x2 · y2)c = xc

2 · f(y1, y2).

Let x2 > 0, then we obtain, that f(y1, y2) =
yc
2 for all (a, b) ∈ LI , so f has the form (9).

From above we can summarize that we have to
investigate only the last case, when f(0, b) = 0
for all b ∈ [0, 1].

Setting now x2 = y2 = 1 in (7) we get

f(x1 · y1, 1) = f(x1, 1) · f(y1, 1).

Similarly as above we get that either f(a, 1) =
0 for all a ∈ [0, 1], or f(a, 1) = 1 for all a ∈
[0, 1], or there exists a unique constant c ∈
(0,∞) such that f(a, 1) = ac for all a ∈ [0, 1].

If f(a, 1) = 1 for all a ∈ [0, 1], then, in partic-
ular f(0, 1) = 1, which is in a contradiction
with our assumption that f(0, b) = 0 for all
b ∈ [0, 1].

If f(a, 1) = 0 for all a ∈ [0, 1], then putting
x1 = x2 = 1 in (7) we obtain

f(y1, y2) = f(1, 1) · f(y1, y2),

hence

f(y1, y2) = 0, (y1, y2) ∈ LI ,

so f = 0 in this situation.

If f(a, 1) = ac for all a ∈ [0, 1], then putting
x2 = 1 in (7) we obtain

f(x1 · y1, y2) = f(x1, 1) · f(y1, y2),

hence

f(x1 · y1, y2) = xc
1 · f(y1, y2).

Using now some techniques from the theory of
functional equations for the Pexider version of
the multiplicative Cauchy equation (cf. [14],
Theorem 13.3.8) one can show that in this
situation either f has the form (8), or (10).

Example 9. Consider the following function
f : LI → [0, 1] given by

f(a, b) =

{
0, if (a, b) = (0, 0)
1, otherwise.

It can be easily checked that it satisfies the
functional equation (7), but it is not contin-
uous in the point (0, 0). Therefore, the full
description of the solutions of (7) is still an
open problem.

4 Main results

Using the result from the previous section, we
are able to obtain description of some solu-
tions of the equation (3), when both t-norms
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on LI are t-representable and generated from
strict t-norms. For the simplicity we will con-
sider the situation, when both t-norms on LI

are equal and generated from the product t-
norm TP(x, y) = xy.

Theorem 10. For the t-representable t-norm
T on LI generated from the product t-norm
TP and a function I : (LI)2 → LI which is
continuous with respect to the second variable,
the following statements are equivalent:

(i) The pair of functions T , I satisfies the
functional equation

I(x, T (y, z)) = T (I(x, y), I(x, z)), (11)

for all x, y, z ∈ LI .

(ii) For every fixed x = (x1, x2) ∈ LI the ver-
tical section I((x1, x2), ·) has one of the
following forms

I((x1, x2)(y1, y2)) = (0, 0),

or
I((x1, x2)(y1, y2)) = (0, 1),

or
I((x1, x2)(y1, y2)) = (1, 1),

or there exist unique constants
cx, dx, ex, fx ∈ (0,∞) such that

I((x1, x2)(y1, y2)) = (0, yex
1 ),

or

I((x1, x2)(y1, y2)) = (0, yfx
2 ),

or

I((x1, x2)(y1, y2)) = (0, yex
1 · yfx

2 ),

or

I((x1, x2)(y1, y2)) = (ycx
1 , 1),

or

I((x1, x2)(y1, y2)) = (ydx
2 , 1),

or

I((x1, x2)(y1, y2)) = (ycx
1 · ydx

2 , 1),

or

I((x1, x2)(y1, y2)) = (ycx
1 , y

ex
1 ),

with cx ≥ ex, or

I((x1, x2)(y1, y2)) = (ycx
1 , y

fx
2 ),

with cx ≥ fx, or

I((x1, x2)(y1, y2)) = (ycx
1 , y

ex
1 · yfx

2 ),

with cx − ex ≥ fx, or

I((x1, x2)(y1, y2)) = (ycx
1 · ydx

2 , yex
1 ),

with cx ≥ ex, or

I((x1, x2)(y1, y2)) = (ydx
2 , yfx

2 ),

with dx ≥ fx, or

I((x1, x2)(y1, y2)) = (ycx
1 · ydx

2 , yfx
2 ),

with dx ≥ fx, or

I((x1, x2)(y1, y2)) = (ycx
1 · ydx

2 , yex
1 · yfx

2 ),

with cx − ex ≥ fx − dx, for (y1, y2) ∈ LI .

Proof. (ii) =⇒ (i) The proof in this direction
can be checked by a direct substitution.

(i) =⇒ (ii) Let us assume that a t-
representable t-norm T and a function I are
the solutions of the functional equation (11)
satisfying the required properties. At this sit-
uation our equation has the following form

I((x1, x2), (y1 · z1, y2 · z2)) =
(pr1(I((x1, x2), (y1, y2))) · pr1(I((x1, x2), (z1, z2))),
pr2(I((x1, x2), (y1, y2))) · pr2(I((x1, x2), (z1, z2))))

for all (x1, x2), (y1, y2), (z1, z2) ∈ LI . As
a consequence we obtain the following two
equations

pr1(I((x1, x2), (y1 · z1, y2 · z2))) =
pr1(I((x1, x2), (y1, y2))) · pr1(I((x1, x2), (z1, z2))),

and

pr2(I((x1, x2), (y1 · z1, y2 · z2))) =
pr2(I((x1, x2), (y1, y2))) · pr2(I((x1, x2), (z1, z2)))
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which are satisfied for all
(x1, x2), (y1, y2), (z1, z2) ∈ LI .

Fix arbitrarily (x1, x2) ∈ LI . Define a func-
tion Ix1,x2 : LI → LI by the formula

Ix1,x2(y1, y2) = I((x1, x2), (y1, y2)),

for all (y1, y2) ∈ LI . This function is continu-
ous. By the substitutions, gx1,x2 = pr1◦Ix1,x2 ,
and hx1,x2 = pr2◦Ix1,x2 , we obtain the follow-
ing two functional equations

gx1,x2(y1 · z1, y2 · z2) =
gx1,x2(y1, y2) · gx1,x2(z1, z2),

and

hx1,x2(y1 · z1, y2 · z2) =
hx1,x2(y1, y2) · hx1,x2(z1, z2),

which are satisfied for all (y1, y2), (z1, z2) ∈
LI . Let us observe now, that both equations
are just the other versions of the functional
equation (7). From Proposition 8 we obtain
all possible continuous solutions for gx1,x2 and
hx1,x2 . Since in this proposition we have 5
possible solutions, we should have 25 different
solutions of (11). But observe, that some of
these solutions are not good, since the range
of I is LI . For example the solution when
the vertical section (1, 0) is not good, since
1 is not less than or equal to 0. Consider-
ing all possible pairs and above assumption
we obtain exactly 16 different solutions. For
example we show the full solution when

gx1,x2(a, b) = acx · bdx

and
hx1,x2(a, b) = aex · bfx ,

with some positive real constants
cx, dx, ex, fx, which depend on the fixed
x = (x1, x2). Then we get

pr1 ◦ Ix1,x2(a, b) = acx · bdx

and
pr2 ◦ Ix1,x2(a, b) = aex · bfx .

Therefore

I((x1, x2)(y1, y2)) = (ycx
1 · ydx

2 , yex
1 · yfx

2 ).

Finally, the range of I is LI , so

ycx
1 · ydx

2 ≤ yex
1 · yfx

2

for all (y1, y2) ∈ LI , which implies, that

ycx−ex
1 ≤ yex−fx

1 ,

thus cx − ex ≥ fx − dx.

We would like to notice, that not all obtained
vertical solutions in the above theorem can
be used for obtaining an implication on LI

in the sense of Definition 7. By (6) one can
easily see that the following vertical sections
are not possible: (0, 0), (0, 1), (0, yex

1 ), (0, yfx
2 )

and (0, yex
1 ·yfx

2 ). This mean, that only 11 dif-
ferent vertical sections can be considered to
obtaining an implication operation. The full
description of solutions of (11), which are im-
plications on LI , even with continuous sec-
tions, is still unknown, but in the full version
of this article we expect to present such result.

Example 11. Let us consider the following
function

I((x1, x2)(y1, y2)) =

{
1LI , if x1 = y1 = 0
(yx2

1 , yx1
2 ), otherwise.

defined for all ((x1, x2), (y1, y2)) ∈ LI . One
can easily check, that this function is an im-
plication on LI . Indeed

I(0LI , 0LI ) = I((0, 0), (0, 0)) = 1LI ,

I(1LI , 1LI ) = I((1, 1), (1, 1)) = (11, 11)
= (1, 1) = 1LI ,

I(1LI , 0LI ) = I((1, 1), (0, 0)) = (01, 01)
= (0, 0) = 0LI .

Moreover, if we fix arbitrarily (y1, y2) ∈ LI ,
then for (x1, x2) ≤ (x′1, x′2) we get x1 ≤ x′1
and x2 ≤ x′2. Thus yx2

1 ≥ y
x′2
1 and yx1

2 ≥ y
x′1
2 .

Therefore (yx2
1 , yx1

2 ) ≥ (yx′2
1 , y

x′1
2 ), so I is de-

creasing in the first variable. In a similar way
one can show that I is increasing in the sec-
ond variable. Finally observe that it satis-
fies the functional equation (11) with the t-
representable t-norm T on LI generated from
the product t-norm TP:

T ((x1, x2)(y1, y2)) = (x1y1, x2y2).
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Indeed, for all x, y, z ∈ LI we get

T (I(x, y), I(x, z))
= T (I((x1, x2), (y1, y2)), I((x1, x2), (z1, z2)))

=


T (1LI , 1LI ), if x1 = y1 = z1 = 0
T (1LI , (zx2

1 , 1)), if x1 = y1 = 0
T ((yx2

1 , 1), 1LI ), if x1 = z1 = 0
T ((yx2

1 , yx1
2 ), (zx2

1 , zx1
2 )), otherwise

=


1LI , if x1 = y1 = z1 = 0
(zx2

1 , 1), if x1 = y1 = 0
(yx2

1 , 1), if x1 = z1 = 0
(yx2

1 · zx2
1 , yx1

2 · zx1
2 ), otherwise

=

{
1LI , if x1 = 0 ∧ (y1 = 0 ∨ z1 = 0)
((y1 · z1)x2 , (y2 · z2)x1), otherwise

= I(x, T (y, z)) = I((x1, x2), (y1z1, y2z2)).

The above implication can be seen as the
interval-valued generalization of the classical
Yager implication (see [20]):

IYG(x, y) =

{
1, if x = 0 and y = 0
yx, otherwise

for x, y ∈ [0, 1], which satisfies the distribu-
tive equation (3) with the product t-norm TP

(cf. [3], Corollary 2).

5 Summary

In this paper we have examined one possi-
ble distributive equation defined on lattice
LI . More precisely, we have obtained some
solutions of the equation (11), when T is
a t-representable t-norm generated from the
product t-norm. It should be noted, that ob-
tained facts can be easily transformed to the
solutions in the lattice L∗. Also, we would
like to underline that the situation when T
is t-representable and generated from contin-
uous, Archimedean t-norms can be examined
by using similar techniques as above. In our
future works we will concentrate on the other
possible distributive equations on LI for t-
representable operations.
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Université de Marseille, France.

[19] E. Trillas, C. Alsina (2002). On the law
[p∧ q → r] = [(p→ q)∨ (p→ r)] in fuzzy
logic, IEEE Trans. Fuzzy Syst. 10 84–88.

[20] R.R. Yager (1980). An approach to in-
ference in approximate reasoning. Inter-
nat. J. Man-Machine Studies 13 323–
338.

Proceedings of IPMU’08 1619


