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Abstract

We propose a new method of
ranking alternatives represented by
Atanassov’s intuitionistic fuzzy sets,
to be called A-IFSs, for short. First,
we discuss an approach based on
the calculation of the distances from
the ideal positive alternative which
can be viewed as a counterpart of
the approach in the traditional fuzzy
setting. Next, we propose a new
method which takes into account not
only the amount of information re-
lated to an alternative (expressed by
a distance from an ideal positive al-
ternative) but also the reliability of
information represented by an alter-
native meant as how sure the infor-
mation is.

Keywords: Ranking alternatives,
fuzzy sets, intuitionistic fuzzy sets.

1 Introduction

Atanassov’s intuitionistic fuzzy sets (cf.
Atanassov [2], [3]), can be viewed as a tool
that may help better model imperfect infor-
mation, especially under imperfectly defined
facts and imprecise knowledge. One of the im-
portant problems in this context is the rank-
ing of alternatives (options) obtained after a
process of decision analysis, evaluation, ag-
gregation etc. At the end a set of alterna-
tives is expressed in such a way that each op-
tion fulfills a set of criteria to some extent

µ and, on the other hand, it does not ful-
fill this set of criteria to some extent ν. In
other words, this implies that the alternatives
can conveniently be expressed via Atanassov’s
intuitionistic fuzzy sets [cf. Section 2]. For
brevity, such alternatives will be called intu-
itionistic fuzzy alternatives.

The problem of ranking intuitionistic fuzzy
alternatives may be solved under some addi-
tional assumptions only because there is no
linear order among elements of the A-IFSs.
It is a different situation to that for fuzzy
sets (Zadeh [31]) for which fuzzy elements are
naturally ordered because the membership de-
grees are real numbers from [0, 1].

In the literature there are not many ap-
proaches for ranking the intuitionistic fuzzy
alternatives. They were proposed by, for in-
stance, Chen and Tan [4], Hong and Choi [5],
Li et al. [6], [7], and Hua-Wen Liu and Guo-
Jun Wang [8].

Here we propose another approach that is dif-
ferent in several respects.

First, we employ the representation of A-IFSs
(i.e., intuitionistic fuzzy alternatives) taking
into account all three functions (member-
ship, non-membership, and hesitation mar-
gin). Such a representation gives intu-
itively appealing results (cf. e.g., Szmidt
and Kacprzyk[25], [18], [27]), [28]) while con-
structing distance, similarity, entropy, etc.
like measures that play a crucial role in virtu-
ally all information processing tasks.

Second, we propose a function for ranking in-
tuitionistic fuzzy alternatives which depends

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1604–1611

Torremolinos (Málaga), June 22–27, 2008



on two factors: the amount of information
represented by an alternative (expressed by
the distance from the ideal positive alterna-
tive), and the reliability of information (i.e.
how sure an alternative is) — expressed by the
hesitation margin.

2 A Brief Introduction to

Intuitionistic Fuzzy Sets

One of the possible generalizations of a fuzzy
set in X (Zadeh [31]), given by

A
′

= {< x, µA′ (x) > |x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership func-

tion of the fuzzy set A
′

, is Atanassov’s intu-
itionistic fuzzy set (Atanassov [1], [2], [3]) A
given by

A = {< x, µA(x), νA(x) > |x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1]
such that

0<µA(x) + νA(x)<1 (3)

and µA(x), νA(x) ∈ [0, 1] denote the degree of
membership and a degree of non-membership
of x ∈ A, respectively.

Obviously, each fuzzy set may be represented
by the following intuitionistic fuzzy set

A = {< x, µA′ (x), 1− µA′ (x) > |x ∈ X} (4)

For each intuitionistic fuzzy set in X, we will
call

πA(x) = 1− µA(x)− νA(x) (5)

an intuitionistic fuzzy index (or a hesitation
margin) of x ∈ A and, it expresses a lack
of knowledge of whether x belongs to A or
not (cf. Atanassov [3]). It is obvious that
0<πA(x)<1, for each x ∈ X.

The hesitation margin turns out to be impor-
tant while considering the distances (Szmidt
and Kacprzyk [12], [16], [25], entropy (Szmidt
and Kacprzyk [18], [27]), similarity (Szmidt
and Kacprzyk [28]) for the A-IFSs, etc. i.e.,
the measures that play a crucial role in virtu-
ally all information processing tasks. In this
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Figure 1: Geometrical representation

paper the hesitation margin is shown to be in-
dispensable in ranking the intuitionistic fuzzy
alternatives because it indicates how reliable
(sure) the information represented by an al-
ternative is.

The application of A-IFSs instead of fuzzy
sets means the introduction of another de-
gree of freedom (non-memberships) into a set
description. Such a generalization of fuzzy
sets gives us an additional possibility to rep-
resent imperfect knowledge what leads to de-
scribing many real problems in a more ade-
quate way. Applications of intuitionistic fuzzy
sets to group decision making, negotiations,
voting and other situations are presented in
Szmidt and Kacprzyk [11], [13], [14], [17], [19],
[21], [20], [22], [26], Szmidt and Kukier [29],
[30]. (because of the different approaches pre-
sented in the works cited above, we are not
able to discuss details here, and refer the in-
terested reader directly to them).

2.1 Geometrical representation

One of the possible geometrical representa-
tions of an intuitionistic fuzzy sets is given in
Fig. 1 (cf. Atanassov [3]). It is worth noticing
that although we use a two-dimensional fig-
ure (which is more convenient to draw in our
further considerations), we still adopt our ap-
proach (e.g., Szmidt and Kacprzyk [16], [25],
[18], [27]), [28]) taking into account all three
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functions (membership, non-membership and
hesitation margin values) describing an intu-
itionistic fuzzy set. Any element belonging to
an intuitionistic fuzzy set may be represented
inside an MNO triangle. In other words, the
MNO triangle represents a surface where the
coordinates of any element belonging to an A-
IFS can be represented. Each point belonging
to theMNO triangle is described by the three
coordinates: (µ, ν, π). Points M and N rep-
resent crisp elements. Point M(1, 0, 0) repre-
sents elements fully belonging to an A-IFS as
µ = 1, and may be seen as the representation
of the ideal positive element. Point N(0, 1, 0)
represents elements fully not belonging to an
A-IFS as ν = 1. Point O(0, 0, 1) represents
elements about which we are not able to say
if they belong or not belong to an A-IFS (in-
tuitionistic fuzzy index π = 1). Such an in-
terpretation is intuitively appealing and pro-
vides means for the representation of many as-
pects of imperfect information. SegmentMN
(where π = 0) represents elements belonging
to classical fuzzy sets (µ+ ν = 1). For exam-
ple, point A(0.5, 0.5, 0) (Figure 1), like any
element from segment MN represents an el-
ement of a fuzzy set. A line parallel to MN
describes the elements with the same values
of the hesitation margin. In Figure 1 we can
see point B(0.4, 0.4, 0.2) representing an el-
ement with the hesitation margin equal 0.2,
like D(0.1, 0.7, 0.2), E(0.5, 0.3, 0.2) and all el-
ements on the line pointed out by any two
from B, E, D. The closer a parallel line to
MN is to O, the higher the hesitation mar-
gin.

Remark: We use the capital letters (e.g.,
A,B,C) for the geometrical representation of
xi’s (Figure 1) on the plane. The same ab-
breviations (capital letters) mean in this pa-
per the sets but we always explain the current
meaning of a symbol used.

2.2 Distances between A-IFSs

In Szmidt and Kacprzyk [16], Szmidt and
Baldwin [9, 10], and especially in Szmidt and
Kacprzyk [25] it is shown why when calculat-
ing distances between A-IFSs we should take
into account all three functions describing the

A-IFSs. In [25] not only the reasons why we
should take into account all three functions
are given but also some possible serious prob-
lems that can occur while taking into account
two functions only.

In our further considerations we will use the
normalized Hamming distance between the A-
IFSs A,B in X = {x1,, . . . , xn} Szmidt and
Baldwin [9, 10], Szmidt and Kacprzyk [16],
[25]:

lIFS(A,B) =

=
1

2n

n∑

i=1

(|µA(xi)− µB(xi)|+ |νA(xi)−

+ νB(xi)|+ |πA(xi)− πB(xi)|) (6)

For (6) we have: 0<lIFS(A,B)<1. Clearly
the normalized Hamming distance (6) satisfies
the conditions of the metric.

3 Ranking the Alternatives

In Section 2 we have pointed out some possi-
ble applications of the A-IFSs and mentioned,
among others, those related to voting. Now
we will try to propose how to rank the voting
alternatives expressed via intuitionistic fuzzy
elements.

3.1 Ranking Alternatives via

Distances from the Ideal Positive

Alternative

Let an element x belonging to an A-IFS
characterized via (µ, ν, π) expresses a voting
situation: µ means the proportion (from
[0, 1]) of voters who vote for x, ν the pro-
portion of those who vote against, and π
of those who abstain. The simplest idea to
compare different voting situations (rank
the alternatives) might be to use a distance
measure from the ideal voting situation
M = (x, 1, 0, 0) (100% voting for, 0% vote
against and 0% abstain) to the alternatives
considered. We will call M the ideal positive
alternative. Let
A = (x, 0.5, 0.5, 0) — 50% vote for, 50%
against, and 0% abstain,
B = (x, 0.4, 0.4, 0.2) — 40% vote for, 40% vote
against and 20% abstain,
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C = (x, 0.3, 0.3, 0.4) — 30% vote for, 30% vote
against and 40% abstain.

Certainly, the method of calculating distances
between two A-IFSs A and B using the mem-
bership and non-membership values only (7)
does not work properly (cf. Szmidt and
Kacprzyk [16], [25], Szmidt and Baldwin [9],
[10]) in this case, too:

l2(A,B) =
1

2n

n∑

i=1

(|µA(xi)− µB(xi)|+

+ |νA(xi)− νB(xi)|) (7)

The results from (7), i.e., the distances for
the above voting alternatives represented by
points A,B,C (cf. Figure 2) from the ideal
positive alternative represented by M(1, 0, 0)
are, respectively:

l2(M,A) = 0.5(|1− 0.5|+ |0− 0.5|) = 0.5 (8)

l2(M,B) = 0.5(|1− 0.4|+ |0− 0.4|) = 0.5 (9)

l2(M,C) = 0.5(|1− 0.3|+ |0− 0.3|) = 0.5(10)

The results seems to be counterintuitive as
(7) suggests that all the alternatives (repre-
sented by) A,B,C seem to be “the same”.
On the other hand, the normalized Ham-
ming distance (6) taking into account besides
the membership and non-membership also the
hesitation margin, gives:

lIFS(M,A) = 0.5(|1− 0.5|+ |0− 0.5|+

+ |0− 0|) = 0.5 (11)

lIFS(M,B) = 0.5(|1− 0.4|+ |0− 0.4|+

+ |0− 0.2|) = 0.6 (12)

lIFS(M,C) = 0.5(|1− 0.3|+ |0− 0.3|+

+ |0− 0.4|) = 0.7 (13)

The results (11)—(13) seem to reflect our in-
tuition: alternative A seems to be the best in
the sense that the distance lIFS(M,A) is the
smallest (we know for sure that 50% vote for,
50% vote against). The situation is given in
Fig. 2. The alternative represented by point
A is just a fuzzy alternative (A lies on MN
where the values of the hesitation margin are
equal 0). On the other hand, alternatives B
and C are “less sure” (with the hesitation
margin equal 0.2, and 0.4, respectively).
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Figure 2: Geometrical representation of IFSs
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However, a weak point of ranking the alter-
natives by calculating the distances from the
ideal positive alternative represented by M is
that for a given value of the membership func-
tion, (6) gives just the same value (for exam-
ple, if the membership value µ is equal 0.8, for
any intuitionistic fuzzy element, i.e. such that
its non-membership ν and hesitation margin
π fulfill ν + π = 0.2, is equal 0.2). It is shown
in Figures 3. To better see this, the distances
(6) for any alternative fromM (Figure 3a) are
presented for µ and ν for the whole range [0, 1]
(instead for µ+ ν<1 only). For the same rea-
son (to better see the effect), in Fig. 3b) the
contour plot of the distances (6) is given only
for the range of µ and ν for which µ+ ν<1).

The conclusion is that the distances from the
ideal positive alternative alone do not make
it possible to rank the alternatives in the in-
tended way.

3.2 A New Method of Ranking

Alternatives

Let us analyze the sense of a voting al-
ternative (expressed via an intuitionistic
fuzzy element) using the operators of (cf.

Atanassov [3]): necessity ( ), possibility (♦),
Dα(A) and Fα,β(A) given as:

• The necessity operator ( )

A = {〈x, µA(x), 1− µA(x)〉|x ∈ X}(14)

• The possibility operator (♦)

♦A = {〈x, 1− νA(x), νA(x)〉|x ∈ X} (15)

• Operator Dα(A) (where α ∈ [0, 1])

Dα(A) = {〈x, µA(x) + απA(x), νA(x)

+ (1− α)πA(x)〉 |x ∈ X} (16)

• Operator Fα,β(A) (where α, β ∈ [0, 1];
α+ β<1)

Fα,β(A) = {〈x, µA(x) + απA(x), νA(x)

+ βπA(x)〉 |x ∈ X} (17)

For example, for alternative B(0.4, 0.4, 0.2)

we obtain B = Bmin, where Bmin =
(0.4, 0.6), and ♦B = Bmax, where Bmax =
(0.6, 0.4) (Figure 2). Operator Fα,β(A) makes
it possible for alternative B to become any al-
ternative represented in triangle BBmaxBmin.
A similar reasoning leads to the conclu-
sion that alternative C (Figure 2) might be-
come any alternative represented in triangle
CCmaxCmin, and alternative O(0, 0, 1) (be-
cause of the hesitation margin equal 1) may
become any alternative (the whole area of the
triangle MNO).

Having the above considerations in mind we
could say that the smaller the area of the tri-
angle YiYi,minYi,max (Figure 4) the better al-
ternative Yi from a set Y of the alternatives
considered. Alternatives having their repre-
sentations on segment MN are the best in
the sense that:

• the hesitation margin is equal 0 here,
which means that the alternatives are
fully reliable in the sense of the informa-
tion represented, and

• the alternatives are ordered — the closer
an alternative to ideal positive alterna-
tive M(1, 0, 0), the better it is (it is an
obvious fact as fuzzy alternatives are uni-
vocally ordered).

The above reasoning suggests that a promis-
ing way of ranking the intuitionistic fuzzy al-
ternatives Yi with the same values of πi is
converting them into the fuzzy alternatives
(which may be easily ranked). For alterna-
tives Yi with different values of πi the sim-
plest way to rank the alternatives is seems
to use the information carried by triangles
YiYi,minYi,max.

Y ∗i indicates the amount of information con-
nected with Yi (the amount of information
is indicated by “the position” of triangle
YiYi,minYi,max inside triangle MNO — ex-
pressed by the projection on segment MN).
The value of the hesitation margin πYi indi-
cates how sure (reliable) is the information
represented by Y ∗i .
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Y ∗i are the orthogonal projections of Yi on
MN . Szmidt and Kacprzyk [15] considered
such an orthogonal projection of the intu-
itionistic fuzzy elements belonging to an in-
tuitionistic fuzzy set A. This orthogonal pro-
jection may be obtained via operator Dα(A)
(16) with parameter α equal 0.5.

It is worth noticing that all the elements from
segment OA (Figure 2) are transformed by
D0.5(A) (16) into A(0.5, 0.5) which reflects
a lack of differences between the member-
ship and non-membership, no matter what
the value of the hesitation margin is.

In this context, a reasonable measure R that
can be used for ranking the alternatives (rep-
resented by) Yi seems to be

R(Yi) = 0.5(1 + πYi)lIFS(M,Y
∗

i ) (18)

where lIFS(M,Y
∗

i ) is the distance (6) from
ideal positive alternative M(1, 0, 0), Y ∗i is the
orthogonal projection of Yi on MN. Constant
0.5 was introduced in (18) to ensure that 0 <
R(Yi)<1. The values of function R for any
intuitionistic fuzzy element are presented in
Figure 5a, and the counterpart contour plot
— in Figure 5b. Unfortunately, the obtained
results (18) do not rank the alternatives in the
intended way. (The maximum value of (18) is
not obtained for the alternative (0, 0, 1) but
for (0, 1/2, 1/2).)
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Figure 5: a) R(Yi) as a function of a distance
Y ∗i from M and a hesitation margin; b) con-
tour plot

A better measure R that can be used for rank-
ing the alternatives (represented by) Yi seems
to be

R(Yi) = 0.5(1 + πYi)lIFS(M,Yi) (19)

where lIFS(M,Yi) is the distance (6) Yi from
ideal positive alternative M(1, 0, 0).

Equation (19) tells us about the “quality” of
an alternative — the lower the value of R(Yi),
(19), the better the alternative in the sense
of the amount of the positive information in-
cluded, and reliability of the information.

The best is alternative M(1, 0, 0) for which
R(M) = 0. For alternative N(0, 1, 0) we ob-
tain R(N) = 0.5 (alternative N is fully reli-
able as the hesitation margin is equal 0, but
the distance lIFS(M,N) = 1). Alternative
A (Figures 1, 2) gives R(A) = 0.25. In gen-
eral, on MN , the values of R decrease from
0.5 (for alternative N) to 0 (for the best al-
ternative M). The maximal value of R, i.e.
1, we obtain for O(0, 0, 1) for which both the
distance from M and hesitation margin are
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equal 1 (alternative O “indicates” the whole
triangleMNO). All other alternatives Yi “in-
dicate” smaller triangles YiYi,minYi,max (Fig-
ure 4), so their counterpart values of R are
smaller (better in the sense of the amount of
the reliable information).

4 Conclusions

We have proposed a new method of ranking
intuitionistic fuzzy alternatives. The method
takes into account the amount of the informa-
tion connected with an alternative (measured
by a distance to the positive ideal alternative),
and how reliable the information is (which is
measured by the alternative’s hesitation mar-
gin).
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