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Abstract 

We propose a differential evolution 
(DE) algorithm for the calculation of 
the interval and fuzzy variance. In par-
ticular, we see that the DE methods can 
be efficient for the fuzzy variance of a 
relatively high number of fuzzy data; 
computational results with up to 100 
data show that the number of function 
evaluations to obtain the estimated 
global solutions grows less then quad-
ratically with the number of data. 

Keywords: Fuzzy Variance, Differential Evolu-
tion. 

1     Introduction 
It is well known that the calculation of the vari-
ance in the case of interval or fuzzy data is NP-
hard and finding heuristic procedures with good 
computational performance is an important field 
of research. 
The problem at hand is a global constrained 
minimization and maximization (over box con-
straints of the form i i ia x b≤ ≤ ) of a convex 
function; the minimization of a convex function 
is not difficult and most procedures will produce 
the optimum point (it is unique by the lo-
cal=global minimum theorem for convex func-
tions); but the maximization of a convex func-
tion is quite a different question and finding the 
global max value is an open problem). 
On the other hand, the box-constrained max of a 
convex function is combinatorial as the solution 
is always at a vertex of the box (the proof is easy 
and well known) and in n dimensions the num-
ber of vertices is 2n as any of the vertices is a 
candidate solution. 

The exact solution in the worst case requires the 
evaluation of the function at all the vertices of 
the box and this cannot be done even for n of the 
order of 30-50 (250=1.1259E+15). For recent 
results on the box-constrained maximization of a 
convex function see [11]. 
For these reasons, it is necessary to adopt more 
complex procedures as the problem is incompa-
rably harder then min of a convex function. 
Obtaining a good (possibly near-optimal) solu-
tion for the fuzzy (or interval)-valued variance is 
well solved for low-dimensional problems (see 
[1],[2] and [3]), but in many applications of 
interval and data analysis and related fields, 
reasonable dimensions is 100-200 or more, so 
that the search for heuristic (possibly fast) pro-
cedures is of great importance and interest. 
We first report (section 2) some properties of the 
variance problem, in particular the combination 
of invariance to translations and homegenity of 
degree two give some indications to the struc-
ture of the problem and some ideas to develop 
heuristic procedures. 

In section 3 we describe the DE (differential 
evolution) algorithm for the global optimization 
of a function with box constraints. Similarly to 
all evolutionary algorithms for optimization, DE 
uses a finite population (not a single point) of 
solutions; at each generation, a population of 
potential solution points (chromosomes) is re-
combined to produce a new generation of candi-
date points which contains a better solution than 
in previous generations, i.e. at each generation 
the solution is tentatively improved. 
We then apply the DE procedure to the variance 
problem and, in the final section, we report 
some computational results with up to 100 data. 
The fact that the experienced computational 
effort grows less then quadratically with the 
dimension of the problem (i. e. the number of 
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fuzzy data) seems of interest also for high di-
mensional problems (section 4). 

2     General Setting 
We consider the problem of calculating the in-
terval and the fuzzy estimation of the variance 
of n compact intervals  [ , ]i i ix x x− +=   of the set  
R  of real numbers or n  fuzzy numbers (in the 
cutα −  representation): for 1, ...,i n=  

, ,{[ ] [ , ], [0,1]}i i i iX X x xα α α α− += = ∈ . As the 
fuzzy case can be reduced to the calculation of 
the interval for each cut (i.e. for each  

[0,1]α ∈ ) we first describe the case of inter-
vals. 

The interval variance is defined to be the inter-
val [ , ]v v v− +=  containing the possible values 
of the standard statistical variance 
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k   are  1
nk =  or 1

1nk −= . As the variance can 
be considered to be a function of the n  observa-
tions 1, ..., nx x  the problem becomes that of 
extending it to the interval arguments ix ; con-
sider simply the function  

1( , ..., )nw f x x= ( )2
1 1

1n n

i j
i j
x x

n= =
= ∑ − ∑  (1)

( )22
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1
( 1) ;

n n

i j
i j j i

n x x
n = = ≠
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as v kw= , the interval variance v kw=  is 
obtained by scalar multiplication of the interval 
extension w  of w  by the constant factor k . 

We have 

1{ ( , ..., ) | [ , ], }n i i iw f x x x x x i− += ∀∈  (3)

and, being f  a continuous function, 

[ , ]  wherew w w− +=   

1min{ ( ,..., ) | [ , ]}n i i iw f x x x x x− − += ∈  (4)

1max{ ( ,..., ) | [ , ]}n i i iw f x x x x x+ − += ∈ (5)

The problem then becomes that of globally 
minimize and maximize the quadratic function 

1( ,..., )nf x x  with the box constraints 
[ , ],i i ix x x− +∈  1,...,i n= . 

It is well known that the global minimum (4) is 
easy to compute, but the maximization (5) is 
NP-hard. 

So the main interest is in the computation of the 
upper level w+  by the maximization (5). 

In the following, we denote by  1( ,..., )nx x x=   
the point corresponding to the global maximum 
of  1( ,..., )nf x x   over the box (multidimensional 

interval)  
1
[ , ]

n

i ii
x x− +

=
= ×X   obtained as cartesian 

product of the single intervals. 

We first observe some properties of the quad-
ratic function 1( ,..., )nf x x  in (1). 

1. The first partial derivatives of f  are 

2 1 1,

2( 1) ( 1)
n n

i j
i j j ii

f n n x x
x n = = ≠

∂ −  = ∑ − − ∑   ∂
 

and we may have globally positive or globally 
negative partial derivatives if for some index  i   
one of the inequalities hold: 

1,
If ( 1) 0 then

0,

n

i j
j j i

i

n x x

f x
x

− +
= ≠

− − ∑ ≥

∂ ≥ ∀
∂

∈ X
 (6) 

1,
If ( 1) 0 then

0, .

n

i j
j j i

i

n x x

f x
x

+ −
= ≠

− − ∑ ≤

∂ ≤ ∀
∂

∈ X
 

(7) 

In case (6) the maximization point  
1( ,..., )nx x x=   has  i ix x+=   and in case (7) 

it has  i ix x−=  ; these two rules can possibly 
reduce the number of variables in the maximiza-
tion to be solved; a similar result, where  ix+   
and  ix−   are inverted, holds for the minimiza-
tion problem. 

2. Function f  in (1) is invariant to diagonal 
transformations, i.e. for every  1( ,..., )nx x x=  
and for any real number α , we have 
( ) ( )f x e f xα+ =  where (1,1,...,1)e = ; this 

implies that there exist many points of the box 
corresponding to the same value of  

1( ,..., )nf x x . 
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Three interesting consequences of this property 
are: 

(i) without changing the resulting interval vari-
ance, we can translate all the data intervals such 
that 0ix l− ≥ >  by the transformations 

0

,    with
max | | ;
i

i i i i

ix

x x t x x t
t l x

−

− − + +

−
<

→ + → +
= +  

(ii) if 
1,...,

min { }i ii n
h x x+ −

=
= −  is the minimal 

length of the intervals, then 

1 1( ,..., ) ( ,..., ), [0, ];n nf x x f x t x t t h− − − −= + + ∀ ∈
(iii) if  1( ,..., )nx x x∗ ∗ ∗=  is a feasible point and 

1,...,
max { } 0i ii n

h x x− − ∗
=

= − ≤ ,

1,...,
min { } 0i ii n

h x x+ + ∗
=

= − ≥ . 

Then 
1 1( ,..., ) ( ,..., ),n nf x x f x t x t∗ ∗ ∗ ∗= + +

[ , ];t h h− +∀ ∈  this implies that the optimal solu-
tion can be always found at the boundary of the 
box. 

3. Function f  in (1) is homogeneous of degree 
two, i.e. for every 1( ,..., )nx x x=  and for any 
real number t , we have 2( ) ( ).f tx t f x=  

Invariance to diagonal transformations and ho-
mogeneity imply that 2( ) ( )f tx e t f xα+ =  for 
all feasible x  and all ,t α  such that tx eα+  is 
feasible. 

4. Denote the level sets of function (1) by 

1 1( ) { | ( ,..., ),  ( ,..., ) };n nL c x x x x f x x c= = =
we have ( )L c = ∅  if 0c <  and 

(0) {( ,..., ) | }L t t t= ∈ R . 

Let 1
1

{( ,..., ) | , 1}
n

n i i
i

u u u u
=

= ∑ =S ∈ R  be 

the unit simplectic hyperplane (the unit simplex 
is the subset +S  of S  in the positive ortant). We 

have 2
1

1

1( ,..., ) ( )  for all 
n

n i
i

f u u u u
n=

= ∑ − ∈ S  

so that, on S , the function in (1) is separable. 

5. We have 1 1(0) {( ,..., )}n nL =  and, for 0,c >   

2

1 1

1( ) { | ( ) ,  1};
n n

i i
i i

L c u u c u
n= =

∩ = ∑ − = ∑ =S
this means that the projections of each ( )L c  into 

S  is a ( 1)n − -dimensional sphere centered at 
1 1( ,..., )n n  with radius c . 

6. Let { |u u+ =XS ∈ S  ,  0iu ≥  i∀ , 
t +∃ ∈ R  s.t. }tu ∈ X  be the points u  of the 

positive unit simplex such that, for at least one 
positive value of t  it is i i ix tu x− +≤ ≤  i∀ . 
Clearly, assuming (eventually after a transfor-
mation) that 0ix− >  i∀ , we have also 0iu >  
i∀  u +∀ X∈ S . The condition for u ∈ S  to be 
u +

X∈ S  is that there is a t +∈ R  with 

 1,...,i i

i i

x xt i n
u u

− +
≤ ≤ ∀ =  

or, equivalently that 

max{ | 1,..., } min{ | 1,..., }.i i

i i

x xi n i n
u u

− +
= ≤ =

It is easy to see that +
XS  is a convex subset of 

the unit simplex. 
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8. After the properties above, the determination 
of w−  and w+  is equivalent to solving the op-
timization problems 

2 21
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For a given feasible u , the determination of the 
optimal value of t  is easy: 

( ) max{ | 1,..., } for 

( ) min{ | 1,..., } for .
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u
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9. If 1( ,..., )nx x x∗ ∗ ∗=  is a feasible point, then 
, 0t t− +∃ ≥  and , 0α α− +∃ ≥  such that 

t x α− ∗ −+  and t x α+ ∗ +−  are feasible and 

( ) ( ) ( )f t x f tx f t xα α α− ∗ − ∗ + ∗ ++ ≤ + ≤ −  

[ , ]t t t− +∀ ∈  and [ , ]α α α+ −∀ −∈ ; ,t α− −  are 
obtained by solving the two dimensional LP 
minimization 

, 0
min    s. t.  i i it
t x tx x i

α
α− ∗ +

≥
≤ + ≤ ∀  (8)

and ,t α+ +  are obtained by solving the two 
dimensional LP maximization 

, 0
max    s. t.  .i i it
t x tx x i

α
α− ∗ +

≥
≤ − ≤ ∀  (9)

This suggests a possible heuristic procedure: 

Step 1. Select randomly a set of P  feasible 
points ( ),px  1,...,p P=  with ( )p

i iix x x− +≤ ≤  
i∀ ; 

Step 2. For each 1,...,p P= , solve the two LP 
problems (8) and (9) using ( )px x∗ =  and let 

( ) ( )( , )p pt α− −  and ( ) ( )( , )p pt α+ +  be the corresponding 
solutions; evaluate ( ) ( ) ( ) ( )( )p p p pw f t x α− − −= +  
and ( ) ( ) ( )( )( )p p ppw f t x α+ + += − ; 

Step 3. Approximated values of w−  and w+  
are, respectively, ( )min{ | 1,2,..., }pw p P− =  
and ( )max{ | 1,2,..., }.pw p P+ =  

3     A DE Algorithm for Fuzzy Variance 
Consider a feasible point x ∈ X  such that 
i i ix x x− +≤ ≤ , 1,...,i n=  and transform 

x ru=  with 
1

0
n

i
i

r x
=

= ∑ >  and ix
riu =  

(clearly, 0iu >  i∀  ). Then, better points x ′  
and x ′′  for the Min and Max problems are, re-
spectively, 

 with max{ | 1,..., }

 with min{ | 1,..., }

i
u u

i

i
u u

i

xx t u t i n
u
xx t u t i n
u

+
− −

−
+ +

′ = = =

′′ = = =
 

as, in fact (the considered values of t  are such 
that tu ∈ X ) 

2 2 2 2

1 1

1 1( ) ( ) ( ) ( )
n n

u i i
i i

w x t u t u
n n

− −
= =

′ = ∑ − ≤ ∑ −  

and 
2 2 2 2

1 1

1 1( ) ( ) ( ) ( )
n n

u i i
i i

w x t u t u
n n

+ +
= =

′′ = ∑ − ≥ ∑ −  

This produces an advantage in performing the 
optimizations, as to each trial point x ∈ X  we 
can immediately substitute a (boundary) feasible 
point x ′  or x ′′  (along the direction 

1|| || ,x
xu =  

1
1

|| || | |
n

i
i

x x
=

= ∑  being the usual 1 norm− ) 

where the objective function is better then at x . 

This fact will in general speed up any optimiza-
tion procedure and we will see that even high 
dimensional problems (up to 100 variables) can 
be handled by a suitable implementation of a 
Differential Evolution algorithm. 

To take more advantage in the calculation of the 
fuzzy variance, we represent all the fuzzy num-
bers the LU (Lower-Upper) parametrization 
introduced in [6]; in such a way, the number of 
optimization problems is reduced without loos-
ing the desired precision in the determination of 
the membership function of the fuzzy variance 
(see also [7] for the application of similar ideas 
to the general fuzzy extension of functions). 

The simpler LU parametrization of the 
cutsα −  [ , ]u uα α

− +  of a fuzzy number u  is ob-
tained on the trivial decomposition of interval 
[0,1]  with 1N =  (without internal points) and 

0 10, 1α α= = : 

( )
( )

0 1 0 0 1

0 1 0 0 1

( ) ; ,
( ) ; , .

u u u u p u u
u u u u p u u
α

α

α δ δ
α δ δ

− − − − − −

+ + + + + +
= + −
= + −  (10)

The shape function ( )0 1; ,p u uα δ δ  is taken from 
a family (see [6]) of monotonic increasing func-
tions over [0,1]  and such that ( )0 0p = , 
( )1 1p = , ( ) 00p uδ′ =  and ( ) 11p uδ′ = . In 

this simple case, u  can be represented by a vec-
tor of 8 components 

0 0 1 10 0 1 1( , , , ; , , , )u u u u u u u u uδ δ δ δ− − + + − − + += (11)

with 0 ,u−  0 ,uδ −  1 ,u−  1uδ −  for the lower branch 
uα−  and 0 ,u+  0 ,uδ +  1 ,u+  1uδ +  for the upper 
branch uα+ ; the values are such that 

0 1 1 0u u u u− − + +≤ ≤ ≤  to have the support 

0 0[ , ]u u− +  and the core 1 1[ , ]u u− +  of u . 

Let 1 2( , , ..., )nw f x x x=  denote the fuzzy vari-
ance of n  fuzzy variables , ,[ ] [ , ]k k kx x xα α α

− += ; 
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to obtain the parametric LU representation of w  
we need to calculate the usual minima 0 1,w w− −  
and maxima 0 1,w w+ +  but also the slopes 

0 1,w wδ δ− −  and 0 1,w wδ δ+ + , obtained by the fol-
lowing rule: for the two membership levels iα , 

0,1i =  where 0 10, 1α α= = , denote by 
1, ,( ,..., )i i n ix x x− − −=  and ,1,( ,..., )i n iix x x+ + +=  the 

points where the min  and the max  take place; 
then 

1, ,( , ..., )i n iiw f x x− −− = , ,1,( ,..., );i n iiw f x x+ ++ =  

the slopes iwδ − , iwδ +  are computed (as f  is 
differentiable and the derivatives are easy to 
calculate in closed form) by 

1
,,

1

, ,

1, ,
,

1, ,
,

( ,..., )

( ,..., )

k
x xk ik i

k
x xk i k i

n
i n i

i k i
k

n
i n i

k i
k

f x xw x
x

f x x x
x

δ δ

δ

=
−− =

=
+− =

− −
− −

− −
+

∂=
∂

∂+
∂

∑

∑
 (12)

1
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1

, ,

,1,
,

,1,
,

( ,..., )

( ,..., )
.

k
x xk ik i

k
x xk i k i

n
n ii

i k i
k

n
n ii

k i
k

f x x
w x

x

f x x
x

x

δ δ

δ

=
−+ =

=
++ =

+ +
+ −

+ +
+

∂
=

∂

∂
+

∂

∑

∑
 (13)

The idea of DE  to find Min or Max is to start 
with an initial "population" 

(1) (1)
1( ,..., )nx x x= ,…, ( ) ( )

1( ,..., )p p
nx x x=  of 

p  feasible points for each generation (i.e. for 
each iteration) to obtain a new set of points by 
recombining randomly the individuals of the 
current population and by selecting the best 
generated elements to continue in the next gen-
eration. To define a starting population to initial-
ize the DE procedure, as it is rare to have infor-
mation about promising subsets to privilege, it is 
natural to seed random points belonging to the 
feasible box (satisfying the boundary con-
straints). The initial population is then chosen 
randomly to "cover" uniformly the entire pa-
rameter space. Denote by ( , )k gx  the k − th vec-
tor of the population at iteration (generation) g  
and by ( , )k g

jx  its j − th component. At the 
phases of the procedure, a new trial population 
is generated and each new individual is com-
pared with its counterpart in the current popula-
tion. The points with the best value of the objec-

tive function 1( ,..., )nf x x  will “survive” to the 
next generation as they generally better than 
their actual counterparts. 
At each iteration, the method generates a set of 
candidate points ( , )k gy  to substitute the elements 

( , )k gx  of the current population, if ( , )k gy  is bet-
ter. To generate ( , )k gy  two operations are ap-
plied: recombination and crossover. 

A typical recombination operates on a single 
component {1,..., }j n∈  by generating a new 
perturbed vector of the form 

( , ) ( , ) ( , ) ( , )[ ]k g r g s g t g
j j j jv x x xγ= + − , where 

, , {1,2,..., }r s t p∈  are chosen randomly and 
]0,2]γ ∈  is a constant (eventually chosen ran-

domly for the current iteration) that controls the 
amplification of the variation. 

The potential diversity of the population is con-
trolled by a crossover operator, that construct 
the candidate ( , )k gy  by crossing randomly the 
components of the perturbed vector ( , )k g

jv  and 

the old vector ( , )k g
jx  ( 1 2, ,..., hj j j  are random), 

( , )
1 2( , )

( , )
1 2

  if  { , ,..., }

  if  { , ,..., }

k g
hjk g

j k g
hj

v j j j j
y

x j j j j

=  ∉

∈
 

and the components of each individual of the 
current population are modified to ( , )k g

jy  by a 
given probability .q  Typical values are 

[0.2, 0.95]γ ∈ , [0.7,1.0]q ∈  and 5p n≥  (the 
higher p , the lower γ ). 

The candidate ( , )k gy  is then compared to the 
existing ( , )k gx  by evaluating the objective func-
tion at ( , )k gy : if better then substitution occurs in 
the new generation 1g + , otherwise ( , )k gx  is 
retained. 

Many variants of the recombination schemes 
have been proposed and some seem to be more 
effective than others (see [9] and [10], [4] for 
constraints handling). 

To take into account the particular nature of our 
problem, we modify the basic procedure: start 
with the ( 1) cutα = −  back to the 
( 0) cutα = −  so that the optimal solutions at a 
given level can be inserted into the "starting" 
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populations of lower levels; use two distinct 
populations and perform the recombinations 
such that, during generations, one of the popula-
tions specializes to find the minimum and the 
other to find the maximum. For the details, the 
interested reader can consult reference [8]. 

4     Computational results 
We have implemented the DE procedure using 
MATLAB and we have run a series of examples 
with randomly generated fuzzy data. We also 
have implemented two additional heuristic pro-
cedures based on the properties illustrated in 
section 2. DE will indicate the differential evo-
lution algorithm illustrated in section 3; HeurLP 
will indicate the heuristic procedure illustrated 
at point 9. of section 2; Heur2 will indicate a 
heuristic procedure similar to HeurLP but, in-
stead of solving the LP problem for each ran-
dom initial feasible point, we apply the follow-
ing procedure: 

Step 1. start with a feasible ( )px  and obtain 
0β <  such that ( )px β−  is feasible and sub-

stitute ( )px  with ( ) ;px β−  

Step 2. determine the maximum value of 
1t+ >  such that ( )pt x+  is feasible; 

Step 3. iterate steps 1. and 2. while 0β <  and 
1t+ >  are found (or for a given fixed number 

of iterations); at the final point ( )px  the value of 
the variance is better (greater) then for the initial 
randomly generated point; repeat the procedure 
for a prefixed number of randomly generated 
initial feasible points and record the biggest 
found variance as an estimation for the maxi-
mum variance. 

The fuzzy numbers for calculating the fuzzy 
variance are generated randomly to be triangular 

, ,i i i ix a b c=  with cutsα −  

[ ] [ ( ) , ( ) ]i i i i i i ix a b a c b cα α α= + − + −  

and i i ia b c< <  obtained as follows (Matlab 
instructions, D  is the dimension n  of the prob-
lem): 

5.0; 10.0;xmin xmax= =
1.0; 4.0;dmin dmax= = ( , 0);rand state′ ′

(1, ) ( );b xmin rand D xmax xmin= + ∗ −
(1, ) ( );a b dmin rand D dmax dmin= − − ∗ −
(1, ) ( );c b dmin rand D dmax dmin= + + ∗ −  

To test the procedures, we have generated 10 
different problems with D  from 10 to 100. For 
all algorithms we give the found fuzzy variance. 
For algorithm DE we report the number of func-
tion evaluations; for algorithm HeurLP we re-
port the number of function evaluations and the 
number of 2-dimensional LP problems needed; 
for algorithm Heur2 we give the number of 
function evaluations and the total number of 
internal steps 1. and 2. In all the problems, the 
LU-fuzzy parametrization with 4N =  (five 
points) is used so that for each fuzzy variance 
four global maximization problem have been 
solved. 

In the illustrated examples, the solution found 
by the DE algorithm was never worse then other 
procedures; HeurLP is better than Heur2 but its 
computational time is bigger. 

2

10 13750 905 1449 505 1200
20 36500 995 1612 995 1200
30 81750 1085 1638 1485 1400
40 121000 1175 1744 1975 1400
50 216250 1265 1792 2465 1600
60 274500 1355 1763 2955 1600
70 358750 1445 1772 3445 1800
80 488000 1545 19

DE HeurLP LP Heur IterD F F N F N

45 3935 1800
90 600750 1625 1955 4425 2000
100 742500 1715 1962 4915 2000

 

It appears that good near-optimal solutions re-
quire a large number of function evaluations or 
of solutions to auxiliary LP problems; but in-
creasing the dimension D of the number of 
fuzzy data, the number of function evaluations 
required by the DE procedure will increase less 
then quadratically, as illustrated by the follow-
ing graph: 
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In the following tables, the LU-fuzzy parametri-
zation of the found solutions is reported only for 
the first (core) and the last (support) ;cutsα −  

1564 Proceedings of IPMU’08



the plots are obtained by the full 4N =  pa-
rametrization. 

Problem 1 (D=10) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 2.28 6.08 2.28 -6.82
0.0 0.0 0.0 17.71 -24.14 

 

Problem 2 (D=20) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 1.99 5.65 1.99 -6.23
0.0 0.72 0.18 14.76 -19.25 

 

Problem 3 (D=30) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 2.23 6.03 2.23 -6.82
0.0 0.0 0.0 17.71 -24.14 

 

Problem 4 (D=40) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 2.284 6.78 2.284 -7.08
0.0 0.036 0.0 17.354 -23.19 

 

Problem 5 (D=50) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 2.17 6.501 2.17 -7.061
0.0 0.087 0.095 16.44 -22.58 

 

Problem 6 (D=60) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 2.058 5.955 2.058 -6.648
0.0 0.145 0.0 16.489 -22.762 

 

Problem 7 (D=70) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 1.933 6.006 1.933 -5.318
0.0 0.119 0.0 112.930 -17.634 

 

Problem 8 (D=80) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 1.779 5.631 1.779 -5.647
0.0 0.174 0.0001 14.407 -20.21 

 

Problem 9 (D=90) 
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α  wα
−  wαδ −  wα+  wαδ +  

1.0 1.859 5.549 1.859 -6.82
0.0 0.298 0.0004 14.873 -20.779 

 

Problem 10 (D=100) 
α  wα

−  wαδ −  wα+  wαδ +  
1.0 1.985 6.053 1.985 -5.971
0.0 0.363 0.0 14.883 -20.53 

 

5     Conclusions 
We can conclude that the DE methods, whose 
nice behaviour in many hard optimization prob-
lems is still appreciated ([5],[9],[10]), seems to 
be a promising tool (and easy to implement as in 
[7],[8]) for applications in the interval and fuzzy 
contexts. 

In particular, it appears that they can benefit of 
some properties of the fuzzy variance problem 
(e.g. quadratic homogenity and diagonal transla-
tion invariance) to facilitate the finding of good 
solutions. 

Further work is planned to find improved DE 
strategies (e.g. multi populations and constraint 
handling [4]).  
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