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Abstract

We introduce fuzzy dependencies
with new semantics as a generaliza-
tion of both fuzzy approximate and
fuzzy gradual dependencies. The
new dependencies are defined as
fuzzy association rules relating dif-
ferent types of items on a particu-
lar set of transactions obtained from
a database. We discuss the seman-
tics and we illustrate the new types
of dependencies with results of our
experiments. Algorithmic issues are
also briefly discussed.
Keywords: Fuzzy dependencies;
gradual dependencies; approximate
dependencies; association rules.

1 Introduction

Several types of dependencies and fuzzy de-
pendencies have been introduced in the litera-
ture by many authors. Most of them are fuzzy
extensions of functional dependencies in rela-
tional databases. Given two attributes2 X, Y
a functional dependence is an expression of
the form X → Y . It is said that X → Y
holds if for every set of data (instance) r, Eq.
1 holds.

∀t, s ∈ r if t[X] = s[X] then t[Y ] = s[Y ]
(1)

1Corresponding author.
2The definition of functional dependence and the

different extensions discussed in this paper consider
that X and Y are sets of attributes in general.

The different fuzzy extensions of functional
dependencies are called fuzzy functional de-
pendencies, and are obtained by replacing
some of the elements in Eq. 1 by their
fuzzy counterparts in different ways (see [4]
for a review of the main approaches). As
a particular case, approximate dependencies
(see [11]) replace the universal quantifier by
a less restrictive one, allowing exceptions to
the rule. Fuzzy approximate dependencies [2]
are a fuzzy extension of approximate depen-
dencies that consider a fuzzy similarity rela-
tion instead of a crisp equality between values
of attributes. A more general kind of fuzzy
functional dependence that unify many of the
different approaches described in [4] can be
found in [6].

A completely different kind of dependencies,
called gradual dependencies, was proposed in
[9]. Gradual dependencies represent tenden-
cies in the variation of the degree of fulfil-
ment of imprecise properties in a set of ob-
jects. Since the imprecise properties are de-
scribed by means of fuzzy sets, these depen-
dencies have been also called fuzzy gradual de-
pendencies [10]. The variations in the mem-
bership degree considered in gradual depen-
dencies can be of two types: the more and
the less, meaning that the membership de-
gree of the first object to the considered fuzzy
set is greater or lower than the membership
of the second one, respectively. Hence we
can consider four types of gradual depen-
dencies: the more X is A, the more Y is
B (expressed as (>,X, A) → (>,Y, B)), the
more X is A, the less Y is B (expressed as
(>,X,A) → (<,Y,B)), and so on. As an ex-
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∀t, s ∈ r if A(t[X]) ∗1 A(s[X]) then B(t[Y ]) ∗2 B(s[Y ]) (2)

ample, consider a database containing data
about weight and speed of a set of trucks,
and consider the restrictions high related to
weight and slow related to speed, represented
by means of suitable fuzzy sets on the domains
of the attributes. Examples of gradual depen-
dencies are the higher the weight, the lower the
speed, meaning that as the weight of a truck
increases, its speed tends to decrease, and the
higher the weight, the higher the speed, mean-
ing the opposite tendency.

In [10] and previous works, gradual dependen-
cies are interpreted as rules. Following that
approach, a gradual dependence (∗1, X, A) →
(∗2, Y, B) with ∗1, ∗2 ∈ {<,>} is defined by
the rule in Eq. 2.

On the basis of Eq. 1 and 2, interpretations
of the different types of dependencies that
we have mentioned above as fuzzy association
rules have been provided in [11, 2, 10]. These
interpretations, based on suitable definitions
of the abstract notions of item and transac-
tion, have the advantage that the measures
and algorithms to mine for fuzzy association
rules can be employed in order to assess and
to mine for dependencies of different types.

In this paper we put together the different
types of items employed to interpret depen-
dencies as association rules. The resulting
dependencies are fuzzy dependencies of differ-
ent types, with new semantics, that general-
ize both approximate and gradual dependen-
cies. We introduce and discuss some of the
possible resulting semantics, and we illustrate
them with the results of some experiments.

The paper is organized as follows: in section
2 we introduce fuzzy association rules and the
interpretation of dependencies as association
rules provided in [11, 2, 10]. In section 3
we introduce new dependencies and discuss
about their semantics. Algorithmic issues and
some examples obtained in our experiments
are shown in section 4. Finally, section 5 con-
tains our conclusions and future work.

2 Dependencies as Association
Rules

In this section we briefly remember some no-
tions on association rules and fuzzy associa-
tion rules, and the definition of fuzzy depen-
dencies as fuzzy association rules introduced
in [11, 2, 10].

2.1 Association Rules

Let I be a set of items and T a set of trans-
actions with items in I, both assumed to be
finite. An association rule is an expression of
the form I1 ⇒ I2, where I1, I2 ⊆ I, I1, I2 6= ∅,
and I1 ∩ I2 = ∅. The rule I1 ⇒ I2 means “ev-
ery transaction of T that contains I1 contains
I2”.

The usual measures to assess association rules
are support and confidence, both based on the
concept of support of an itemset (i.e. a subset
of items). The support of an itemset I0 ⊆ I,
and the support and confidence of the rule
I1 ⇒ I2 in a set of transactions T , are those
of Eq. 3, 4 and 5, respectively.

supp(I0) =
|{τ ∈ T | I0 ⊆ τ}|

|T | (3)

Supp(I1 ⇒ I2) = supp(I1 ∪ I2) (4)

Conf(I1 ⇒ I2) =
Supp(I1 ⇒ I2)

supp(I1)
(5)

Several authors have pointed out the draw-
backs of confidence and have proposed alter-
native measures. Following the proposal in
[3], we shall employ Shortliffe and Buchanan’s
certainty factors, defined as in Eq. 6.

2.2 Fuzzy association rules

Association rules have been extended to fuzzy
association rules in different ways (see [5, 8]
for a review). In [5], fuzzy association rules
are defined and assessed as follows: let I =
{i1, . . . , im} be a set of items and T̃ be a set
of fuzzy transactions, where each fuzzy trans-
action is a fuzzy subset of I. For every fuzzy
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CF (I1 ⇒ I2) =


conf(I1⇒I2)−supp(I2)

1−supp(I2) conf(I1 ⇒ I2) > supp(I2)

conf(I1⇒I2)−supp(I2)
supp(I2) conf(I1 ⇒ I2) ≤ supp(I2)

(6)

transaction τ̃ ∈ T̃ we note τ̃(ik) the mem-
bership degree of ik in τ̃ . For an itemset I0

we note τ̃(I0) = minik∈I0 τ̃(ik) the degree to
which I0 is in a transaction τ̃ . A fuzzy asso-
ciation rule in T̃ is an implication of the form
I1 ⇒ I2 such that I1, I2 ⊂ I and I1 ∩ I2 = ∅.
We call representation of the item ik, denoted
by Γ̃ik , to the (fuzzy) set of transactions where
ik appears, defined as in equation 7. This
representation can be extended to itemsets as
in equation 8.

Γ̃ik(τ̃) = τ̃(ik) (7)

Γ̃I0(τ̃) = min
ik∈I0

Γ̃ik(τ̃) = min
ik∈I0

τ̃(ik) = τ̃(I0)

(8)

In order to measure the interest and accuracy
of a fuzzy association rule, we employ a se-
mantic approach based on the evaluation of
quantified sentences, using the fuzzy quanti-
fier QM (x) = x, as follows:

• The support of an itemset I0 is the eval-
uation of the quantified sentence QM of
T̃ are Γ̃I0 .

• The support of the fuzzy association rule
I1 ⇒ I2 in T̃ , Supp(I1 ⇒ I2), is the eval-
uation of the quantified sentence QM of
T are Γ̃I1∪I2 = Q of T are (Γ̃I1 ∩ Γ̃I2).

• The confidence of the fuzzy association
rule I1 ⇒ I2 in T̃ , Conf(I1 ⇒ I2), is the
evaluation of the quantified sentence Q of
Γ̃I1 are Γ̃I2 .

• The certainty factor is obtained from
support and confidence using equation 6.

We evaluate a quantified sentence of the form
Q of F are G by means of method GD [7],
obtaining the value GDQ(G/F ) as in Eq. 9:

∑
αi∈Λ(G/F )

(αi − αi+1)Q
( |(G ∩ F )αi |

|Fαi |
)

(9)

where 4(G/F ) = Λ(G ∩ F ) ∪ Λ(F ), Λ(F )
being the level set of F , and Λ(G/F ) =
{α1, ..., αp} with αi > αi+1 for every i ∈
{1, ..., p− 1}, and considering αp+1 = 0. The
set F is assumed to be normalized. If not,
F is normalized and the same normalization
factor is applied to G ∩ F .

Let us remark that by using the quantifier
QM , the measures described above yield the
ordinary measures for support, confidence,
and certainty factor in the crisp case. Hence,
this approach reduces to ordinary association
rules when applied on a set of crisp transac-
tions, i.e., it is a consistent generalization of
crisp association rules.

2.3 Approximate dependencies

Let r be a table with attributes X, Y, Z . . ..
Approximate dependencies in r can be defined
and assessed as association rules by introduc-
ing the following set of items and transactions
[11]:

• Items: Ir = {IX , IY , IZ . . .}.
• Transactions: Tr obtained as follows: for

every ordered pair of tuples (t, s) with
t, s ∈ r there is one transaction ts ∈ Tr.
An item of the form IX is in the transac-
tion associated to the pair (t, s) iff t[X] =
s[X].

Let us remark that these definitions do not
correspond to the usual way of translating
tables into transactions in order to obtain
association rules (where items are pairs (at-
tribute,value) and transactions correspond to
tuples). The motivation of these alternative
definitions is to obtain association rules of the
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gtts([∗, X, A]) =
{ |A(t[X])−A(s[X])| A(t[X]) ∗A(s[X])

0 otherwise
(10)

form IX ⇒ IY with the semantics of Eq. 1,
corresponding to approximate dependencies
of the form X → Y . This idea is employed
as well in the definition of fuzzy approximate
dependencies (see section 2.4) and fuzzy grad-
ual rules (see section 2.5). Finally, support
and certainty factor of IX ⇒ IY are employed
to assess the dependence X → Y [11].

2.4 Fuzzy approximate dependencies

In [2], approximate dependencies as intro-
duced in [11] are extended to fuzzy approx-
imate dependencies by considering a set of
fuzzy transactions. For this purpose, simi-
larity relations SX , SY , SZ , . . . in the domain
of attributes X, Y, Z . . . respectively, are em-
ployed. Then, items and transactions are de-
fined as follows:

• Items: Ir = {[SX , X], [SY , Y ], . . .}.

• Fuzzy transactions: a set of fuzzy trans-
actions T̃r is obtained as follows: for
every ordered pair of tuples (t, s) with
t, s ∈ r there is one fuzzy transaction
t̃s ∈ T̃r. An item of the form [SX , X]
is in the fuzzy transaction associated to
the pair (t, s) with degree t̃s([SX , X]) =
SX(t[X], s[X]).

With these definitions, a fuzzy association
rule [SX , X] ⇒ [SY , Y ] in T̃r defines a fuzzy
approximate dependence (SX , X) → (SY , Y )
in r. Depending on the definition of fuzzy as-
sociation rule, that vary mainly in the defini-
tion of the measures of support and accuracy,
we can obtain different definitions of fuzzy ap-
proximate dependence. In [2] the definition
in [5] (see section 2.2) is employed. Let us re-
mark that in the crisp case (i.e., the similarity
relation is crisp equality) these fuzzy approxi-
mate dependencies reduce to the crisp approx-
imate dependencies introduced in [11] (section
2.3), considering IX ≡ [=, X] and X → Y ≡
(=, X) → (=, Y ).

2.5 Fuzzy gradual dependencies

Following the ideas in previous sections, fuzzy
gradual dependencies have been also defined
in [10] as fuzzy association rules by pro-
viding definitions of items and fuzzy trans-
actions in accordance with Eq. 2. Let
A, B,C, . . . be fuzzy sets defined on the do-
main of X, Y, Z, . . ., respectively. Items and
fuzzy transactions are defined as follows:

• Items: We define the set of items as
GIr = {[∗, X,A], [∗, Y, B], [∗, Z, C], . . .}
∀∗ ∈ {<,>}.

• Fuzzy transactions: a set of fuzzy trans-
actions GTr is obtained as follows: for
every ordered pair of tuples (t, s) with
t, s ∈ r there is one fuzzy transaction
gtts ∈ GTr. An item of the form [∗, X, A]
is in the fuzzy transaction associated to
the pair (t, s) with degree given by Eq.
10.

With these definitions, a fuzzy association
rule [∗1, X, A] ⇒ [∗2, Y,B] in GTr defines
a fuzzy gradual dependence (∗1, X, A) →
(∗2, Y,B) in r. Again, the definition in [5] (see
section 2.2) is employed to define fuzzy grad-
ual dependencies in [10], and the measures of
support and certainty factor are employed in
order to assess such dependencies.

3 New fuzzy dependencies

In this section we introduce new fuzzy depen-
dencies whose semantics are a mixing of the
semantics of fuzzy approximate dependencies
and fuzzy gradual rules, extending and going
beyond both.

3.1 Items

As seen in previous sections, it is possible to
define different types of fuzzy dependencies
as association rules by considering transac-
tions associated to pairs of tuples. This is
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common to all the dependencies we have de-
scribed before. The main difference between
fuzzy approximate dependencies (of which ap-
proximate dependencies are a particular case)
and fuzzy gradual dependencies is the kind of
items they consider.

We can obtain fuzzy dependencies with new
semantics by adding more types of items and
by mixing all the items in the set of fuzzy
transactions. Given a pair of tuples (t, s), we
consider a fuzzy transaction ts. For every at-
tribute X, let SX and A be a similarity re-
lation and a fuzzy set, respectively, both de-
fined on the domain of X. We shall consider
the following types of items:

• FAD-items: items of the form [SX , X]
employed to obtain fuzzy approxi-
mate dependencies. ts([SX , X]) =
SX(t[X], s[X]).

• GD-items: items of the form [∗, X,A]
with ∗ ∈ {<,>}. ts([∗, X,A]) is defined
by Eq. 10.

• AR-items: items of the form [X, x] with x
in the domain of X. ts([X,x]) is defined
by Eq. 11. This type of items correspond
to the ordinary pairs (attribute,value)
employed when mining for association
rules in tables in the usual way.

ts([X, x]) =
{

1 t[X] = s[X] = x
0 otherwise

(11)

3.2 New dependencies

Let r be a table with attributes X,Y, Z..., let
SX , SY , SZ . . ., A,B,C . . . be similarity rela-
tions and fuzzy subsets on the domain of the
attributes3. On the basis of the items in the
previous section, we can define fuzzy depen-
dencies as follows:

Definition 3.1 Let Tr be a set of fuzzy trans-
actions on a set of items Ir containing FAD-
items, GD-items and AR-items. Let I1, I2 ⊂

3In general, it is possible to consider more than a
single similarity relation and more than a fuzzy set for
each attribute.

I with I1 ∩ I2 = ∅. The fuzzy association rule
I1 ⇒ I2 in Tr defines a fuzzy dependence in
r.

In practice, we shall consider that I2 contains
one single item. Though in principle any kind
of item is allowed both in I1 and I2, not all the
possible combinations have a clear semantics.
This is the case, among others, in the follow-
ing situations:

• I1 ∪ I2 contains the itemset
{[X, x], [X, x′]} with x 6= x′. This
is not allowed in tables under the first
normal form. However, in databases
that violate this normal form, those rules
could make sense.

• I1 ∪ I2 contains the itemset
{[X, x], [SX , X]} with SX reflexive
(usual in similarity relations). This is
subsumed by the item {[X,x]}.

• I1 ∪ I2 contains the itemset
{[<,X, A], [>,X,A]}. The support
of the rule is 0.

• I1 ∪ I2 contains the itemset
{[X, x], [∗, X, A]} with ∗ ∈ {<,>}.
The support of the rule is 0.

• I1 ∪ I2 contains the itemset
{[=, X], [∗, X, A]} with ∗ ∈ {<,>}.
The support of the rule is 0.

On the contrary, other combinations have a
clear semantics. First of all, it is clear that
approximate dependencies (section 2.3), fuzzy
approximate dependencies (section 2.4) and
fuzzy gradual dependencies (section 2.5) are
particular cases of definition 3.1. In addition,
new types of dependencies arise, in particular
the following:

• Dependencies obtained by adding items
of the form [Z, z] to the itemset I1

in fuzzy approximate dependencies and
fuzzy gradual dependencies. The seman-
tics of such dependencies is “the fuzzy ap-
proximate (resp. fuzzy gradual) depen-
dence holds when Z = z”.
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• Dependencies where I1 contains only
items of the form [∗, X, A] or [SX , X] and
I2 is of the form [Z, z].

These dependencies are useful in order to
characterize what happens in those subsets
of tuples where Z = z. For example, it
could happen that a dependence [∗1, X, A] →
[∗2, Y, B] does not hold in a table, but holds in
those tuples where Z = z, i.e., the dependence
[Z, z], [∗1, X, A] → [∗2, Y,B] holds. These de-
pendencies are then restrictions of approxi-
mate and/or gradual properties in a certain
subset of tuples of the original table.

4 Experiments

In this section we discuss first some algo-
rithmic issues of mining fuzzy dependencies.
Then we show some dependencies obtained
from a database in order to illustrate the new
types of dependencies introduced in this pa-
per.

4.1 Algorithms

A straightforward way to obtain fuzzy depen-
dencies from a table r according to definition
3.1 is to generate the set of fuzzy transactions
Tr and then to apply any algorithm for mining
association rules. The problematic cases of
dependencies without semantics described in
section 3.2 could be discarded either by mod-
ifying the association rule mining algorithm
so that certain itemsets are not considered
(more efficient), or discarding the problem-
atic dependencies after they are obtained in a
postprocessing stage.

The main drawback of this approach is that
|Tr| = n2, n = |r|, and n2 can be a huge
number. In order to diminish the complexity
due to the number of transactions when min-
ing for fuzzy approximate dependencies, an
efficient algorithm was proposed in [2] as an
extension of the algorithm proposed for crisp
approximate dependencies in [11]. In this al-
gorithm, the complexity due to the number
of transactions is n, i.e., the same of an or-
dinary association rule mining algorithm; the
same happens to the overall complexity in the

worst case (though, obviously, ordinary asso-
ciation rule mining r and approximate depen-
dence mining in Tr are different tasks).

For mining fuzzy gradual dependencies, we
propose to employ the algorithm 1. This algo-
rithm considers a fixed number k of equidis-
tributed membership degrees. Algorithm 1
calculates the support of an itemset of the
form {[∗1, X, A], [∗2, Y,B]}. This algorithm
can be recursively extended in order to cal-
culate itemsets of larger size. The complex-
ity of the extension for itemsets of size p is
O(n+ k(p+1)). The goodness of this complex-
ity depends on the relation between k(p+1)

and n2. Typical values for k can be in the
order of 20, though a lesser value of 10 can
be sometimes acceptable. If we try to find
gradual dependencies with at most two items
in the antecedent, then p ≤ 3. If we em-
ploy a number of levels k = 20 then we
have k(p+1) ≤ 204 = 16 × 104, i.e., a com-
plexity equivalent to mining using an ordi-
nary association rule mining algorithm with
n = 400. Since usually n >> 400 (and even
n > 16 × 104), using our proposal is much
better and we can consider reasonably a lin-
ear complexity in the number of tuples.

Let us remark that obtaining the support of
items of the form [∗, X, A] is the most com-
plex task in general. Dependencies according
to definition 3.1 where not all the items are
of the form [∗, X, A] is less complex; we shall
deal with the task of mixing the algorithms
for every type of item in a future paper.

Finally, the support of items of the form [X,x]
is linear; specifically, if there are l tuples
where t[X] = x (where l can be obtained in
time O(n)), then the support of [X, x] is l2.

4.2 Results

We have used Auto MPG database from UCI
Machine Learning Repository [1]. The data
concerns city-cycle fuel consumption of cars
in miles per gallon (MPG), and the dataset
consists of 8 attributes (continuous and dis-
crete) describing characteristics of cars and a
total of 398 instances.
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Algorithm 1 Algorithm for 2-itemsets
{[∗1, X,A], [∗2, Y, B]}.

S̃upp ← ∅
i ← k
while i > 0 do

elem ← 0
j ← 0
while j ≤ k − i do

m ← 0
while m ≤ k − i do

elem ← elem + V [j + i][m + i] ×
V [j][m]
n ← i
while n ≤ k do

if n 6= j + i then
elem ← elem + V [n][m + i] ×
V [j][m]

end if
n ← n + 1

end while
n ← i
while n ≤ k do

if n 6= j + i then
elem ← elem+V [j][m]×V [j +
i][n]

end if
n ← n + 1

end while
j ← j + 1

end while
i ← i + 1

end while
S̃upp ← S̃upp ∪ { i

k/elem}
i ← i− 1

end while
return GDQ(S̃upp/G̃T

D
)

In order to improve the knowledge discov-
ery process, we defined a set of linguistic la-
bels {High, Medium, Low} for continuous at-
tributes by using k-Means clustering. Trape-
zoidal distributions are obtained by allowing
an overlapping of 10% of the interval ampli-
tude around the boundaries. As an example,
the result for attribute Acceleration is shown
in figure 1.

24.8024.8018.0017.30High
18.0017.3014.5013.80Medium
14.5013.808.008.00Low

δχβα

Low Medium High

Figure 1: Linguistic sets defined over at-
tribute Acceleration

Many dependencies have been found in this
database. Table 1 shows a small sample of
them. The first one is a pure fuzzy gradual de-
pendence that can be expressed as “The less
the Horsepower is High, the less the Displace-
ment is High”. The other three are exam-
ples of fuzzy dependencies involving items of
different types. They can be interpreted as
gradual dependencies that hold for cars with
a specific value of a certain attribute. Depen-
dence 2 can be expressed as “For cars with
Year=80, the less the Acceleration is Low, the
less the MPG consumption is Low”. Depen-
dence 3 means “For cars with Year=70, the
less the Acceleration is High, the more the
Horsepower is High”. Dependence 4 can be
easily interpreted in a similar way.

5 Conclusions

We have introduced new types of fuzzy depen-
dencies defined as association rules in a spe-
cial set of transactions. The approach is based
on previous work on the definition of fuzzy
approximate dependencies and fuzzy gradual
dependencies, in which transactions are asso-
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Table 1: Some Fuzzy Dependencies from the Auto MPG dataset
# Rule s(%) CF
1 [<, Horsepower, ’high’] → [<, Displacement, ’high’] 16 0.94
2 [<, Acceleration, ’low’][Year,80] → [<, MPG, ’low’] 1.34 0.64
3 [<, Acceleration, ’high’][Year,70] → [>, Horsepower, ’high’] 2 0.57
4 [<, Weight, ’low’][Origin,1] → [<, Displacement, ’low’] 18 0.84

ciated to pairs of tuples in a database, and
items are defined according to the semantics
of the dependencies. By incorporating dif-
ferent types of items in transactions at the
same time, and looking for fuzzy association
rules, dependencies with new semantics are
obtained, i.e., new knowledge structures that
can be extracted from a database.

As future work we plan to incorporate new
types of items and to study the semantics
of the new dependencies obtained by mix-
ing items of different type. New types of
items include items of the form [OX , X], with
OX a fuzzy order relation, and items of the
form [X, A], corresponding to fuzzy associa-
tion rules. Also in the near future we shall
study the dependencies obtained by using
other measures for fuzzy association rules, like
those proposed in [8].
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