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Abstract

This paper introduces a fuzzy rule-
based classification method called
FR3, which is short for Fuzzy Round
Robin RIPPER. In the context of
polychotomous classification, it uses
a fuzzy extension of the well-known
RIPPER algorithm as a base learner
within a round robin scheme. A
key feature of FR3 is its ability to
represent different facets of uncer-
tainty involved in a classification de-
cision in a more faithful way, thereby
providing the basis for implementing
“reliable classifiers” that may, for ex-
ample, abstain from a decision when
not being sure enough.

1 Introduction

A close connection between classification
learning, on the one side, and fuzzy prefer-
ence modeling and decision making, on the
other side, has recently been established by
Hüllermeier and Brinker in [HB08]. The
idea of their approach is to reduce a prob-
lem of polychotomous classification, involving
m classes L = {λ1 . . . λm}, to a problem of
decision making based on a fuzzy preference
structure. Following a round robin scheme,
their approach, called LVPC (Learning Val-
ued Preferences for Classification), first trains
an ensemble of binary models, one for every
pair of classes. Then, given a query instance x
to be classified, three fuzzy relations (in the

form of {1 . . .m} × {1 . . .m} → [0, 1] map-
pings) can be derived from the predictions of
this ensemble. For every pair of labels (λi, λj),
the corresponding entries in these relations
express, respectively, a degree of

• preference: the degree to which the la-
bel λi is (strictly) preferred to λj as a
classification for x (and vice versa);

• conflict: the degree to which λi and λj

are in conflict with each other (as both
of them are supported simultaneously as
potential classifications);

• ignorance: the degree of ignorance re-
flecting to what extent neither λi nor λj

is supported as a classification.

A final classification, or any other type of de-
cision (e.g., to abstain or to gather additional
information), can then be made on the basis
of these relations.

A key feature of this approach is its ability to
represent ignorance in a faithful way. In fact,
even though many machine learning methods
are able to reflect conflict in one way or the
other, for example in terms of probability dis-
tributions, the same is not true for ignorance.
To illustrate the meaning of conflict and igno-
rance in the context of classification, consider
the simple scenario shown in Fig. 1: Given ob-
servations from two classes, black and white,
three new instances marked by a cross need
to be classified. Obviously, given the cur-
rent observations, the upper left instance can
quite safely be classified as white. The case
of the lower left instance, however, involves a
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Figure 1: Classification scenario: Observa-
tions from two classes (points) and new query
instances (crosses).

high level of conflict, since both classes, black
and white, appear plausible. The third situ-
ation is an example of ignorance: The upper
right instance is located in a region of the in-
stance space in which no observations have
been made so far. Consequently, there is nei-
ther evidence in favor of class black nor in
favor of class white.

It was already mentioned in [HB08] that
rule-based classifiers are, in principle, ideally
suited for implementing the pairwise models
needed in LVPC. The main reason for this
suitability is that, in contrast to standard
discriminative classification methods (such
as linear discriminant functions), rule-based
models are able to represent conflict and,
more importantly, ignorance in a natural way:
A situation of conflict occurs if an instance x
is simultaneously covered by two (or more)
conflicting rules, while a situation of igno-
rance occurs if it is not covered by any rule;
see Fig. 2.

In this regard, however, conventional rule-
based classifiers can be criticized for at least
two reasons: First, many approaches induce
proper rules only for one class, typically the
minority class, and add a default rule that
predicts the other class in case no other rule
applies. Thus, ignorance is eliminated in an
artificial and arguably questionable way. In
fact, note that this approach may come along
with a high level of extrapolation, since the de-
fault class can be predicted in regions where

Figure 2: Regions of conflict (gray area) and
ignorance (area not covered by any rule) in
case of a rule-based model (rules indicated as
rectangles).

it has never been observed before.

Second, since conventional (non-fuzzy) rules
have “sharp boundaries”, they produce an
abrupt transition between support of a class
and ignorance which is not very natural. Intu-
itively, the farther away an instance is located
from the core of the closest rule, the higher the
degree of ignorance should be. Or, stated dif-
ferently, the support provided by a rule should
decrease from “full” (inside the core) to “zero”
in a gradual instead of an abrupt way.

To address these two issues, we propose to
use fuzzy rules instead of conventional rules.
More specifically, we develop a fuzzy exten-
sion of RIPPER [Coh95], a state-of-the-art
rule induction algorithm that produces ac-
curate models in an efficient way. By using
the fuzzy instead of the original version of
RIPPER as a base learner within the round
robin (all-pairs) decomposition scheme, we
extend the R3 method proposed by Fürnkranz
in [Für02]. Experimentally, it will be shown
that our approach, called FR3, is not only
able to reflect conflict and ignorance of a clas-
sification in a faithful way, but also outper-
forms R3 in terms of predictive accuracy.

2 Round Robin RIPPER

Consider a polychotomous classification prob-
lem involving m classes L df= {λ1 . . . λm}. Sup-
pose instances to be represented in terms of

1544 Proceedings of IPMU’08



attributes Ai, i = 1 . . . n, which are either nu-
merical (real-valued) or nominal, and let Di

denote the corresponding domains. Thus, an
instance is represented as an n-dimensional
attribute vector

x = (x1 . . . xn) ∈ D df= D1 × . . .× Dn.

RIPPER is a state-of-the-art rule learning al-
gorithm that was introduced in [Coh95] as a
successor of the IREP algorithm for rule in-
duction [FW94]. A single RIPPER rule is of
the form r = 〈rA | rC〉, consisting of an an-
tecedent part rA and a consequent part rC .
The antecedent part rA is a conjunction of
predicates (selectors) which are of the form
(Ai = v) for nominal and (Ai θ v) for nu-
merical attributes, where θ ∈ {≤, =,≥} and
vi ∈ Di. The consequent part rC is a class
assignment of the form (class = λ), where
λ ∈ L. A rule r = 〈rA | rC〉 is said to cover an
instance x = (x1 . . . xn) if the attribute values
xi satisfy all the predicates in rA.

Due to reasons of space we refrain from a de-
tailed review of the RIPPER rule induction
algorithm and instead refer to the extended
version of this paper [HH08].

Round robin learning aka all-pairs or all-
versus-all learning is a special decomposition
technique that transforms a multi-class clas-
sification problem involving m > 2 classes
L = {λ1 . . . λm} into a number of binary prob-
lems. To this end, a separate model (base
learner) Mi,j is trained for each pair of labels
(λi, λj), 1 ≤ i < j ≤ m. Mi,j is intended to
separate the objects with label λi from those
having label λj . If (x, λa) ∈ D×L is an origi-
nal training example (revealing that instance
x has label λa), then x is considered as a pos-
itive example for all learners Ma,j , j < a, and
as a negative example for the learners Mi,a,
i < a.

At classification time, a query x is submitted
to all m(m−1)/2 learners, and each prediction
Mi,j(x) is typically interpreted as a vote for a
label. Assuming models in the form of [0, 1]-
valued (scoring) classifiers, an output close to
1 indicates support of λi, whereas an output
close to 0 is counted as evidence in favor of
λj . The simplest classification strategy, then,

is to predict the class label with the highest
score in terms of the sum of (weighted) votes:

si
df=

∑
1≤j 6=i≤m

si,j , (1)

where si,j = Mi,j(x) for i < j and si,j =
1−Mj,i(x) for j < i.

Even though the main purpose of decom-
position techniques is to enable the appli-
cation of methods that are inherently lim-
ited to binary classification, such as support
vector machines, to polychotomous problems,
round robin learning can be interesting even
in the case where the models M can, in prin-
ciple, handle multi-class problems in a di-
rect way. The main reason is that the bi-
nary problems are often much simpler than
the original m-class problem, so that mod-
els induced from data become more accurate
and more stable. In particular, for the case of
RIPPER, Fürnkranz [Für02, Für03] showed
that a Round Robin RIPPER (R3), i.e., an
all-pairs classifier with RIPPER as a (binary)
base learner, outperforms the original multi-
class RIPPER.

Apart from that, the all-pairs decomposition
technique is essential for the LVPC approach
proposed in [HB08], namely for producing the
(binary) relations that constitute a fuzzy pref-
erence structure (cf. Section 3.5).

3 Fuzzy Round Robin RIPPER

In this section, we introduce the Fuzzy Round
Robin RIPPER (FR3) approach. To this
end, we first propose a fuzzy version of the
basic RIPPER, called FRIPPER. In a sec-
ond step, FRIPPER is then integrated as a
base learner in a round robin learning scheme.
FRIPPER modifies the original RIPPER al-
gorithm in several ways, as will be seen in
the following subsections, in which we focus
on the two-class case. The multi-class case,
in connection with round robin learning, will
then be addressed in the final subsection. Due
to space restrictions, we restrict ourselves to
highlighting the main points and again refer
to [HH08] for a more detailed exposition.
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3.1 Learning Rules for Both Classes

A first modification of RIPPER concerns its
use of default rules. As mentioned previously,
using one class as a default prediction is disad-
vantageous with regard to reliable classifica-
tion and, in particular, hinders a faithful rep-
resentation of ignorance. Besides, this strat-
egy comes along with a systematic bias in fa-
vor of those classes chosen as a default.

To represent ignorance, a classifier must be
able to abstain, that is, to refrain from
supporting any class. To achieve this, we
train two classifiers for every pairwise model,
and combine them by merging the respective
proper rules, i.e., the non-default rules.

3.2 Representation of Fuzzy Rules

A selector constraining a numerical attribute
Ai (with domain Di = R) in a RIPPER rule
can obviously be expressed in the form (Ai ∈
I), where I ⊆ R is an interval: I = (−∞, v]
if the rule contains a selector (Ai ≤ v), I =
[u,∞) if it contains a selector (Ai ≥ u), and
I = [u, v] if it contains both (in the last case,
two selectors are combined).

Essentially, a fuzzy rule is obtained through
replacing intervals by fuzzy intervals, namely
fuzzy sets with trapezoidal membership func-
tion. A fuzzy interval of that kind is speci-
fied by four parameters and will be written
IF = (φs,L, φc,L, φc,U , φs,U ): φc,L and φc,U

are, respectively, the lower and upper bound
of the core of the fuzzy set; likewise, φs,L

and φs,U are, respectively, the lower and up-
per bound of the support. Note that, as in
the non-fuzzy case, a fuzzy interval can be
open to one side (φs,L = φc,L = −∞ or
φc,U = φs,U = ∞.) In fact, as will be seen
later on, the fuzzy antecendents successively
learned by FRIPPER are fuzzy half-intervals
of exactly that kind.

A fuzzy selector (Ai ∈ IF
i ) covers an in-

stance x = (x1 . . . xn) to the degree IF
i (xi). A

fuzzy rule rF involving k selectors (Ai ∈ IF
i ),

i = 1 . . . k, covers x to the degree µrF (x) =
mini=1...k IF

i (xi).

3.3 Rule Fuzzification

To obtain fuzzy rules, the idea is to fuzzify
the final rules from our modified RIPPER al-
gorithm. More specifically, using the train-
ing set DT ⊆ D for evaluating candidates,
the idea is to search for the best fuzzy ex-
tension of each rule, where a fuzzy extension
is understood as a rule of the same structure,
but with intervals replaced by fuzzy intervals.
Taking the intervals Ii of the original rules as
the cores [φc,L

i , φc,U
i ] of the sought fuzzy inter-

vals IF
i , the problem is to find optimal bounds

for the respective supports, i.e., to determine
φs,L

i and φs,U
i .

For the fuzzification of a single antecedent
(Ai ∈ Ii) it is important to consider only
the relevant training data D

(i)
T , i.e., to ignore

those instances that are excluded by any other
antecedent (Aj ∈ IF

j ), j 6= i:

D(i)
T = {x = (x1 . . . xk) ∈ DT | (2)

IF
j (xj) > 0 for all j 6= i

} ⊆ DT

We partition D(i)
T into the subset of positive

instances, D
(i)

T+ , and negative instances, D
(i)

T− .
To measure the quality of a fuzzification, the
rule purity will be used:

pur =
pi

pi + ni
, (3)

where

pi
df=

∑
x∈D

(i)

T+

µAi(x)

ni
df=

∑
x∈D

(i)

T−

µAi(x)

Rules are fuzzified in a greedy way. In each
iteration, a fuzzification is computed for every
antecedent, namely the best fuzzification in
terms of (3). This is done by testing all values

{xi |x = (x1 . . . xk) ∈ D
(i)
T , xi < φc,L

i }

as candidates for φs,L
i and, likewise, all values

{xi |x = (x1 . . . xk) ∈ D
(i)
T , xi > φc,U

i }
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as candidates for φs,U
i . Ties are broken in fa-

vor of larger fuzzy sets, that is, larger dis-
tances from the core.

The fuzzification is then realized for the an-
tecedent with the largest purity. This is re-
peated until all antecedent have been fuzzi-
fied.

3.3.1 Bounding Fuzzy Rules

Some fuzzy intervals may still be open to one
side, which means that the corresponding rule
has unbounded support. As this is not in
agreement with our “cautious” extrapolation
strategy, we finally close such intervals: If
φc,L

j = −∞, this core bound is set to φc,L
j =

min{xj | x = (x1 . . . xk) ∈ DT+ , µIF
j
(x) > 0},

where DT+ is the subset of positive instances
in DT. Moreover, the support bound φs,L

j is
set to the minimal value in Dj , the domain of
attribute Aj .1 This way, the core of the rule is
restricted to the region in which positive ex-
amples have indeed been observed, while the
support decreases as a linear function of the
distance from this region. Analogous modifi-
cations are made in the case where φc,U

j = ∞.

3.4 Classifier Output

Suppose that fuzzy rules r0
1 . . . r0

k and r1
1 . . . r1

`

have been learned, respectively, for classes λ0

and λ1. For a new query instance x, the sup-
ports of these classes are then given, respec-
tively, by

s0
df= maxi=1...k µr0

i
(x)

s1
df= maxj=1...` µr1

j
(x)

(4)

From these two support degrees, the follow-
ing values are derived, which constitute the
output of the FRIPPER algorithm (in the
two-class case):

P (λ0, λ1) = s0 −min{s0, s1}
P (λ1, λ0) = s1 −min{s0, s1}
C(λ0, λ1) = min{s0, s1}
I(λ0, λ1) = 1−max{s0, s1}

(5)

1More specifically, to avoid 0-memberships, we go
beyond this point, as a rule of thumb by 50% of the
width of Dj .

C(λ0, λ1) is the degree of conflict, namely
the degree to which both classes are sup-
ported. Likewise, I(λ0, λ1) is the degree of
ignorance, namely the degree to which none
of the classes is supported. Finally, P (λ0, λ1)
and P (λ1, λ0) denote, respectively, the strict
preference for λ0 and λ1. Note that at least
one of these two degrees is zero, and that
P (λ0, λ1)+P (λ1, λ0)+C(λ0, λ1)+I(λ0, λ1) ≡
1. In passing, we also remark that (5) is actu-
ally a standard decomposition scheme, which
is used in fuzzy preference modeling [FR94]
to decompose a weak preference relation (here
given by the support degrees s0, s1) into three
parts: strict preference, indifference (which
here corresponds to conflict), and indistin-
guishablity (here ignorance).

In the above approach, the purity of a fuzzy
rule r has not been taken into consideration.
In fact, according to (4), the support µr0

i
(x)

is completely given to the class c0, even if the
purity of this rule, pur(r0

i ), is smaller than
1. Recalling that the purity measure can be
interpreted as a kind of conditional probabil-
ity (of a class given that the instance is cov-
ered by the rule), is appears more reasonable
to distribute the support to λ0 and λ1 in a
proportional way. This leads to the following
modification of (4):

s0
df= max{maxi=1...k µr0

i
(x),

maxj=1...` µr1
j
(x)(1− pur(r1

j ))}
s1

df= max{maxj=1...` µr1
j
(x),

maxi=1...k µr0
i
(x)(1− pur(r0

i ))}

(6)

Note that, by deriving (5) on the basis of
(6) instead of (4), the non-purity of a rule
is treated as a conflict, which makes perfect
sense.

3.5 Round Robin Learning

Given a set of classes L = {λ1 . . . λm}, the
FRIPPER algorithm as outlined above can
be applied to each pair of labels (λk, λ`),
thereby producing an ensemble of models
Mk`, 1 ≤ k < ` ≤ m. A query in-
stance x ∈ D is then submitted to each
model. As explained in Section 3.4, the out-
put of model Mk` is a quadruple Mk`(x) =
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(pk`, p`k, ck`, ik`), where pk` is the preference
for λk in comparison with λ`, p`k the prefer-
ence for λ`, ck` the corresponding degree of
conflict, and ik` the degree of ignorance.

Thus, three relations (P, C, I) are obtained, a
strict preference relation P = (pk`), a conflict
relation C = (ck`), and an ignorance relation
I = (ik`); note that C and I are symmet-
ric, so the entries in the relations are well-
defined for all 1 ≤ k 6= ` ≤ m. These relations
provide the basis for sophisticated classifica-
tion and decision policies. For example, in the
standard scenario where a single prediction is
sought, the following classification rule could
be used: λ∗ =

arg max
λk∈L

∑
1≤ 6̀=k≤m

pk` +
ck`

2
+

Nk · ik`

Nk + N`
, (7)

where Nk is the number of examples from
class λk in the training data (and hence an un-
biased estimate of the class probability). This
decision rule, that turned out to perform well
in practice (cf. Section 4), evaluates each can-
didate label in terms of the sum of strict pref-
erences over all other labels, distributes the
corresponding degrees of conflict in a uniform
way and the degrees of ignorance in propor-
tion to the size of the classes (in other words,
prior probabilities are used in the case of no
further information).

Going beyond the conventional classification
setting, a preference structure (P, C, I) can
be especially useful in generalized settings in
which, for example, more than one class can
be predicted in cases of conflict, or a classifi-
cation decision can be refused in cases of ig-
norance (cf. Section 4.2).

4 Experimental Results

To analyze the performance of our FR3
approach, we conducted several experi-
mental studies under the WEKA 3.5.5
framework [WF05]. As a starting point,
we used the RIPPER implementation of
WEKA (“JRip”), both for re-implementing
Fürnkranz’s R3 and our FR3. Besides, JRip
served as a baseline in the experiments.

4.1 Classification Accuracy

In a first study, we compared RIPPER,
R3, and FR3 with respect to classification
accuracy, using 24 datasets from the UCI
[AN07] and the STATLIB [MV07] repositories
and from [Bul07, Bar07, Har07] (analcatdata-
authorship, draft, halloffame, votesurvey,
cars, collins, eucalyptus, glass, iris, mfeat-
factors, fourier, karhunen, morphological,
zernike, optdigits, page-blocks, pasture-
production, pendigits, segment, squash-
unstored, synthetic control, vehicle, vowel,
waveform); The experiments were conducted
by randomly splitting each dataset into 2/3
for training and 1/3 for testing, and deriving
the classification accuracy for each learner.
This procedure was repeated 1, 000 times to
stabilize the results.

For reasons of space, we only give a summary
of the results in terms of win/loss statistics
and again refer to [HH08] for details. As
can be seen in Table 1, the results are clearly
in favor of FR3, which is significantly better
(at the significance level 0.95) than the other
methods.

FR3 R3 RIPPER
FR3 20/4 24/0
R3 23/1

Table 1: Pairwise comparison between classi-
fiers in terms of wins and losses.

4.2 Representation of Uncertainty

The ability to represent uncertainty involved
in a classification decision, in terms of mea-
sures of conflict and ignorance, is arguably
one of the main advantages of FR3. To test
whether FR3 does indeed provide a basis for
implementing classifier that are more “reli-
able”, we conducted another series of experi-
ments in a setting of classification with reject
option. Roughly speaking, the idea is that,
if γ is a reliable index of classification uncer-
tainty, then the value of γ should correlate
with the probability to make a correct deci-
sion. Or, stated differently, when abstaining
from the classification of all instances the γ-
value of which exceeds a threshold t, the clas-
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Figure 3: Accuracy-rejection curves for
dataset waveform.

sification accuracy should improve on the re-
maining instances. The dependency between
the threshold t and the classification accuracy
is typically depicted in the form of so-called
accuracy-rejection curves.

In our experiments, we tested two very simple
uncertainty indexes (needless to say, various
other indexes are conceivable) directly related
to the two types if uncertainty reflected by
FR3: γc is the degree of conflict between the
top-class as suggested by FR3 (in terms of the
score (7)) and the second-best class. Likewise,
γi is the degree of ignorance between these two
classes. Again, each dataset was randomly
split, in proportion 2:1, for training and test-
ing. This was repeated 100 times, and each
instance (occurring in potentially many of the
100 test sets) was associated with its average
γ-index.

The monotonicity expected of the dependence
between rejection threshold t and classifica-
tion accuracy is confirmed by the experi-
mental results (see [HH08] for details). Us-
ing γc, an improvement is obtained for all
datasets, and γi leads to an improvement in
all but three cases. Typical accuracy-rejection
curves are shown in Fig. 3–3 (the plateaus
in these curves are caused by the absence of
instances with corresponding γ-values). In
summary, these experiments clearly show that
both measures of uncertainty derived by FR3,
conflict and ignorance, are reliable indicators
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Figure 4: Accuracy-rejection curves for
dataset eucalyptus.

of the uncertainty involved in a classification
decision.

5 Concluding Remarks

In this paper, we have introduced a fuzzy rule-
based classifier called Fuzzy Round Robin
RIPPER (FR3). As opposed to conventional
methods, FR3 carefully distinguishes between
two sources of uncertainty in classification,
namely conflict and ignorance, and, corre-
spondingly, offers predictions of a more differ-
entiated type: Against the background of the
data seen so far, in conjunction with the un-
derlying model assumptions, FR3 compares
the potential decisions (class labels) in a pair-
wise manner and, for each pair, suggests to
what extent one label is preferable to the
other one, to what extent there is a conflict
between these labels, and to what extent none
of the two are supported. A prediction, or
any other type of decision, can then be made
on the basis of the fuzzy preference structure
thus obtained.

Focusing on the core part of the method,
namely the induction of the fuzzy preference
structure, we have used relatively simple deci-
sion policies in this paper, both for standard
classification (predicting a single class) and
for classification with reject option. Never-
theless, developing suitable decision policies
for different types of (generalized) classifica-
tion problems is an important issue that we
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plan to address in future work. An interest-
ing idea, for example, is to employ techniques
from belief function theory, which not only
offers suitable means for representing igno-
rance, but also operators for combining dif-
ferent sources of information [QDM07].

A Java implementation of FR3, run-
ning under the open-source ma-
chine learning toolkit WEKA, can
be downloaded at the following URL:
http://www.uni-marburg.de/fb12/kebi/
research/software.
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