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Abstract

Association rule mining (ARM)
problem has been extensively tack-
led in the context of perfect data.
However, real applications showed
that data are often imperfect (in-
complete and/or uncertain) which
leads to the need of ARM algorithms
that process imperfect databases. In
this paper we propose a new algo-
rithm for mining frequent itemsets
from evidential databases. We intro-
duce a new structure called RidLists
that is the vertical representation of
the evidential database. Our struc-
ture is adapted to itemsets belief
computation which makes the min-
ing algorithm more efficient. Ex-
perimental results showed that our
proposed algorithm is efficient in
comparison with the only eviden-
tial ARM algorithm in the literature
[10].

Keywords: Association Rule, Ev-
idential Database, Dempster-Shafer
Theory.

1 Introduction

Since its emergence, the field of knowledge
discovery from databases (KDD) has been es-
pecially focused on perfect data, assuming
that data are complete and certain. Asso-
ciation rule mining (ARM) being a subfield
of KDD, most of ARM algorithms were con-

structed on the assumption that data are per-
fect ([2], [9] and [12]). Nevertheless, real ap-
plications showed that data are often incom-
plete and uncertain. That is why recently,
some works focused on the problem of ARM
from uncertain databases. In most of such
works, mined data are probabilistic ([11] and
[5]), possibilistic [8] or fuzzy [4]. In spite of ev-
idence theory [13] importance, there is a lack
of works on ARM from evidential databases.
Evidential databases allow storage of uncer-
tain data where each attribute could have a
basic belief assignment. Evidence theory is a
generalized theory for modelling data uncer-
tainty. Thus, an algorithm that mines asso-
ciation rules from evidential data, could also
mine association rules from probabilistic and
possibilistic data. In the literature, only the
work of [10] tackled ARM problem from evi-
dential databases.

In this paper, we present a new algorithm
for mining frequent itemsets from evidential
databases. Our proposed algorithm and the
algorithm of [10] mine exactly the same asso-
ciation rules since the two methods are exact
and are based on the same uncertain ARM
model, i.e., the evidential one. The algorithm
of [10] used a data structure, called belief
itemset tree (BIT) to efficiently extract fre-
quent itemsets and generate association rules
from evidential databases. On the other hand,
our proposed algorithm is based on the record
identifier lists (RidLists) data structure. Our
structure is a vertical representation [15] of
the evidential database that accelerates sup-
port itemsets counting. We led experimenta-
tions on algorithms performances and results
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showed that our algorithm is more efficient es-
pecially in the case of ARM from sparse data.

The paper is organized as follows: Section
2 introduces the evidence theory. Section 3
presents the evidential databases. In section
4, we recall the problem of ARM in perfect
databases, and then we present frequent evi-
dential itemset mining in Section 5. Section
6 shows experimentation results and discusses
some observations. Finally, in Section 7, we
conclude our work and present some perspec-
tives.

2 Evidence Theory

2.1 Formalism

Evidence theory, also called Dempster-Shafer
(DS) theory or belief functions theory, was in-
troduced in ([6] and [7]). It was mathemat-
ically formalized in [13]. DS theory is often
described as a generalization of the Bayesian
theory since it manipulates events that are not
necessarily exclusive. We present here formal
concepts of this theory.

Let Θ = {θ1, θ2, ..., θn} be a finite non empty
set of all elementary exhaustive and mutually
exclusive events related to a given problem.
Θ is called frame of discernment of the given
problem.

The basic belief assignment (bba) is defined
on the set of all subsets of Θ, namely 2Θ. The
bba m is the function m : 2Θ → [0, 1] that
satisfies: m(∅) = 0 and

∑
X⊆Θ m(X) = 1

The mass function (m) allows someone to af-
fect a partial belief value to a subset of Θ.
Thus, m(X) represents belief value placed ex-
actly in the subset X and non distributed to
subsets of X. Subsets of Θ with masses strictly
positive are called focal elements of the bba
m, focal elements set is denoted by F . The
triplet {Θ, F, m} is called a body of evidence
and denoted by BoE.

The belief function (bel) is defined and com-
puted from the bba function m. X being an
event, bel(X) reflects total belief committed

to X, i.e., total mass for all subsets of X.

bel(X) =
∑
Y⊆X

m(Y )

The plausibility function (pl) quantifies
amount of belief that could be given to a sub-
set X of Θ. It is the sum of all masses of
subsets Y that are compatible with X.

pl(X) =
∑

Y ∩X 6=∅
m(Y )

2.2 Conjunctive Rule of Combination

Let m1 and m2 be two bba’s defined on the
same frame of discernment Θ and provided
by two ’independent’ BoE’s. The conjunc-
tive rule of combination [14] is applicable
when both sources of information (of com-
bined bba’s) are fully reliable. Conjunctive
rule of combination is naturally applicable to
more than two bba’s.

m1 ∩©m2(Z) =
∑

X,Y⊆Θ:X∩Y =∅
m1(X)×m2(Y )

3 Evidential Database

3.1 Definition

An evidential database, also called DS
database or belief database stores data that
could be perfect or imperfect. It allows users
to set null (missing) values and also uncertain
values. Uncertainty in such database is ex-
pressed via evidence theory presented in sec-
tion 2. An evidential database is defined as
follows:

It is a database denoted by EDB with n
columns and d lines. Each column i (1 ≤ i ≤
n) has a domain Di of discrete values. Cell
of line j and column i contains an evidential
value Vij which is a bba defined as follows:

Definition 1 (Evidential value) Let Vij be
an evidential value of column i and line j. Vij

is a BoE defined by a frame of discernment
Di, a set of focal elements F and mass func-
tion mij defined as follows:

mij : 2Di → [0, 1] with:

mij(∅) = 0 and
∑

x⊆Di

mij(x) = 1
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3.2 Data Imperfections

Evidential databases process different kinds of
data imperfections thanks to evidence theory.
Indeed, such theory allows us to represent per-
fect information when evidential value BoE
includes only one focal element that is single-
ton with mass equal to one. For example, in
the following evidential database sample (ta-
ble 1), B1 is a perfect value in column B in
lines 1 and 2.

Table 1: Evidential database example
id A B C
1 A1(0.6) B1 C2(0.2)

A2(0.4) {C1, C2}(0.8)
2 A1(0.2) B1 C1(0.5)

{A2, A3}(0.8) C2(0.5)

Probabilistic information is represented by ev-
idential value with several focal elements that
are singleton. In our database example, val-
ues of column C in the second line are prob-
abilistic.

Possibilistic information can be also repre-
sented since possibility distribution could be
converted into valid BoE. In our example, val-
ues of column C in first line are possibilistic
with π(C1) = 0.8 and π(C2) = 1 (we recall
that function π in possibility theory corre-
sponds to pl in evidence one).

Missing information corresponds to a BoE
with only one focal element that includes all
column domain Di values with mass equal to
one. For example, if the value of column B is
missing for one line, then Evidential value will
be composed of only one focal element that is
DB with m(DB) = 1.

Finally any evidential information could be
represented. In our example, the value of A
in the second line is an evidential information,
that is neither perfect, nor probabilistic, nor
possibilistic nor missing one.

In the next section, we recall briefly ARM
problem in perfect databases before present-
ing the same problem in the context of imper-
fect databases.

4 Association Rule Mining from
Perfect Databases

ARM problem has been introduced in [1] and
has received a lot of attention thanks to its
applicability in several fields. ARM problem
is defined as follows:

Let I={i1,i2,. . . ,in} be a set of n items. Let
DB be a perfect database of D transactions
with scheme < tid, items >. Each transaction
is identified by a transaction identifier tid and
is included in I (items). An association rule is
X → Y with X, Y ⊆ I, X 6= ∅ and X∩Y = ∅.
Support of the association rule X → Y is
the occurrence number of Z = X ∪ Y in
DB denoted by support(Z). Its confidence
is the ratio support(Z)/support(X). Given
a support threshold minsup and a confidence
threshold minconf , ARM problem consists in
computing association rules with supports ex-
ceeding minsup% and confidences exceeding
minconf%. An itemset is a set of items, it
is said to be frequent in DB if its support ex-
ceeds minsup%. ARM problem is divided into
two subproblems:

1. Frequent itemsets generation.

2. Association rules computation from fre-
quent itemsets.

The whole of the association rule problem
is often reduced to frequent itemset min-
ing, because once frequent itemsets are gener-
ated, association rules computation becomes
a straightforward problem that is less costly
comparing to the first subproblem [2]. In our
work we focus only on frequent itemsets min-
ing step.

5 Frequent Itemsets Mining from
Evidential Databases

This section is an adaptation of the model
of ARM from perfect databases to imperfect
ones. Item and itemset notions are modified
to support evidential values, support notion
is also modified to take into account masses
placed on evidential information which pro-
duces more accurate association. The prelim-
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inaries of frequent evidential itemsets mining
model are the following:

5.1 Preliminaries

Definition 2 (Evidential Item) An ev-
idential item denoted by ivi is one focal
element in a body of evidence Vij correspond-
ing to column i. Thus it is defined as a subset
of Di (ivi ∈ 2Di)

Example 1 In our database example (Table
1), A1 is an item, {A2, A3} too.

Definition 3 (Evidential Itemset) An
evidential itemset is a set of evidential items
that correspond to different columns domains.
Formally, evidential itemset X is defined as:

X ∈ ∏
i∈{1,.,n} 2Di

Example 2 The itemset A1A3 is not a valid
evidential itemset because the two items cor-
respond to the same column A. The evidential
itemset A1{C1, C2} is a valid one.

We also define inclusion operator for eviden-
tial itemsets.

Definition 4 (Evidential Itemset Inclusion)
Let X and Y be two evidential itemsets. The
ith items of X and Y are respectively denoted
by ix and iy.

X ⊆ Y if and only if: ∀iX ∈ X, iX ⊆ iY

Example 3 The itemset {A1, A2, A3}C2 in-
cludes itemset {A1, A2}C2.

Now, we define the line body of evidence
thanks to conjunctive rule of combination. A
line body of evidence is computed from evi-
dential values composing the line:

Definition 5 (Line BoE) The frame of dis-
cernment of a line BoE is the cross prod-
uct of all columns domains denoted by Θ =∏

i≤n Di. Focal elements are subsets of Θ, and
thus vectors of the form X = {x1, x2, . . . , xn}
where xi ⊆ Di. The mass of a vector X in a
line j is computed by conjunctive rule of com-
bination of the bba’s evidential values.

mj : Θ → [0, 1]

mj(∅) = 0

mj(X) = ∩©i≤nmij(X) =
∏

ivi∈X

mij(ivi)

Example 4 To illustrate this late definition,
we present here the first line body of ev-
idence in our database example (table 1).
The frame of discernment is Θ which is
the cross product of all columns domains
and the frame of discernment of all bod-
ies of evidence of the database lines. Fo-
cal elements are combinations of all eviden-
tial items in the line, and thus all pos-
sible evidential itemsets in the record that
are A1B1C2, A1B1{C1, C2}, A2B1C2 and
A2B1{C1, C2}. The resulting mass distribu-
tions are the following: m1(A1B1C2) = 0.12,
m1(A1B1{C1, C2}) = 0.48, m1(A2B1C2) =
0.08 and m1(A2B1{C1, C2}) = 0.32.

Now, we introduce the notion of eviden-
tial database body of evidence which is in-
duced from line body of evidence notion since
database is a set of lines.

Definition 6 (Evidential Database BoE)
Body of evidence of evidential database EDB
is defined on the frame of discernment Θ,
the set of focal elements is composed of all
possible evidential itemsets existing in the
database and the mass function mEDB is
defined as follows: Let X be an evidential
itemset and d be the size of EDB:

mDB : Θ → [0, 1] with mDB(X) =
1
d

d∑
j=1

mj(X)

Belief and Plausibility functions are naturally
defined as follows:

BelDB(X) =
∑
Y⊆X

mDB(Y )

PlDB(X) =
∑

Y ∩X 6=∅
mDB(Y )

Example 5 In our database (table 1) the
mass of evidential itemset {A2, A3}B1C2 is
the sum of its line masses in the database di-
vided by d = 2 so mBD({A2, A3}B1C2) = 0.2.
Its belief in the database is the sum of all
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database masses of evidential itemsets that
are included in, which are {A2, A3}B1C2 and
A2B1C2 so BelBD({A2, A3}B1C2) = 0.24.

The mass of an evidential itemset X in ev-
idential database EDB is the partial belief
attributed to X. The total belief of X is
the sum of masses of evidential itemsets Y
included in X which corresponds to belief of
X in database body of evidence. Thus the
support of X in EDB is simply its belief in
EDB’s body of evidence. The function sup-
port is monotone like in perfect databases [1]
since the function belief itself is monotone
[13]. Monotony property of support function
in frequent itemsets mining from imperfect
databases model is very important since it al-
lows us to adapt the panoply of methods in
perfect ARM literature [3].

5.2 Frequent Evidential Itemsets
Mining Algorithm

Now we present our algorithm for mining
frequent evidential itemsets from evidential
databases under support threshold minsup.

Let EDB be an evidential database, X be an
evidential itemset and Θ be the cross prod-
uct of all attribute domains. F is the set
of frequent evidential itemsets in EDB under
minsup. F is formally defined as follows:

F = {X ⊆ Θ/support(X) ≥ minsup}

Our algorithm proceeds in two major steps.
In the first one we generate a data structure
that stores the evidential database in a verti-
cal way [15]. Then, we scan this data struc-
ture to generate frequent evidential itemsets.
The two steps are described in detail in the
following:

In the first one, we generate for every evi-
dential item in EDB the records identifiers
(rids) that include it. For example, the
rids list of item A1 in the database example
is {1,2}. However, rids of evidential items
are not enough to compute their supports,
in opposition to the perfect databases con-
text, where support of A1 would be 2 (car-
dinal of rids list) since A1 would be ”surely”

(not ”probably”) in records 1 and 2. That is
why, rid information has to be extended by
the item mass in the record denoted by mir.
Thus, for each evidential item we construct
the list of the couples (rid, mir). The set of
(rid, mir) lists is the data structure that rep-
resents the database EDB. It is denoted by
RidLists. Table 2 shows the RidLists corre-
sponding to our database example:

Table 2: RidLists of database example
item rid list
A1 (1, 0.3)(2, 0.1)
A2 (1, 0.2)

{A2, A3} (2, 0.4)
B1 (1, 0.5)(2, 0.5)
C1 (2, 0.25)
C2 (1, 0.1)(2, 0.25)

{C1, C2} (1, 0.4)

Procedure of construction of the RidLists de-
noted by ConstructRIDLISTS is described in
the pseudo-code below (procedure 1). Nota-
tions of ambiguous objects used in all proce-
dures of the paper are presented in table 3:

Procedure 1: ConstructRIDLISTS(in
EDB, out RidLists)

01 For each record r in EDB

02 For each cell c in r

03 For each item i in c

04 If i doesn’t exists in ridlists then

05 Add new rid list for i

06 Add to i’s rid list the couple (r.id, i.mass)

07 End ConstructRIDLISTS

The (rid,mir) list information allows us
to compute the mass of one item in the
database’s BoE (it is the sum of masses in
its rid list). However support of one eviden-
tial item is its belief in the database and not
its mass. That is why we need to update
the structure RidLists such that every item
will have its list of couples rid and its belief
value in that record. For this purpose, we
scan every couple of items i1 and i2 in the
RidLists. Next, if i1 includes i2 then i1’s rid
list have to be updated by adding it all i2 cou-
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ples (rid, mir). The RidLists of our database
example is updated in table 4.

Table 3: Notations of procedures objects
Object Signification

Set of evidential items
Cell composing one evidential value.

A record is a set of cells.
r.id Identifier of the record

in the evidential database.
i.mass The mass of an item

in evidential value.
belr(i) Belief of item/itemset

i in the record. r.

Table 4: The RidLists updated
item rid list
A1 (1, 0.3)(2, 0.1)
A2 (1, 0.2)

{A2, A3} (1, 0.2)(2, 0.4)
B1 (1, 0.5)(2, 0.5)
C1 (2, 0.25)
C2 (1, 0.1)(2, 0.25)

{C1, C2} (1, 0.5)(2, 0.5)

The RidLists is updated by the following pro-
cedure called UpdateBeliefsRIDLISTS :

Procedure 2:
UpdateBeliefsRIDLISTS(inout
RidLists)

01 For each couple of items (i1,i2) ∈
RidLists× RidLists

02 If item i1 includes item i2 Then

03 For each (rid, mass) in i2.list

04 If rid ∈ i1.list Then

05 Add i2.mass to i1.mass for the same rid

06 Else Add (rid, mass) in i1.list

07 End UpdateBeliefsRIDLISTS

Once we have RidLists structure with cou-
ples (rid, belief) for each item, the second
step could start. It consists in generat-
ing frequent evidential itemsets from the
RidLists. For this purpose, we must define a
computation method of evidential itemsets.
Indeed, the support of any evidential itemset
is computed from intersection of rid lists

of all its items. Let X be an evidential
itemset. X exists in all records that include
its evidential items. Belief value of X in each
record is the product of its items believes
in that record. Belief of X in the whole of
the database is the sum of its believes in
the database (see definitions 5 and 6). For
example, let’s compute support (belief) of ev-
idential itemset X = {A2, A3}C2. First of all,
we compute intersection of {A2, A3} list and
C2 list. The resulting list contains the rids 1
and 2. Then, we compute beliefs of X in each
record. The list of X = {(1, 0.04), (2, 0.25)}.
Then, we deduce that bel(X) = 0.29.

The following procedure compute belief value
of any evidential itemset. We call it Bel :

Procedure 3: Bel(in RidLists, in X)

01 Compute list l =
⋂

i∈X RidLists(i)

02 For each rid r in l

03 belr(X) =
∏

i∈X belr(i)

04 Define l as the rid list of X

05 For each rid r in l

06 Bel(RidLists, X) = Bel(RidLists, X) + belr(X)

07 End Bel

We present now our main procedure called
ComputeFrequentItemsets that mines fre-
quent itemsets from the database EDB.
The procedure is iterative since it generates
candidate itemsets of size k via Apriori Gen
function [2], computes their supports in the
database, then keeps only frequent ones
and goes to next level k + 1 to generate
candidate itemsets of size k + 1, etc. It starts
obviously from evidential items (itemsets of
size one). The pseudo-code of the procedure
is presented in the following:

Procedure 4: ComputeFrequentItem-
sets(in EDB, in minsup, out L)

01 ConstructRIDLISTS(EDB,RidLists)

02 UpdateBeliefsRIDLISTS(RidLists)

03 k = 1

04 For each item i in RidLists

05 If Bel(RidLists, i) ≥ minsup Then

06 Add i to the set Lk

07 Else Remove i’s list from RidLists

08 L = L ∪ Lk
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09 Do while Lk 6= ∅
10 Ck+1 = Apriori Gen(Lk)

11 k = k + 1; Lk = ∅
12 For each itemset itmst in Ck+1

13 If Bel(RidLists, itmst) ≥ minsup Then

14 Add itmst to Fk

15 L = L ∪ Lk

16 Loop

17 End ComputeFrequentItemsets

6 Experimentation

To assess our method performance, we imple-
mented our proposed algorithm and the algo-
rithm of [10] to compare them. Then we im-
plemented an algorithm that generates syn-
thetic databases with the following parame-
ters: D (database size), I (number of items in
all columns domains), C (number of columns)
and %U (percentage of records including ev-
idential values). We generated several syn-
thetic databases on which we tested the two
algorithms, but we present here only tests led
on the database D = 5000, I = 800, C =
5, %U = 10.

Figure 1: Comparison performance between
BitTree Mining and RidLists Mining

Figure 1 shows that RidLists mining is more
efficient than BitTree mining for the syn-
thetic database D5000I800C5%U10. Note
that more I decreases (or D increases), more
the number of frequent itemsets is important.
For example, assume that we generate 1000
records randomly with only 20 items; we will
obtain a dense (correlated) database since the
twenty items will be repeated in the 1000

records. Experimentations led on various syn-
thetic databases (with different generation pa-
rameters) showed that more I decreases (or
D increases), more algorithms performances
approach (figure 2). It simply means that our
algorithm is especially efficient in sparse data,
since its performance grow when I increases.

Figure 2: Algorithms performance for various
values of I

We also evaluated performance algorithms for
various uncertainty degree (figure 3). Ex-
perimentation results shows that performance
algorithm decreases when uncertainty degree
increases. That is logical since when uncer-
tainty degree increases, belief computations
increases:

Figure 3: Algorithm performance for various
% uncertainty degrees

7 Conclusion

In this paper we propose an itemset mining
algorithm in context of evidential databases.
This kind of databases provides a large field
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of uncertainty expression to end-user since
they allow storage of probabilistic, possibilis-
tic, evidential information and even missing
values. All these imperfect information are
processed by our proposed algorithm which
makes mined patterns more accurate com-
pared with real behavior of data.

Our work could be extended by plausible
pattern mining, since mined itemsets in our
model are credible, but we have no informa-
tion about their plausibility. In other words,
it will be interesting if we compute plausibili-
ties of frequent (credible) evidential itemsets.
We can even find infrequent itemsets that are
more plausible than frequent ones. A study
of this measurement will be interesting.

Finally, further studies on the construction
of a complete framework of pattern mining
and maintenance have to be performed, espe-
cially as our data structure RidLists is eas-
ily maintained in case of insertion/deletion
of records. Maintenance of pattern is use-
ful when databases are dynamic, i.e., updated
frequently.
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