
Prototype-based classification by fuzzification of cases

Parisa KordJamshidi
Dep.Telecommunications

and Information Processing
Ghent university

pkord@telin.ugent.be

Bernard De Baets
Dep. Applied Mathematics

Biometrics and Process Control
Ghent university

bernard.debaets@UGent.be

Guy De Tre
Dep.Telecommunications

and Information Processing
Ghent university

guy.detre@telin.ugent.be

Abstract

A fuzzy prototype-based method is
introduced for learning from exam-
ples. A special kind of prototype
vector with fuzzy attributes is de-
rived for each class from aggregat-
ing fuzzified cases for the purpose
of concept description. The fuzzi-
fied cases are derived by defining a
fuzzy membership function for each
attribute of the sample cases. In a
first method, for the classification of
a new case, the membership degrees
of its crisp attributes to fuzzy ag-
gregated prototypes are measured.
In a second method, after fuzzify-
ing the new case, fuzzy set compar-
ison methods are applied for mea-
suring the similarity. The methods
are compared to case-based ones like
POSSIBL and kNN using UCI ma-
chine learning repository. We also
make comparisons by using various
transformation methods from prob-
abilities to possibilities instead of
defining membership functions.
Keywords: Fuzzy prototype, clas-
sification, prototype-based learning

1 Introduction

One of the main challenges for machine learn-
ing methods, in particular of model-based
ones, is the extraction of a model from ob-
served data for concept description. For ex-
ample in statistical methods usually the fre-

quencies are considered and the probability of
occurrence of the attribute values in sample
cases is the most important criterion to clas-
sify new cases. In these methods the complex
part is the model building.

On the other hand in case-based learning
methods it is not necessary to build a model
because, as these methods are called lazy
learners, the learning does not happen, in-
deed. The reasoning process starts when a
new case arrives and the main criterion is
the similarity between the new case and the
observed stored cases, like kNN (k-nearest
neighbor). Therefore this kind of methods are
very slow when they process a new case.

This work concerns the classification frame-
work. In the suggested method, a fuzzy model
is constructed according to the stored cases.
In the first step we assign a membership func-
tion (fuzzy set) to each attribute of a stored
case. We propose a subjective method for the
fuzzification of attribute values and then we
aggregate the fuzzy sets for each attribute in
every class. The result is a fuzzy vector rep-
resenting each class. Hence, we call it a fuzzy
prototype. The new cases are compared to the
fuzzy prototypes for classification purpose.

For comparing the new case, we applied two
different methods from fuzzy pattern match-
ing [8, 6]. In the first one, the membership
degree of the attribute values of the new case
to the fuzzy prototype vectors is measured. In
the second method, we fuzzify the new case
in the same way as done for the sample cases.
Hence, we use a fuzzy comparison method for
measuring the similarity between the new case

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1519–1526

Torremolinos (Málaga), June 22–27, 2008



and the fuzzy prototypes. Finally, in both
methods the maximum aggregated similarity
determines the class of the new case.

Since we do not use a kind of averaging but
use fuzzy aggregation of our sample cases for
making our prototypes, the main advantage of
the method is that it is very flexible compared
to prototype-based methods like k-means (in
clustering) [7] and Rocchio (in text classifi-
cation) [17], which make prototypes by some
kind of averaging on sample cases. So the ac-
curacy is much better than those kinds of ap-
proaches, with nearly the same efficiency. On
the other hand, the classification process is
very efficient compared to case-based meth-
ods like kNN or Possibilistic Instance-Based
learning, which are among the outperforming
methods in many applications [11], while its
accuracy is nearly the same.

In Section 2 we explain our suggested fuzzy
prototype-based learning, including some sub-
sections to clarify how we fuzzify the at-
tributes, how we build the prototypes and fi-
nally how we classify the new cases. The ex-
perimental results and the comparisons with
related works are presented in Section 3 in-
cluding comparisons with kNN and PossIBL
and also with using transformations from
probabilities to possibilities. Finally, Section
4 presents the conclusion of this work.

2 Fuzzy prototype-based learning

The most important difficulty of case-based
methods like kNN and also possibilistic case-
based method is the high cost (in terms of ex-
ecution time) of classifying new cases. Since
they are lazy learners, all the computations
take place at classification time rather than
when the sample set is first encountered. This
characteristic prohibits these approaches in
many applications.

One way to improve the efficiency is to find
some reduced representatives or prototypes to
represent the whole training data. In case-
based methods like kNN each case is a pro-
totype, so we have many prototypes for each
class to be compared to new cases [2]. If we re-
duce the number of prototypes and use those

representatives for classification, the efficiency
would raise.

The simplest and most efficient approach for
building such a model is deriving one proto-
type vector for each class by some kind of
weighted averaging like the Rocchio method
in text classification and k-means and fuzzy
c-means in clustering. In these methods train-
ing a classifier comes down to building a gen-
eralized case for each category. A well-known
disadvantage of these methods is their char-
acteristic of dividing the data space linearly.
This leads to a lower accuracy. Here, we
have a predefined finite set of labels L =
{λ1, ..., λm}. Each class Ck has a label λk

and for each X, L(Xi) determines the class
to which X belongs.

In the suggested method, the main idea is to
derive one fuzzy prototype for each class. We
have a set of n samples with known nominal
labels and J relevant attributes. We represent
each sample Xi as a vector of fuzzy attributes.
This means that each attribute value is repre-
sented by a fuzzy set f j

i which explains the jth
attribute of the ith sample. If the attributes
have crisp values we fuzzify them according
to the nature of the data. We use a triangu-
lar membership function which is explained in
the following section.

2.1 Fuzzifying attributes

In the first step, we fuzzify each attribute of
every case in the sample or training set by
defining a membership function for each one.

In fact, all problems arising in the theory of
fuzzy sets are due to the lack of our knowledge
of the interpretations of fuzzy. There are no
guidelines or rules that can be used to choose
the appropriate membership generation tech-
nique [15].

There are many subjective elicitation meth-
ods for membership functions like: polling,
direct rating, reverse rating, interval esti-
mation, membership function exemplification
and pairwise comparison [5]. However, a par-
ticularly important concern in practice are ap-
proaches to construct membership functions

1520 Proceedings of IPMU’08



from a given set of data. In this case fuzzy
clustering techniques, neural network-based
methods and also fuzzy nearest neighbor tech-
niques has been suggested [5, 15]. Trans-
ferring the probabilities to possibilities using
data histograms is also an interesting way for
elicitation of possibilities and assigning them
to membership grades [8, 15, 16].

In our method a membership function mea-
sures the degree of similarity of an element
to the set in question.we also have a subjec-
tive view and we determine the parameters
of our predefined membership function which
comes from our interpretation of the fuzziness
in this problem. However, the fuzzy meth-
ods are insensitive to a precise measurement
of membership functions and the qualitative
properties of the phenomena modeled using
fuzzy sets, is more important [14].

Hereby, when we come across v ∈ domain(f j
i )

the value of attribute f j
i for a case Xi in our

training set, we consider that v has the pos-
sibility of 1 in the class to which this case
belongs. On the other hand we derive the
boundaries of other possible values using the
training set. If we look for the samples in the
related class, then we get two boundaries a,b
for which v ∈ [a, b], in this class. We call them
class boundaries. If we consider all values in
the training set for this attribute we get c,d
for which v ∈ [c, d] and we call them training
set boundaries.

According to our interpretation of fuzziness
the closer the values are to the observed one
the more similar they are to it and so they are
more possible in the class domain. Therefore
by defining a normalized triangular member-
ship function on (a,b,v), parameters a and b
locate the support of the triangle and the pa-
rameter v locates the core, we assign a degree
of possibility to the values in between the class
boundaries. This possibility would depend on
the distance from v reversely. We can also use
a wider support like training set boundaries
for the triangle like (e,f ,v) where c ≤ e ≤ a
and b ≤ f ≤ d. Specially while in real data
we have class overlaps it would provide better
results. Afterward we have cases with fuzzy

attributes.

2.2 Building fuzzy prototypes

In the second step our concern is to make a
prototype for each class. By a prototype we
mean a representative model for each class,
so the next comparisons will be performed by
these prototypes and there is no more need to
keep cases like case-based reasoning methods
to compare one by one.

As we have fuzzy vectors from the previous
step, our idea here is to aggregate the vec-
tors(cases) in each class to make a prototype
vector, by means of aggregation operations.
Actually, we aggregate membership functions
of the same attributes of all samples which
have the same label. Consequently we will
have one membership function (the result of
the aggregation) for each attribute and so
we derive a prototype vector with fuzzy at-
tributes for each class. In a formal way for
each class λk, 1 ≤ k ≤ m, prototype(λk) =

{Ag({Xi}) |L(Xi) = λk and 1 ≤ i ≤ n}
where Ag is an aggregation function from
Xn → X and prototype(λk) is the fuzzy pro-
totype for the class λk of the training set.
As we mentioned Ag works on each attribute
separately. If we present each case X by its
fuzzy attributes like X = (f1, ..., fJ) then we
define the Ag({Xi}), 1 ≤ i ≤ n as

Ag({Xi}) = (ag({f1
i }), ..., ag({fJ

i })), 1 ≤ i ≤ n

where f j
i is a fuzzy set related to the jth at-

tribute of the ith case and ag is an aggrega-
tion operator. Actually, we do aggregation for
the cases with the same label. Consequently
we have a fuzzy vector prototype(λk) for each
class λk at the end of this phase. We denote
each prototype vector as:

prototype(λk) = (p1
k, ..., p

J
k )

where 1 ≤ k ≤ m and m is the number of
classes.

2.3 Classification of new cases

In this phase we use the prototype fuzzy
vectors to make a prediction for new cases.

Proceedings of IPMU’08 1521



Here we use the related ideas in fuzzy pat-
tern matching methods [8]. The new case
must be compared with all the class proto-
types and the most similar prototype deter-
mines the class label of the new case.

Alternatively, we may fuzzify the new case
also or work with the vector with crisp at-
tribute values. In both situations we must
compare the vectors, attribute by attribute.
However, the method of comparison is com-
pletely different in these two situations.

Crisp new case In this approach we calcu-
late the membership degree of each attribute
value of the new case to the fuzzy set of the re-
lated attribute, in each prototype. In a more
formal way, we present the new case by its
crisp attribute values as:

Xnew = (v1, ..., vJ)

pj
k(vj) is the membership degree of vj to the

pj
k fuzzy set. Now we derive a vector Dk con-

taining all the membership of the attribute
values of the new case to kth class prototype.

Dk = (p1
k(v1), ..., pJ

k (vJ))

Fuzzy new case In this approach we
fuzzify our new case. We can do this in the
same way as with the sample cases by using
the training set boundaries. Each attribute
value converts to a fuzzy set with triangular
membership function. This means that the
values near to the present value are also ac-
cepted but to a lower possibility depending
on the distance from the actual value. Here,
the fuzzy set comparison methods can be used
for comparing fuzzy attributes. In this case
we may use overlap, inclusion or equality of
two fuzzy sets [5]. The counting based com-
parisons can also be suitable choices for com-
paring two fuzzy sets[3, 5]. There is a lot of
flexibility in choosing the comparison method
and the choice depends on the application and
the data. Here we use fuzzy overlap which
is defined by the following formula, for two
fuzzy sets F and G: O(F,G) = ht(F ∩ G) =
supminu∈U (F (u), G(u))
By using the same notation as for the crisp

case, here the vj ’s of the new case are fuzzy
sets. If we use fuzzy overlap for comparing
two fuzzy sets then pj

k(vj) are the degree of
overlap(similarity) between vj and pj

k fuzzy
sets.

As the result of both methods, we will obtain
the local similarities between the new case at-
tributes and the prototype’s. It is necessary
to aggregate these degrees to derive the total
measure as the membership degree of the new
case to each class. Here again, different ag-
gregation operators can be used, for example
if there are some priorities among attributes,
weighted aggregation operators can be used.
For example OWA operators or if we want to
include dependencies between attributes then
some setting of Choquet integrals would be
helpful [10, 8].

Ck(Xnew) = W (p1
k(v1), ..., pJ

k (vJ))

where W is an aggregation operator and
Ck(Xnew) is the membership degree of new
case Xnew to class Ck. and then

L(Xnew) = argλk∈L max{Ck(Xnew) |L(Ck) = λk }
It means that the maximum of the aggregated
membership degrees determines the class la-
bel of Xnew.

3 Related works

Fuzzy notions have been widely used in ma-
chine learning approaches in both model-
based and case-based methods [12]. For ex-
ample in case-based methods like kNN, the
fuzzy version assigns a degree of member-
ship to each new case instead of a unique la-
bel [13, 10]. A fuzzy version of model based
kNN proposed in [7] and performed well.

Another case-based method which does pos-
sibilistic prediction is developed in [4]. Ac-
tually, in this work we compared our results
to POSSIBL [11] and the other results of this
work. It uses the similarity measures as mem-
bership degrees in an Instance-based method
and it has a noticeable accuracy on UCI ma-
chine learning repository data.

There are also many model-based approaches
that apply fuzzy and/or possibilistic notions

1522 Proceedings of IPMU’08



for classification and clustering purposes. In
the machine learning literature, almost all the
existing methods have been combined with
fuzzy notions in some way.

For example in clustering, k-means is a simple
method which partitions the sample set into k
clusters. The aim of this algorithm is to find
cluster centroids for each group. A prototype-
based approach has been used in classification
of text documents known as Rocchio [17]. It
makes a crisp and usually centroid vectors for
each class.

k-Means, in its fuzzy version called fuzzy c-
means [7], employs fuzzy partitioning such
that an instance can belong to all clusters
with different degrees of membership between
0 and 1. In addition, in graphical models like
Bayesian networks [1] and Markov networks
fuzzy and possibilistic concepts has been in-
vestigated. In decision trees, fuzzy rule-based
methods and fuzzy neural networks, there also
exist many research works in this area [12]. In
some related works possibilities have been ex-
tracted from transformation of the probabil-
ities and almost always the probabilities de-
rived from frequencies in training data. In
[8] this approach has been used for classi-
fication and feature extraction by fuzzy in-
tegrals through which the dependencies be-
tween attributes are taken into account. Vari-
able transformation of probabilities to possi-
bilities has been used in diagnosis by pattern
recognition [16]. In the same work various
characteristics of the different transformation
methods has been compared.

An investigation on prototype-based methods
has been developed well in [2] and compared
with instance-based methods like kNN.

4 Experimental results

4.1 Experimental setup

The experiments were performed with the
same setting as Hüllermeier [11, 10], for com-
parison purposes. He compared, his suggested
possibilistic instance based classifier, PossIBL
with kNN for different k’s. We added our re-
sults to his tables.

In that setting, five public datasets were cho-
sen from the UCI machine learning repository,
Table 1. In our first method F-P-B1, we com-
pared the crisp new case with the fuzzy pro-
totypes of our prototype based method. In
the second method F-P-B2, the new case has
been fuzzified beforehand and then compared
to fuzzy prototypes. For aggregating training
cases and making prototypes we used the max
operator in both experiments. At the time of
classification, for the aggregation of member-
ship degrees or similarities, we used the mean
operator because here we ignore dependencies
and priorities between attributes.

We also used the idea of fuzzy pattern recog-
nition [8]. We used different transformation
methods like Variable Transformation (VT),
Normalized Transformation (NT), Asymmet-
ric, Transformation of Dubois and Prade (AT)
and Symmetric Transformation of Dubois and
Prade (ST) [16]. We made our prototypes ac-
cording to the obtained possibilities to com-
pare it to our proposed prototype derived
from aggregating the fuzzified cases.

The results showed that symmetric transfor-
mation worked better than other transforma-
tions on these data sets so, for saving the
space we compare only the results of ST with
other methods.

In a single simulation run, the data set divided
at random into a training set and a test set,
Table 1. Results are summarized by means of
statistics for the percentage of correct clas-
sifications (mean, minimum, maximum and
standard deviation). The experiments on four
data sets are represented in Tables 1-4. The
experiments on another data set named Bal-
ance Scale Database will be discussed in sec-
tion 4.2.3 .

4.2 Analysis of the results

4.2.1 Accuracy

As can be seen in the tables, for three data
sets, the F-P-B in both cases is nearly the
same and is comparable with kNN and POS-
SIBL. On the Wine Recognition data set F-
P-B worked even much better. Since these

Proceedings of IPMU’08 1523



Data set #of observ. #of predictive att. #of classes Training set size
GLASS IDENTIFICATION 214 9 7 100

WINE RECOGNITION 178 13 3 89
IRIS PLANT 150 4 3 75

PIMA INDIANS DIABETES 768 8 2 380
BALANCE SCALE 625 4 3 300

Table 1: description of Data sets

Algorithm mean min max std
F-P-B1 0.9102 0.7733 0.9867 0.029
F-P-B2 0.9123 0.800 1.000 0.027
PossIBL 0.9574 0.8400 1.000 0.020

1NN 0.9492 0.8400 1.000 0.019
3NN 0.9554 0.8666 1.000 0.017
5NN 0.9586 0.8533 1.000 0.018

w5NN 0.9561 0.8400 1.000 0.018
ST 0.8583 0.64 0.9733 0.038

Table 2: Iris Plant Database (10000 simula-
tion runs)

Algorithm mean min max std
F-P-B1 0.6179 0.4386 0.7719 0.043
F-P-B2 0.6283 0.4211 0.7632 0.042
PossIBL 0.6841 0.5300 0.8400 0.041

1NN 0.6870 0.5200 0.8200 0.041
3NN 0.6441 0.4800 0.8100 0.042
5NN 0.6277 0.4800 0.7800 0.041

w5NN 0.6777 0.5000 0.8300 0.041
ST 0.4677 0.2807 0.6754 0.057

Table 3: Glass Identification Database (10000
simulation runs)

Algorithm mean min max std
F-P-B1 0.9465 0.8202 1.0000 0.028
F-P-B2 0.9570 0.8427 1.0000 0.025
PossIBL 0.7148 0.5506 0.8652 0.040

1NN 0.7163 0.5843 0.8652 0.040
3NN 0.6884 0.5506 0.8315 0.040
5NN 0.6940 0.5730 0.8090 0.039

w5NN 0.7031 0.5730 0.8315 0.040
ST 0.7668 0.4157 0.9325 0.076

Table 4: Wine Recognition Database (1000
simulation runs)

Algorithm mean min max std
F-P-B1 0.6711 0.6030 0.7448 0.020
F-P-B2 0.6598 0.5927 0.7345 0.019
PossIBL 0.7096 0.6421 0.7711 0.019

1NN 0.6707 0.6132 0.7289 0.019
3NN 0.6999 0.6447 0.7500 0.018
5NN 0.7190 0.6553 0.7684 0.018

w5NN 0.6948 0.6421 0.7474 0.018
ST 0.6865 0.5902 0.7706 0.024

Table 5: Pima Indians Diabetes Database
(1000 simulation runs)

methods are case-based and are among the
outperforming methods in machine learning,
the results are promising. F-P-B’s are much
better on almost all data sets, Compared to
ST which uses symmetric transformation of
probabilities to possibilities. It means when
we need possibilities, defining fuzzy subjec-
tive membership functions works better than
using probabilities as initial data. However,
while the method is very efficient compared
to case-based methods and very accurate com-
pared to using probability transformations, so
the results would be satisfactory in many ap-
plications. Fuzzification of the new cases in
F-P-B2 could make very small improvements
but did not have any sharp effect on the re-
sults. It is worthy to mention that our results
are without any enhancement and noise re-
duction.

4.2.2 Complexity

From the complexity point of view, in case-
based methods like POSSIBL and kNN, at
classification time, each case must be com-
pared with all cases in the training set. So,
the complexity is of order O(n) where n is the
size of training set. In our suggested method

1524 Proceedings of IPMU’08



F-P-B each case must only be compared with
prototypes. Because we have one prototype
for each class, the complexity order decreases
to O(m) where m is the number of classes.
Since always m << n, we conclude that from
the complexity point of view F-P-B is very
efficient and comparable to other prototype-
based methods.

However, in case based methods we have
the process of the comparison of two cases.
Its complexity depends on the number of
attributes and the similarly measurement
process. Here, we have a different approach to
compare a case with fuzzy prototypes. This
process includes the complexity of deriving
membership degrees from membership func-
tions. The complexity of this process de-
pends to some extent on the implementation
of membership functions. For example, in
some way by means of indexing we can de-
crease the order of finding membership de-
grees to O(1). In this case the comparison
with one prototype would only depend on the
number of attributes, similar to case-based
methods. Therefore the approach has a to-
tal complexity of a simple prototype-based
method which is comparatively very efficient.

Finally, in our proposed method we have the
complexity of making prototypes, but this is
only at the training step and does not effect
the efficiency of classification.

4.2.3 Dependency ignorance

On the fifth data set, Balance-scale, our
method did not work properly. If we consider
on this data set, it has only four attributes
for each case. The class label would be deter-
mined according to the comparison of a1× a2

and a3 × a4 (a1, a2, a3 and a4 show the at-
tributes). If these are equal, the case belongs
to class 1. In the other two situations (greater
or less than), the case belongs to class 2 or
3. So a strong dependency between attributes
is observable which our method in its simple
form is not able to deal with. However, ag-
gregation operators like fuzzy integrals [8] can
provide a better situation by handling the de-
pendencies, but with more complexity.

Defining membership functions also can be
one critical source of wrong classifications in
some kind of data sets. Since we give a pos-
sibility 1 to every observed attribute value,
by analysis of the Balance-scale data we see
that our fuzzification method is not suitable
for this data because the possibility distribu-
tion of one attribute completely depends on
the value of other attributes. For example if
we have a value for a1 in class 1, then some
values are impossible for a2 because the above
mentioned equation must hold. Thus we need
a more sophisticated membership generation
method which includes these kind of condi-
tions and dependencies.

Hence, in case of dependency between at-
tributes we must be careful with defining
membership functions or choosing aggrega-
tion operators. In fact, in machine learning
methods for choosing a suitable approach, we
always must know the characteristics of our
data to some extent.

5 Conclusions

In this paper, we investigated fuzzy and pos-
sibilistic reasoning methods, we tried to deal
with the shortcomings of the lazy case-based
methods and overcome the problem of low ef-
ficiency of kNN and POSSIBL. We went to-
ward making a fuzzy prototype for each class.

For the classification of a new case the com-
parisons are done with fuzzy prototypes in-
stead of with every case in our training set.
This solution decreases the complexity of
our classifier from O(number of cases), to
O(number of classes). So, this method is
from efficiency point of view, comparable with
prototype-based methods which do a kind of
simple averaging or weighted averaging on
each class like the idea of Rocchio in text clas-
sification and k-means and fuzzy c-means in
clustering.

On the other hand the experimental results on
the UCI repository show that the accuracy of
our suggested method is comparable to that
of case-based methods while they are usually
in between the best methods in many appli-
cations of machine learning. In addition ac-

Proceedings of IPMU’08 1525



curacy is usually very much better than using
transformations from probability to possibili-
ties.
As our method neglects the dependency be-
tween attributes of the cases this will be our
next research interest to include these depen-
dencies when we define the membership func-
tions or when we aggregate the membership
degrees, by means of more sophisticated ag-
gregation operators.
However coming to fuzzy and possibilistic ap-
proaches would have more advantages while
we are interested in measuring the reliability
of our classifier and the uncertainty of final
decisions. These are also our future research
interests.
Acknowledgements

This research has been partially supported by
Ilam university, Iran.

References

[1] C.Borgelt, R.Kruse. Graphical Models:
Methods for Data Analysis and Min-
ing.Wiley,2001.

[2] F.Chang, C.C.Lin, C.J.Lu. Adaptive
Prototype Learning Algorithms: The-
oretical and Experimental Studies. In
J. Machine Learning Research, vol 7,p
2125-2148, 2006.

[3] B.De Baets, H.De Meyer, H.Naessens. A
class of rational cardinality-based sim-
ilarity measures. In J. Comput. Appl.
Math., vol 132, p 51-69, 2001.

[4] D.Dubois, E.Hüllermeier, H.Prade.
Fuzzy set-based methods in instance-
based reasoning. In IEEE Transactions
on Fuzzy Syst., vol 10, no 3, p 322-332,
2002.

[5] D.Dubois, H.Prade. Fundamentals of
Fuzzy Sets. In Kluwer Academic Publish-
ers, 2000.

[6] D.Dubois, H.Prade, C.Testemale.
Weighted fuzzy pattern matching. In
Fuzzy Sets Syst.,vol 28, no 3, p 313-331,
1988.

[7] G.Guo, D.Neagu. Fuzzy kNNModel Ap-
plied to Predictive Toxicology Data Min-
ing. In Int.J.of Computational Intelli-
gence and Applications vol 5, no 3, p 321-
333, 2005.

[8] M.Grabisch. Fuzzy Integral for Classifi-
cation and Feature Extraction. In Fuzzy
measures and integrals: Theory and ap-
plications, Physica-Verlag, p 415-434,
2000.

[9] F.Hoppner, F.Klawonn, P.Eklund.
Learning indistinguishability from data.
In Soft computing, vol 6, p 6-13, 2002.

[10] E.Hüllermeier. Case-based Approximate
Reasoning. Springer,2007.

[11] E.Hüllermeier. Possibilistic instance-
based learning. In Artificial Intelligence,
vol 148, p 335-383, 2003.

[12] E.Hüllermeier. Fuzzy methods in ma-
chine learning and data mining: Status
and prospects. In Fuzzy Sets and Syst. ,
vol 156, p 387-406, 2005.

[13] J.M.Keller, R.Gray, J.A.J.R. Givens. A
Fuzzy k-nearest Neighbor Algorithm. In
IEEE Trans. syst. Man Cybernet vol
15(4), p 580-585, 1985.

[14] R.Kruse, J.Gebhardt, F.Klawonn. Foun-
dations of fuzzy Systems.John Wiley and
Sons,New York, 1994.

[15] S.Medasani, J.Kim, R.Krishnapuram.
An overview of membership function gen-
eration techniques for pattern recogni-
tion. In Int.J.of Approximate Reasoning
vol 19, p 391-417, 1998.

[16] M.Sayed Mouchaweh, P.Billaudel. Vari-
able Probability-Possibility Transforma-
tion for the Diagnosis by Pattern Recog-
nition. Int.J.of Computational Intelli-
gence: Theory and Practice, vol 1(1),p
9-25, 2006.

[17] F.Sebastiani. Machine Learning in Au-
tomated Text Categorization. InACM
Computing Surveys,vol 34, p 1-47, 2002.

1526 Proceedings of IPMU’08


