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Abstract

We present the necessary and suf-
ficient conditions on ordinal prefer-
ential information provided by the
decision maker for the existence of
a 2-additive capacity such that the
Choquet integral w.r.t. this capac-
ity represents the preference of the
decision maker. These conditions
help the decision-maker to under-
stand the main reasons of the recom-
mendations made when inconsisten-
cies occur in his preferences on the
set of binary actions.

Keywords: Choquet integral, ordi-
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1 Introduction

Multi-criteria decision analysis aims at rep-
resenting the preferences of a decision maker
over options. One possible model is the transi-
tive decomposable one where an overall utility
is determined for each option. The Choquet
integral has been proved to be a versatile ag-
gregation function to construct overall scores
[3, 7, 11] and is based on the notion of the
capacity or fuzzy measure. Used as an aggre-
gation function, the Choquet integral arises as
a generalization of the weighted sum, taking
into account the interaction between criteria.
Its expression according to the Shapley value
[18] and the interaction index [16] is possible
when the capacity is 2-additive [7, 6]. The

use of the Choquet integral requires before-
hand the determination of the capacity.

Most of identification approaches proposed in
the literature are based on the resolution of
an optimization problem, see [10] for a survey
of these methods. For instance the Marichal
and Roubens approach [14] computes, given
a set of alternatives A and a set of criteria
N , a capacity µ such that the Choquet inte-
gral w.r.t. µ represents the preference over
A. In this method, it is supposed that the
evaluations of each alternative over each cri-
terion are known (on a numerical and normal-
ized scale), and possibly partial preorders �A,
�N , �P over A, N , and the set of pairs of cri-
teria, respectively. We also have the sign of
interaction between some pairs of criteria.

Our approach in this paper can be seen as a
particular case of the Marichal and Roubens
approach. Compared to their method, we as-
sume that the decision-maker provides an or-
dinal information on a particular set of alter-
natives, the set of binary actions. An ordinal
information is a preferential information rep-
resented by a strict preference relation and
an indifference relation. A binary action is
a fictitious alternative which takes either the
neutral value 0 for all criteria, or the neu-
tral value 0 for all criteria except for one or
two criteria for which it takes the satisfactory
value 1. Under these hypotheses, we present
the necessary and sufficient conditions on the
ordinal information for the existence of a 2-
additive capacity such that the Choquet inte-
gral w.r.t. this capacity represents the prefer-
ence of the decision maker. The first condition
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concerns the existence of strict cycles in the
ordinal information and the second condition,
called MOPI condition, comes from the defi-
nition of a 2-additive capacity. Therefore, we
have a characterization of a 2-additive Cho-
quet integral which permits to deal with in-
consistencies in the ordinal information given
by the decision maker.

The basic material on the Choquet integral,
binary actions, ordinal information and the
ordinal 2-additive scale are given in the next
section. In Section 3, we introduce some re-
lations on the set of binary actions through
notions of graph theory, in order to provide
the conditions we need to solve our problem.
Finally, we present in Section 3.3 our main
results of the characterization of a 2-additive
Choquet integral.

2 Basic concepts

In this paper, we will use the following nota-
tions:

• N = {1, ..., n} is a set of n criteria. The
set of attributes is denoted by Y1, ..., Yn.
An option or an action x is identified to
an element of Y = Y1× ...× Yn with x =
(x1, ..., xn).

• 2N or P(N) is the set of all subsets of N .

• ∀A ⊆ N, N −A = N \A.

• ∀i, j ∈ N, N − i = N −{i} and N − ij =
N − {i, j}.
• ∀A ⊆ N, z = (xA, yN−A) means that z

is defined by zi = xi if i ∈ A, and zi = yi
otherwise.

• DM is an individual or a decision-maker.

2.1 Binary Actions and ordinal
information

We suppose that the DM can identify for each
criterion two reference levels 1i and 0i in Yi
corresponding respectively to levels he con-
siders satisfactory and neutral on the crite-
rion i. A binary action is an element of the

set X = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈
N} = {a0, ai, aij , i, j ∈ N} ⊆ Y where

• 0N = (1∅,0N ) = a0 is an action consid-
ered neutral on all criteria.

• (1i,0N−i) = ai is an action considered
satisfactory on criterion i and neutral on
the other criteria.

• (1ij ,0N−ij) = aij is an action considered
satisfactory on criteria i and j and neu-
tral on the other criteria.

Using the pairwise comparisons we suppose
also that the DM gives a preferential infor-
mation on X allowing to build the following
two relations:

P = {(x, y) ∈ X × X :
DM strictly prefers x to y}
I = {(x, y) ∈ X × X :
DM is indifferent between x and y}

Note that P is asymmetric, I is reflexive and
symmetric.

Definition 2.1. The ordinal information on
X is the structure {P, I}.

“non-triviality axiom”: In this
paper, we suppose that P is
nonempty for any ordinal informa-
tion {P, I}.

The map φ will indicate the bijection between
X and P2(N) = {S ⊆ N : |S| ≤ 2} de-
fined by for all S ∈ P2(N), φ((1S ,0N−S)) :=
S. We will denote by PN and IN the rela-
tions on P2(N)× P2(N) defined by: ∀S, T ∈
P2(N), S PN T ⇔ φ−1(S) P φ−1(T ), and
S IN T ⇔ φ−1(S) I φ−1(T ).

2.2 Ordinal 2-additive scale

We introduce in this section the notion of or-
dinal 2-additive scale. Prior to that we in-
troduce some general concepts on the Cho-
quet integral, which will be useful in the se-
quel. For more details about fuzzy integrals,
see [11, 7, 8, 9].
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Definition 2.2. A capacity (or fuzzy mea-
sure) on N is a set function µ : 2N → [0, 1]
satisfying the three properties:

1. µ(∅) = 0

2. µ(N) = 1

3. ∀A,B ∈ 2N , [A ⊆ B ⇒ µ(A) ≤ µ(B)]
(monotonicity).

The definition of a capacity requires in general
2n coefficients, which are the values of µ for
all different subsets of N . When monotonicity
is not satisfied, µ is called a nonmonotonic
capacity.

Definition 2.3. Let µ be a capacity on
N . The Möbius transform of µ is a func-
tion m : 2N → R defined by m(T ) :=∑
K⊆T

(−1)|T\K|µ(K), ∀T ∈ 2N .

Definition 2.4. A capacity µ is said to be
k-additive (1 ≤ k ≤ n) [7] if its Möbius trans-
form satisfies ∀T ∈ 2N , m(T ) = 0 if |T | > k,
and there exists at least a subset B ∈ 2N such
that |B| = k and m(B) 6= 0.

Hence a capacity µ is 2-additive if ∀T ∈
2N , m(T ) = 0 if |T | > 2, and ∃B ∈
2N , |B| = 2 and m(B) 6= 0.

Definition 2.5. Let µ be a capacity on
N . The interaction index I of µ [7] is de-
fined by: ∀A ⊆ N, A 6= ∅, I(A) :=∑
K⊆N\A

(n− k − |A|)!k!
(n− |A|+ 1)!

∑
L⊆A

(−1)|A|−|L|µ(K ∪

L) with |K| := k.

This definition is a generalization of the Shap-
ley [18] value and the interaction index of
Murofushi and Soneda [16], the latter being
defined as follows: ∀i, j ∈ N, Iij := I({i, j}).
Definition 2.6. Let µ be a capacity on N .
The Shapley index for every i ∈ N is defined
by:

vi =
∑

K⊆N\i

(n− k − 1)!k!
n!

(µ(K ∪ i)− µ(K)).

The Shapley value of µ is the vector v(µ) =
[v1, ..., vn]. Clearly vi = I({i}), ∀i ∈ N .

Let µ be a capacity on N . We denote in this
section by m its Möbius transform and I its
interaction index.
Remark 1. If µ is 2-additive then we have
∀i, j ∈ N , m({i}) = µ({i}) and I({i, j}) =
m({i, j}) = µ({i, j}) − µ({i}) − µ({j}). For
simplicity, we will use for a capacity µ and its
Möbius transform m the following notations:
µi := µ({i}), µij := µ({i, j}), mi := m({i}),
mij := m({i, j}) ∀i, j ∈ N . Whenever we use
i and j together, it always means that they
are different.

Lemma 1.

1. Let µ be a 2-additive capacity on N . We
have ∀K ⊆ N, |K| ≥ 2,

µ(K) =
∑
{i,j}⊆K

µij−(|K|−2)
∑
i∈K

µi. (1)

2. If the coefficients µi and µij are given for
all i, j ∈ N, then the necessary and suf-
ficient conditions that µ is a 2-additive
capacity are:

(i) ∑
{i,j}⊆N

µij − (n− 2)
∑
i∈N

µi = 1 (2)

(ii)
µi ≥ 0, ∀i ∈ N (3)

(iii) ∀A ⊆ N, |A| ≥ 2 ∀k ∈ A∑
i∈A\{k}

(µik−µi) ≥ (|A|−2)µk. (4)

Proof. See [7]

Definition 2.7. Let µ be a capacity on N
and a := (a1, a2, ..., an) ∈ Rn

+. The Choquet
integral of a w.r.t µ is given by:

Cµ(a) := aτ(1)µ(N) +
n∑
i=2

(aτ(i) −
aτ(i−1))µ({τ(i), ..., τ(n)})
where τ is a permutation on N such that
aτ(1) ≤ aτ(2) ≤ ... ≤ aτ(n−1) ≤ aτ(n).

Remark 2.
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1. If µ is a 2-additive capacity, then the
Choquet integral of a := (a1, a2, ..., an) ∈
Rn

+ can be written according to I as fol-
lows:

CI(a) =
∑
Iij>0

(ai∧aj)Iij+
∑
Iij<0

(ai∨aj)|Iij |

+
n∑
i=1

ai(vi − 1
2

∑
j 6=i
|Iij |)

with the property vi− 1
2

∑
j 6=i
|Iij | ≥ 0, ∀i ∈

N.

2. Chateauneuf and Jaffray have estab-
lished an equivalent expression for the
Choquet integral using m in [2]:

Cm(a) =
∑
K⊆N

m(K) min
i∈K
{ai}.

In particular, if µ is a 2-additive capacity,
we have

Cm(a) =
∑
i∈N

mi ai+
∑
{i,j}⊆N

mij min{ai, aj}.

Remark 3. The Choquet integral satisfies the
following property [13, 11]: if µ is a capacity
then

Cµ(1A,0N−A) = µ(A), ∀A ⊆ N.
Hence we have:

Cµ(a0) = 0, Cµ(ai) = µi,

Cµ(aij) = µij , ∀i, j ∈ N.
Definition 2.8. The ordinal information
{P, I} is representable by a 2-additive Choquet
integral if there exists a 2-additive capacity µ
such that:

1. ∀x, y ∈ X, x P y ⇒ Cµ(x) > Cµ(y)

2. ∀x, y ∈ X, x I y ⇒ Cµ(x) = Cµ(y).

Definition 2.9. An ordinal 2-additive scale
on X is a 2-additive capacity on N which sat-
isfies the two conditions of Definition 2.8.

Using Remark 3, we get the following lemma:

Lemma 2. A 2-additive capacity µ is a rep-
resentation of PN and IN if and only if the
following conditions are satisfied:

1. ∀S, T ∈ P2(N), S PN T ⇒ µ(S) > µ(T )

2. ∀S, T ∈ P2(N), S IN T ⇒ µ(S) = µ(T ).

We end this section by defining on X a new
binary relation M from preferences P and I
given by the DM. The relation M completes
the preferential information given by the DM,
with respect to the natural monotonicity re-
lation. In this way, we call M the relation of
monotonicity on the pairs of criteria.
Definition 2.10. Let {P, I} be an ordinal in-
formation on X. Let x, y ∈ X, x M y if one
of the following two conditions is satisfied:

1. y = a0 and not(x (P ∪ I) a0),

2. ∃i, j ∈ N such that [x = aij , y = ai] and
not[x (P ∪ I) y].

Remark 4.

• The condition on µ derived from M cor-
responds to (3) and (4) for the sets of
pairs with |A| = 2.

• Let µ be an ordinal 2-additive scale on
X. By the definition of the relation M ,
we have for all x, y ∈ X, x M y ⇒
µ(φ(x)) ≥ µ(φ(y)).

3 Treatment of ordinal information

In the previous section, the binary relation
M has been added to the two relations P, I
of preferential information given by DM. Now
the problem we have to treat is: how to build
a 2-additive ordinal scale using these three re-
lations? To solve it, we study here some in-
consistencies which can occur in the analysis
of the ordinal information. The first one con-
cerns cycles of (P ∪ I ∪M).

3.1 Cycles inside the ordinal
information

For a general binary relation R on X and
x, y elements of X, {x1, x2, · · · , xp} ⊆ X
is a path of R from x to y if x =
x1 R x2 R· · ·R xp−1 R xp = y. A path
of R from x to x is called a cycle of R. We
will distinguish between strict and nonstrict
cycles.
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Definition 3.1.

1. A path {x1, x2, ..., xp} of (P ∪ I ∪M) is
said to be a strict path from x to y if
there exists i in {1, ..., p − 1} such that
xi P xi+1.

2. A strict path of (P ∪ I ∪M) from x to x
is called a strict cycle of (P ∪ I ∪M).

3. A cycle (x1, x2, ..., xp) of (P ∪ I ∪M) is
said to be a nonstrict cycle if it is not
strict.

A strict cycle is designated by some authors
([17, 15]) as a cycle which contains an asym-
metric preference or an asymmetric relation
called here P . An ordinal information (P ∪
I ∪M) must not contain any strict cycle, but
may contain nonstrict cycles, i.e, a cycle of
(I ∪M). Hence, we easily deduce the follow-
ing:

Proposition 1. Let µ be an ordinal 2-
additive scale on X, and x1, x2, · · · , xp be el-
ements of X.

If (x1, x2, · · · , xp) is a nonstrict cycle of (P ∪
I ∪ M) then µ(φ(x1)) = µ(φ(x2)) = ... =
µ(φ(xp)).

Proof. (x1, x2, · · · , xp) is a nonstrict cycle of
(P∪I∪M) means x1 (I∪M) x2 (I∪M) · · · (I∪
M) xp−1 (I ∪ M) xp (I ∪ M) x1. So using
the definition of an ordinal 2-additive scale
on X and the Remark 4, we have µ(φ(x1)) ≥
µ(φ(x2)) ≥ ... ≥ µ(φ(xp)) ≥ µ(φ(x1)).

Proposition 1 shows that, with an ordinal 2-
additive scale µ, all binary actions inside a
non-strict cycle of (P ∪ I ∪M) have the same
value by µ. Consequently the detection of
these nonstrict cycles seems to be necessary
if we want to find an algorithm which com-
putes an ordinal 2-additive scale. To do it, we
use the transitive closure TC of (P ∪ I ∪M)
defined as follows:

Definition 3.2. ∀x, y ∈ X

1. x TC y if there exists a path of (P∪I∪M)
from x to y.

2. x TCP y if there exists a strict path of
(P ∪ I ∪M) from x to y.

The transitive closure is well-known in the lit-
erature. It is used in graph theory to find
the strongly connected components of a graph
(see [5, 4, 1, 12]). We define the binary rela-
tion ∼ which allows us to detect the nonstrict
cycles of (P ∪ I ∪M) by:

∀x, y ∈ X, x ∼ y

⇔ x = y or


x TC y and not(x TCP y)
and
y TC x and not(y TCP x)

∼ is obviously an equivalence relation on X.
We will denote by (X\ ∼) the set of all equiv-
alence classes of ∼, and by x the equivalence
class of an element x of X. The following
lemma uses the results of Proposition 1.

Lemma 3. If µ is an ordinal 2-additive
scale on X, then ∀x̄ ∈ (X\ ∼), ∀y, z ∈
x̄, µ(φ(y)) = µ(φ(z)).

Proof. The elements of x̄ form a nonstrict cy-
cle of (P ∪ I ∪M). Hence, by Proposition 1,
we have ∀y, z ∈ x̄, µ(φ(y)) = µ(φ(z)).

3.2 MOPI property

In order to introduce the fundamental prop-
erty called MOPI, let us consider an ex-
ample with N = {1, 2, 3, 4}. Suppose
that the DM says : a12 I a3, a13 I a2

and a1 P a0. Using the relation M , we
have a12 M a2 I a13 M a3 I a12. So
(a12, a2, a13, a3, a12) forms a nonstrict cycle of
(P ∪I∪M). If µ is an ordinal 2-additive scale
of {P, I} then we will have µ12 = µ13 = µ2 =
µ3 and µ1 > 0. Hence, we will have a contra-
diction of monotonicity constraint µ12+µ13 ≥
µ1 +µ2 +µ3 of a 2-additive capacity with the
subset A = {1, 2, 3}, k = 1 (see (4) in Lemma
1). To formalize this type of inconsistency, we
use the following definitions.

Let K ⊆ N and |K| = k ≥ 2. Let i be a fixed
element of K. Let us consider the multiset
or bag Ki of X in which a repetition of the
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element ai is allowed.

Ki = {ai, ai, ..., ai︸ ︷︷ ︸
(k−2) times

} ∪ (
⋃

j∈K\{i}
{aj}).

Ki is a set of 2k − 3 elements, and it will be
called (K, i)-multiplied set of i.

Example 1. N = {1, 2, 3, 4} and i = 1 fixed.

K = {1, 2, 3, 4}, k = 4: {1, 2, 3, 4}1 =
{a1, a1, a2, a3, a4}.

A multiset [19] (or bag) is a generalization
of a set. Within set theory, a multiset can
be formally defined as a pair (A,m) where
A is some set and m : A → N is a function
from A to the set N. The set A is called the
underlying set of elements. For each a in A
the multiplicity of a is the number m(a).

Definition 3.3. Let K ⊆ N such that |K| =
k ≥ 3. Let i be a fixed element of K. Let us
set K \ {i} := {j1, j2, ..., jk−1}.

1. We call Monotonicity of Preferential In-
formation in K w.r.t. i the following
property (denoted by (K, i)-MOPI):

aij1 ∼ al1
aij2 ∼ al2
aij3 ∼ al3
...
aijk−1

∼ alk−1

{al1 , al2 , ..., alk−1
} ⊆ Ki


⇒

[not(alh TCP a0), ∀alh ∈ Ki \
{al1 , al2 , ..., alk−1

}]
If the property (K, i)-MOPI is sat-
isfied then the elements alh ∈ Ki \
{al1 , al2 , ..., alk−1

} are called Neutral Bi-
nary Actions of K w.r.t. i. The set of all
such elements is denoted by (K, i)-NBA.

2. We say that K satisfies the property of
Monotonicity of Preferential Information
(MOPI) if ∀i ∈ K, (K, i)-MOPI is satis-
fied.

Example 2. Let N = {1, 2, 3, 4} and i =
1 fixed. For K = {1, 2, 3}, k = 3
and {1, 2, 3}1 = {a1, a2, a3}, the property
({1, 2, 3}, 1)-MOPI reads as follows:

•
{
a12 ∼ a1

a13 ∼ a2
⇒ not(a3 TCP a0)

•
{
a12 ∼ a2

a13 ∼ a1
⇒ not(a3 TCP a0)

•
{
a12 ∼ a1

a13 ∼ a3
⇒ not(a2 TCP a0)

•
{
a12 ∼ a3

a13 ∼ a1
⇒ not(a2 TCP a0)

•
{
a12 ∼ a3

a13 ∼ a2
⇒ not(a1 TCP a0)

•
{
a12 ∼ a2

a13 ∼ a3
⇒ not(a1 TCP a0).

3.3 The main results

We give below our theorem of characterization
of consistent ordinal information {P, I} which
permits to build an ordinal 2-additive scale.

Theorem 1. There exists an ordinal 2-
additive scale on X if and only if the following
conditions are satisfied:

1. (P ∪ I ∪M) contains no strict cycle

2. Any subset K of N such that |K| = k ≥ 3
satisfies the MOPI property.

Theorem 1 shows that, only two types of in-
consistencies occur in an ordinal information
given by a DM in order to compute an ordinal
2-additive scale. Therefore the conditions of
Theorem 1 characterize the 2-additive Cho-
quet integral. When I = ∅ in the ordinal in-
formation, we have the following result:

Corollary 1.

For any ordinal information (P ∪I ∪M) such
that I = ∅, there exists an ordinal 2-additive
scale on X if and only if (P ∪M) has no strict
cycle.

Furthermore any ordinal information with
empty indifference for which (P ∪M) has no
strict cycle, can be represented by a 2-additive
capacity with nonnegative interactions.

By Corollary 1, we have only one type of in-
consistencies when the DM has no indifference
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in his ordinal information. In this case, we can
compute a 2-additive capacity with nonnega-
tive interactions between two any criteria.
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the use of Möbius inversion. Mathemati-
cal Social Sciences, 17:263–283, 1989.

[3] G. Choquet. Theory of capacities. An-
nales de l’Institut Fourier, 5:131–295,
1953.

[4] P. De Donder, M. Le Breton, and M. Tru-
chon. Choosing from a weighted tour-
nament. Mathematical Social Sciences,
40:85–109, 2000.

[5] M. Gondran and M. Minoux. Graphes et
algorithmes. Eyrolles, 1986.

[6] M. Grabisch. Alternative representa-
tions of discrete fuzzy measures for de-
cision making. Int. J. of Uncertainty,
Fuzziness, and Knowledge Based Sys-
tems, 5:587–607, 1997.

[7] M. Grabisch. k-order additive discrete
fuzzy measures and their representa-
tion. Fuzzy Sets and Systems, 92:167–
189, 1997.

[8] M. Grabisch. The Möbius transform
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