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Abstract

We are considering generated
pseudo-operations with three pa-
rameters of the following form:
x⊕ y = g−1 (ε1g(x) + ε2) , x� y =
g−1

(
gδ(x)g(y)

)
, where g is a

strictly monotone bijection and
ε1, ε2 and δ arbitrary but fixed
positive real numbers. The super-
position principle with this type
of pseudo-operations in the core
for the Monge-Ampère equation is
presented.

Keywords: Pseudo-operations
with three parameters, Pseudo-
superposition principle, Monge-
Ampère equation.

1 Introduction

In the field of differential equations one of the
highly investigated issues is the issue of ob-
taining new solutions of differential equations.
A nonlinear superposition principle (NLSP),
i.e., the principle which insures that if u and
v are solutions of some differential equation,
then u ∗ v is also a solution of the same dif-
ferential equation for the certain operation
∗, has proved itself to be a useful tool for
constructing new solutions of ordinary and
partial differential equations (see [3, 10, 13,
35]). This approach had been extended in
the direction of noncommutative operations
∗ ([10, 12, 16]), as well as in the direction
of the pseudo-analysis ([19, 25, 26, 28]). Ap-
plication of the noncommutative operations

∗ had also been investigated in the pseudo-
analysis’ framework (see [31, 32, 33]). Here,
by pseudo-analysis, we consider a generaliza-
tion of the classical analysis that combines
approaches from many different fields and
is capable of supplying solutions that were
not achieved by the classical tools. Some of
important results concerning pseudo-analysis,
both theory and application, can be found in
[4, 11, 14, 15, 19, 25, 27, 30, 31].

Additionally, important connection between
NLSP and Lie symmetry algebras ([5]) for
the classical approach had been established
in [10].

The focus of this paper is on the well-known
Monge-Ampère equation which was intro-
duced in 1815 by Ampère (see [2]) as non-
linear equation of two variables of the sec-
ond order. Later on, many authors, includ-
ing Boillat, Donato, Ramgulam, Rogers and
Ruggeri, studied the equation of this type
in a more general setting ([6, 7, 8, 9, 34].
Subsequently, Oliveri found a connection be-
tween the Monge-Ampère equations and their
Lie symmetries ([21, 22, 23]). The main
aim of this contribution is to present pseudo-
analysis’ approach to the problem of finding
new solutions for the homogeneous Monge-
Ampère equation of the form

uxxutt − u2
xt = 0.

More precisely, as a framework for this inves-
tigation we are using general pseudo-analysis
introduced in [31]. Therefore, the pseudo-
linear superposition principle that is being
used through this paper is based on the gener-
alized generated pseudo-operations with three
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parameters, i.e., operations given by a gener-
ating function that need not be commutative
nor associative. Previously this approach had
been applied in [32, 33].

Section 2 contains preliminary notions, such
as pseudo-operations, semiring and general-
ized pseudo-operations. The pseudo-linear su-
perposition principle for the Monge-Ampère
equation is considered in the third section.
Some concluding remarks are given in the Sec-
tion 4.

2 Preliminary notions

By pseudo-operations, namely the pseudo-
addition and the pseudo-multiplication, we
consider operations that are generalizations
of the classical addition and multiplication. If
[a, b] is a closed subinterval of [−∞,+∞] (in
some cases semiclosed subintervals) and � a
total order on [a, b], the pseudo-addition is a
function ⊕ : [a, b]×[a, b]→ [a, b] which is com-
mutative, non-decreasing (with respect to �),
associative and with a zero element 0. The
pseudo-multiplication is a function � : [a, b]×
[a, b]→ [a, b] which is commutative, positively
non-decreasing (x � y implies x � z �
y � z, z ∈ [a, b]+ = {x : x ∈ [a, b], 0 � x}) ,
associative and for which there exists a unit
element denoted by 1.

It is usually requested for the pseudo-addition
and pseudo-multiplication to fulfill the follow-
ing two conditions:

• 0� x = 0;

• x� (y ⊕ z) = (x� y)⊕ (x� z).

Now, the triplet ([a, b],⊕,�) is called a semir-
ing. There are three basic classes of semirings
with continuous (up to some points) pseudo-
operations. The first class contains semir-
ings with idempotent pseudo-addition and
non idempotent pseudo-multiplication. Semi-
rings with strict pseudo-operations defined
by strictly monotone bijection g : [a, b] →
[0,+∞], i.e., g-semirings, form the second
class, and semirings with both idempotent
operations belong to the third class. More

on this structure as well as on correspond-
ing measures and integrals can be found in
[15, 19, 24, 25, 27].

Pseudo-operations ⊕ and ⊕ are the core
of the pseudo-analysis. However, at this
point, we are focusing on generalization of
the pseudo-analysis, known as the general
pseudo-analysis, that had been presented in
[31] and is based on the generalized pseudo-
operations. The complete characterization of
the generalized pseudo-addition and pseudo-
multiplication was given in [31]. Definition
of the generalized pseudo-operations follows
and, in order to avoid possible confusion,
those operations are denoted with ⊕′ and �′.

Definition 1 Real operations ⊕′ and �′ are
the generalized pseudo-addition and the gen-
eralized pseudo-multiplication from the right
(or from the left), if the following hold:
(i) ⊕′ and �′ are functions from C2(R2),
(ii) the equation t ⊕′ t = z for given z is
uniquely solvable,
(iii) �′ is right (left) distributive over ⊕′, i.e.,

(x⊕′ y)�′ z = (x�′ z)⊕′ (y �′ z)(
z �′ (x⊕′ y) = (z �′ x)⊕′ (z �′ y)

)
.

Now, the basis for the pseudo-superposition
principle presented in this paper are gener-
ated pseudo-operations with three parame-
ters. Operations in question belong to the
special class of generalized generated pseudo-
operations firstly introduced in [31] and than
extended to the three parameters case in [32].

Definition 2 Let g : [a, b] → [0,+∞] be a
strictly monotone bijection and let ε1, ε2 and
δ be arbitrary but fixed positive real numbers.
The generated pseudo-operations with three
parameters are

u⊕′ v = g−1(ε1g(u) + ε2g(v)) (1)

and
u�′ v = g−1(gδ(u)g(v)) (2)

Further on by ⊕′ and �′ operations (1) and
(2) will be denoted.

It should be stressed that operations given by
the previous definition (as well as operations
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introduced in [31]) need not be commutative
nor associative. Therefore, it is necessary to
define pseudo-sum of n elements αi ∈ [a, b],
i ∈ {1, 2, . . . n} :
n⊕
i=1

αi =
(
. . .
((
α1 ⊕′ α2

)⊕′ α3

)⊕′ . . .)⊕′ αn.
Remark 3 Operations (1) and (2) are gen-
eralization of pseudo-operations from the sec-
ond class of semirings, i.e., of the strict op-
erations given by the continuous generator
g : [a, b]→ [0,+∞] in the following manner

x⊕ y = g−1(g(x) + g(y)) (3)

and
x� y = g−1(g(x)g(y)). (4)

This representation of strict pseudo-
operations is based on Aczél’s representation
theorem from [1].

Operations (3) and (4) are the base for g-
calculus (see [17, 20, 24, 25, 28]).

Remark 4 (i) Pseudo-analysis has been
successfully applied on finding weak so-
lutions of the Cauchy problem for the
Hamilton-Jacobi equation, i.e., for

∂u

∂t
+H

(
∂u

∂x

)
= 0, u(x, 0) = u0(x),

(5)
where x ∈ Rn, and the function H :
Rn → R is convex (and continuous)
(see [15, 19, 26, 27, 28]). For an arbi-
trary function u0(x) bounded from be-
low, the weak pseudo-solution of the
Cauchy problem (5) is

(Rtu0) (x) = h ? Clu0(x)

where h(x) = tL⊕(H)
(
x
t

)
for fixed

t, L⊕ is a pseudo-Laplace transform,
Clk(x) = sup {ψ(x)|ψ ∈ C(Rn), ψ ≤ k}
and ? is a pseudo-convolution, all based
on the semiring ((−∞,+∞],min,+) (see
[26, 27, 29, 30]).

(ii) Application of the g-calculus in the field
of nonlinear PDE can be illustrated
through the Burgers equation

∂u

∂t
+

1
2

(
∂u

∂x

)2

− c

2
∂2u

∂x2
= 0, (6)

u(x, 0) = u0(x), where x ∈ R, t > 0 and
c is given positive constant ([18, 27, 28]).
If for the generating function is taken
function g(u) = e−u/c, corresponding
pseudo-operations are

u⊕ v = −c ln
(
e−u/c + e−v/c

)
(7)

and
u� v = u+ v, (8)

and the pseudo-integral for this particu-
lar choice of pseudo-operations is of the
form∫ ⊕

f(x)dx = −c ln
(∫

e−f(x)/c dx

)
.

Now, a solution of the given initial prob-
lem is

u(x, t)

=
c

2
ln (2πct)�

∫ ⊕ (x− s)2
2t

� u0(s) ds.

The pseudo-linear superposition princi-
ple based on the operations (7) and (8)
holds (see [31]). Additionally, pseudo-
linear superposition principle based on
operations (1) and (2) has been investi-
gated in [32].

3 Pseudo-linear superposition
principle based on ⊕′ and �′

Let us consider the homogeneous Monge-
Ampère equation

uxxutt = u2
xt, (9)

where u = u(x, t) is a function of two real
variables with values in [a, b],

uxx =
∂2u

∂x2
, utt =

∂2u

∂t2
and uxt =

∂2u

∂x∂t
.

It is possible to observe two directions for this
investigation. The first one considers the fam-
ily of all solutions of the equation (9), denoted
with F . For this direction a restriction on the
generator g has to be imposed. On the other
hand, the second direction is centered on the
subclass of F of the following form

F1 = {u | u = ϕ(x+ t)} ,
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where ϕ is some real function with values in
[a, b] from the class C2. In this case, restric-
tions for the generator g will be avoided.

For this whole section let us suppose that gen-
erator g is, additionally, a function from the
class C2([a, b]).

3.1 Pseudo-linear superposition
principle for the class F

Theorem 5 Let u = u(x, t) be a solution of
the equation (9) and let g : [a, b]→ [0,+∞] be
a generating function for (2) such that

gδ(α) · g′′ (α�′ u)
(g′ (α�′ u))2

=
g′′(u)

(g′(u))2
(10)

holds for a real parameter α ∈ [a, b]. Then,
α�′ u is a solution of (9).

Proof. Let us assume that u is a solution of
(9), i.e., uxxutt = u2

xt. Now, after calculating
partial derivatives, we have(

α�′ u)
xx

(
α�′ u)

tt
− ((α�′ u)

xt

)2 =

g2δ(α)g′(u)
(g′ (α�′ u))2

(
uxxu

2
t + uttu

2
x − 2uxutuxt

)
Gαu ,

(11)
where

Gαu =

(
g′′(u)− gδ(α) (g′(u))2 g′′ (α�′ u)

(g′ (α�′ u))2

)
.

Expression (11) is equal to 0, i.e., α �′ u is a
solution of the equation (9) for α ∈ [a, b], if
(10) holds for the generating function g. �
For the class F , i.e., for the class of all so-
lutions of (9), pseudo-superposition principle
based on⊕′ is restricted to the following corol-
lary.

Corollary 6 Let (10) holds for the generator
g. If u = u(x, t) is a solution of the equation
(9), then, for all n ∈ N, u⊕′ u⊕′ . . .⊕′ u︸ ︷︷ ︸

n

is a

solution of (9).

Proof. Since for all n ∈ N we have

u⊕′ u⊕′ . . .⊕′ u︸ ︷︷ ︸
n

= g−1
(
E(n)1/δ

)
�′ u,

where

E(n) = εn−1
1 + ε2

n−2∑
i=0

εi1,

this claim follows directly from Theorem 5. �

Remark 7 For g : [a, b] → [0,+∞] be-
ing a strictly increasing function from the
class C2([a, b]), by reducing (10) to the classi-
cal Cauchy functional equation, the following
conclusion can be obtained: g is a solution of
the equation (10) if and only if it is of the
form

g(z) = eAz+B, while A > 0 and B ∈ R,

or

g(z) = (Az+B)p, while A, p > 0 and B ∈ R.

Similar conclusion can be obtained for a
strictly decreasing generator.

3.2 Pseudo-linear superposition
principle for the subclass F1

If we consider the subclass F1, complete
pseudo-linear superposition principle is ob-
tained, i.e., no restrictions for generator g are
requested.

Theorem 8 Let u be a solutions of (9) from
F1, let �′ be a pseudo-multiplication of the
form (2) given by some generator g and let
α ∈ [a, b]. Then, α�′ u ∈ F1.

Proof. Since u is a solutions from F1, we
have ux = ut and uxx = uxt = utt, and the
claim follows directly from (11). �

Theorem 9 Let u and v be solutions of (9)
from F1, let ⊕′ and �′ be pseudo-operations
(1) and (2) given by some generator g and let
α ∈ [a, b]. Then

a) u⊕′ v ∈ F1,

b) u�′ α ∈ F1.

Proof. a) Let u and v be a solutions of
the equation (9) from F1 and let u ⊕′ v =
g−1 (ε1g(v) + ε2g(u)) . Since u and v are not
just solutions, but solutions from F1, which
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insures that u(x, t) = ϕ1(x+ t) and u(x, t) =
ϕ2(x + t) for some real functions ϕ1 and ϕ2

from the class C2 with values in [a, b], u⊕′ v
can also be represented by a real function from
the class C2 with values in [a, b] that contains
ϕ1, ϕ2 and g. Therefore, u⊕′ v ∈ F1.

b) Let u be a solution from F1, α some
real parameter from [a, b] and u �′ α =
g−1

(
gδ(u)g(α)

)
. As in the previous case, it is

easily obtained that u�′α can be represented
by a real function from the class C2 with val-
ues in [a, b], which insures u ⊕′ v ∈ F1. Now,
this function consists of ϕ and g, where for ϕ
holds u(x, t) = ϕ(x+ t).

Since assumption u ∈ F1 insures ux = ut and
uxx = uxt = utt, the fact that u �′ α is a
solution also follows from(

u�′ α)
xx

(
u�′ α)

tt
− ((u�′ α)

xt

)2 =

Dα
u

(
u2
xutt + u2

tuxx − 2uxutuxt
)
,

where

Dα
u =

g2(α)δ2g2δ−4(u)g′(u)
(g′ (u�′ α))2

·
g(u)(g′(u))2(δ − 1) + g′′(u)g2(u)

−g(α)δgδ+1(u)(g′(u))2g′′ (u�′ α)
(g′ (u�′ α))2

.
�

Corollary 10 If u and v are solutions of the
equation (9) from the class F1 and α1 and α2

are parameters from [a, b], then pseudo-linear
combinations

α1 �′ u⊕′ α2 �′ v and u�′ α1 ⊕′ v �′ α2

are solutions of the equation (9) that belong
to the class F1.

Proof. Follows directly from the previous
theorem. �

4 Conclusion

Presented approach was based on the general-
ized generated pseudo-operations with three

parameters given by some generating func-
tion. For the family of all solutions of the
equation in question, we obtained partial
pseudo-linear superposition principle for some
specific generators. However, for solutions
from the subfamily F1, the pseudo-linear su-
perposition principle holds regardless to the
choice of the generating function.
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