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1 Introduction

The notion of a probabilistic metric space was
introduced by Menger [6] and since then the
theory of probabilistic metric spaces has been
developed in many directions [5]. The idea of
Menger was to use distribution functions in-
stead of nonnegative real numbers as values of
the metric. The notion of a probabilistic met-
ric space corresponds to the situations when
we do not know exactly the distance between
two points, but only probabilities of possible
values of this distance.

In 1972, the notion of q- contraction mappings
on probabilistic metric spaces was introduced
by V.M. Sehgal and A.T. Bharucha-Reid [7].

Definition 1 [7] Let (S,F) be a probabilistic
metric spaces. A mapping f : S → S is a q-
contraction mapping on (S,F) if and only if
there is an q ∈ (0, 1) such that

Ffp1,fp2(s) ≥ Fp1,p2(
s

q
) (1)

for every p1, p2 ∈ S and s > 0.

They proved that every such a mapping on a
complete Menger space (S,F , TM ) has unique
fixed point, where TM is the t-norm min.
Subsequently, H. Sherwood [8] showed that
for a very large class of t-norms it is possi-
ble to construct complete Menger spaces to-
gether with contraction mappings which have
no fixed point. In [3] a lot of generalizations
of Sehgal and Bharucha-Reid fixed point the-
orem are given.

In this paper using the theory of countable
extension of t-norms [3] we present two new
classes of probabilistic contraction in proba-
bilistic metric spaces and proved a fixed point
theorems.

2 Preliminaries

Definition 2 A mapping T : [0, 1] × [0, 1] →
[0, 1] is called a triangular norm (a t-norm) if
the following conditions are satisfied:

T (a, 1) = a for every a ∈ [0, 1] ;

T (a, b) = T (b, a) for every a, b ∈ [0, 1];

a ≥ b, c ≥ d⇒ T (a, c) ≥ T (b, d) (a, b, c, d ∈
[0, 1]);

T (a, T (b, c)) = T (T (a, b), c) (a, b, c ∈ [0, 1]).

Definition 3 If T is a t-norm, then its dual
t-conorm S : [0, 1]2 → [0, 1] is given by

S(x, y) = 1− T (1− x, 1− y).
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The following are the four basic t-norms to-
gether with their dual t-conorm:

TM (x, y) = min(x, y), SM (x, y) = max(x, y)
TP (x, y) = x · y, SP (x, y) = x+ y − xy
TL(x, y) = max(x+ y − 1, 0)
SL(x, y) = min(x+ y, 1)

TD(x, y) =
{

min(x, y) if max(x, y) = 1,
0 otherwise

SD(x, y) =
{

max(x, y) if min(x, y) = 0,
1 otherwise

Definition 4 (i) A t-norm T is said to be
strictly monotone if T (x, y) < T (x, z) when-
ever x ∈ (0, 1) and y < z.
(ii) A t-norm T is called strict if it is contin-
uous and strictly monotone.
(iii) A continuous t-norm T is called
Archimedean if T (x, x) < x, for all x ∈
(0, 1).

Theorem 1 A function T : [0, 1]2 → [0, 1]
is a continuous Archimedean t-norm if and
only if there exists a continuous, strictly
decreasing function t:[0, 1] → [0,+∞] such
that for all x, y ∈ [0, 1]

T (x, y) =t−1(min(t(x)+t(y),t(0))).

The function t is then called an additive
generator of T ; it is uniquely determined by
T up to a positive multiplicative constant.

Let ∆+ be the set of all distribution functions
F such that F (0) = 0 (F is a nondecreas-
ing, left continuous mapping from R into [0, 1]
such that sup

x∈R
F (x) = 1).

The ordered pair (S,F) is said to be a prob-
abilistic metric space if S is a nonempty set
and F : S×S → ∆+ (F(p, q) written by Fp,q
for every (p, q) ∈ S×S) satisfies the following
conditions:

1. Fu,v(x) = 1 for every x > 0 ⇒ u =
v (u, v ∈ S).

2. Fu,v = Fv,u for every u, v ∈ S.
3. Fu,v(x) = 1 and Fv,w(y) = 1 ⇒ Fu,w(x +
y) = 1 for u, v, w ∈ S and x, y ∈ R+.

A Menger space (see [5]) is an ordered triple
(S,F , T ), where (S,F) is a probabilistic met-
ric space, T is a triangular norm (abbreviated
t -norm) and the following inequality holds

Fu,v(x+ y) ≥ T (Fu,w(x), Fw,v(y))

for every u, v, w ∈ S and every x > 0, y > 0.

Definition 5 [1] (S, F , T ) is called a non-
Archimedean Menger probabilistic metric
space (shortly, a N.A. Menger PM-space) if
(S, F , T ) is a Menger PM-space and T satis-
fies the following condition: for all x, y, z ∈ S
and t1, t2 ≥ 0,

Fx,z(max{t1, t2}) ≥ T (Fx,y(t1), Fy,z(t2)).

Ultrametric spaces belongs to the class of
N.A. Menger PM-spaces.

Definition 6 Let M 6= ∅ and d : M ×M →
[0, ∞) such that the following conditions are
satisfied:

1. d(x, y) = 0⇔ x = y

2. d(x, y) = d(y, x) for all x, y ∈M
3. d(x, z) ≤ max{d(x, y), d(y, z)} for all
x, y, z ∈M.

Then (M, d) is an ultrametric space.

Example 1 Let (M, d) be a separable ul-
trametric space and (Ω, A, P ) a probability
space. Let S be the set of all the equivalence
classes of measurable mappings X̂ : Ω → M .
If X̂, Ŷ ∈ S and x ∈ R let FX̂, Ŷ (x) be define
in the following way

FX̂, Ŷ (x) = P ({ω; ω ∈ Ω, d(X̂(ω), Ŷ (ω)) < x}).

Then (S, F , TL) is a N.A. Menger space.

We shall prove that for every X̂, Ŷ , Ẑ and
every x, y ∈ R the inequality holds

FX̂, Ŷ (max(x, y)) ≥ TL(FX̂, Ŷ (x), FŶ , Ẑ(y)).
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In order to prove the previous inequality we
shall prove that

FX̂, Ŷ (max(x, y)) ≥ FX̂, Ŷ (x) + FŶ , Ẑ(y)− 1.

Let A = {ω : ω ∈ Ω, d(X̂(ω), Ŷ (ω)) < x}
and B = {ω : ω ∈ Ω, d(Ŷ (ω), Ẑ(ω)) < y}.
If C = {ω : ω ∈ Ω, d(X̂(ω), Ẑ(ω)) <
max(x, y)} then C ⊃ A ∩ B and

P (C) ≥ P (A ∩ B)
= P (A) + P (B)− P (A ∪ B)
≥ max(P (A) + P (B)− 1, 0)
= TL(P (A), P (B)).

Hence

P (C) = FX̂, Ẑ(max(x, y))
≥ TL(FX̂, Ŷ (x), FŶ , Ẑ(y)).

The (ε, λ)-topology in S is introduced
by the family of neighbourhoods U =
{Uv(ε, λ)}(v,ε,λ)∈S×R+×(0,1), where

Uv(ε, λ) = {u; Fu,v(ε) > 1− λ}.

If a t-norm T is such that sup
x<1

T (x, x) = 1,

then S is in the (ε, λ) topology a metrizable
topological space.

Let (S, F) be a probabilistic metric space. A
sequence {xn}n∈N in S is a Cauchy sequence
if and only if for every ε > 0 and λ ∈ (0, 1)
there exists n0(ε, λ) ∈ N such that for every
n ≥ n0(ε, λ) and every p ∈ N

Fxn+p,xn(ε) > 1− λ.

If a probabilistic metric space (S, F) is such
that every Cauchy sequence {xn}n∈N in S con-
verges in S then (S, F) is a complete space.

In [2] the following class of t-norms is in-
troduced, which is useful in the fixed point
theory in probabilistic metric spaces.

Let T be a t-norm and Tn : [0, 1] →
[0, 1] (n ∈ N) is defined in the following way:

T1(x) = T (x, x), Tn+1(x) = T (Tn(x), x)

where x ∈ [0, 1]).

We say that t-norm T is of the H-type if T
is continuous and the family {Tn(x)}n∈N is
equicontinuous at x = 1.

A trivial example of t-norms of H-type
is T = TM . A nontrivial example is given in
the paper [2].

Each t-norm T can be extended (by associa-
tivity) (see [4]) in a unique way to an n-ary
operation taking for (x1, . . . , xn) ∈ [0, 1]n the
values

T0
i=1xi = 1, Tn

i=1xi = T (Tn−1
i=1 xi, xn).

We can extend T to a countable infinitary op-
eration taking for any sequence (xn)n∈N from
[0, 1] that [3]:

T∞i=1xi = lim
n→∞Tn

i=1xi.

Limit of right side exists since the sequence
(Tn

i=1xi)n∈N is nonincreasing and bounded
from below.

In the fixed point theory it is of interest to
investigate the classes of t-norms T and se-
quences (xn)n∈N from the interval [0, 1] such
that lim

n→∞xn = 1, and

lim
n→∞T∞i=nxi = T∞i=1xn+i = 1. (2)

For some classes of t-norms sufficient condi-
tions for (2) are given in [3].

Example 1. The Dombi family of t-norms
(TDλ )λ∈[0,∞] is defined by

TDλ (x, y) =


TD(x, y), λ = 0
TM (x, y), λ =∞

1

1+

((
1−x
x

)λ
+

(
1−y
y

)λ)1/λ , λ > 0.

(ii) The Aczél-Alsina family of t-norms
(TAAλ )λ∈[0,∞] is defined by

TAAλ (x, y) =


TD(x, y), λ = 0
TM (x, y), λ =∞
e−((− log x)λ+(− log y)λ)1/λ , λ > 0.
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(iii) Sugeno-Weber family of t-norms
(TSWλ )λ∈[−1,∞] is defined by

TSWλ (x, y) =


TD(x, y), λ = −1
TP (x, y), λ =∞
max(0, x+y−1+λxy

1+λ ), λ > −1.

In [3] the following results are obtained:

(a) If (TDλ )λ∈(0,∞) is the Dombi family of t-
norms and (xn)n∈N be a sequence of elements
from (0, 1] such that lim

n→∞xn = 1 then we
have the following equivalence:
∞∑
i=1

(1− xi)λ <∞⇐⇒ lim
n→∞(TDλ )∞i=nxi = 1.

(3)

(b) Equivalence (3) holds also for the family
(TAAλ )λ∈(0,∞) i.e.

∞∑
i=1

(1− xi)λ <∞⇐⇒ lim
n→∞(TAAλ )∞i=nxi = 1.

(4)

(c) If (TSWλ )λ∈(−1,∞] is the Sugeno-Weber
family of t-norms and (xn)n∈N a sequence of
elements from (0, 1] such that lim

n→∞xn = 1
then we have the following equivalence:
∞∑
i=1

(1− xi) <∞⇐⇒ lim
n→∞(TSWλ )∞i=nxi = 1.

(5)

Proposition 1 Let (xn)n∈N be a sequence of
numbers from [0, 1] such that lim

n→∞xn = 1 and
t-norm T is of H-type. Then

lim
n→∞T∞i=nxi = lim

n→∞T∞i=nxn+i = 1.

3 Decomposable measures

Let A be a σ-algebra of subsets of a given
set Ω. A classical measure is a set function

m : A → [0, ∞] such that m(∅) = 0 and

m(
∞⋃
i=1

Ai) =
∞∑
i=1

m(Ai)

for every sequence (Ai)i∈N of pairwise disjoint
set from A.

Definition 7 Let S be a t-conorm. A S-
decomposable measure m is a set function
m : A → [0, 1] such that m(∅) = 0 and

m(A ∪B) = S(m(A), m(B))

for every A, B ∈ A and A ∩B = ∅.

Definition 8 Let S be a left continuous t-
conorm. A set function m : A → [0, 1] is
σ-S-decomposable measure if m(∅) = 0 and

m(
∞⋃
i=1

Ai) = S∞i=1m(Ai)

for every sequence (Ai)i∈N from A whose ele-
ments are pairwise disjoint set.

A measure m is of (NSA)-type if and only if
s◦m is a finite additive measure, where s is an
additive generator of the t-conorm S, which
is continuous, non-strict, and Archimedean
and with respect to which m is decomposable
(s(1) = 1).

Proposition 2 [3] Let (Ω, A, m) be a mea-
sure space, where m is a continuous S-
decomposable measure of (NSA)-type with
monotone increasing generator s. Then
(S, F , T ) is a Menger space, where F and
t-norm T are given in the following way
(F(X̂, Ŷ ) = FX̂, Ŷ ):

FX̂, Ŷ (u) = m{ω : ω ∈ Ω, d(X(ω), Y (ω)) < u}
= m{d(X, Y ) < u}

(for every X̂, Ŷ ∈ S, u ∈ R),

T (x, y) =s−1(max(0, s(x)+s(y) − 1)) for
every x, y ∈ [0, 1].
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4 The fixed point theorems

Definition 9 [3] Let (S, F) be a probabilistic
metric space. A mapping f : S → S is said
to be a q-contraction of (ε, λ)-type, where q ∈
(0, 1), if for every p1, p2 ∈ S, every ε > 0
and every λ ∈ (0, 1) the following implication
holds:

Fp1,p2(ε) > 1− λ⇒ Ffp1,fp2(qε) > 1− qλ.

Definition 10 Let (S, F) be a probabilistic
metric space. A mapping f : S → S is said
to be a (h, q)-contraction of (ε, λ)-type, where
h : (0, 1) → (0, 1), q ∈ (0, 1), if for every
p1, p2 ∈ S, every ε > 0 and every λ ∈ (0, 1)
the following implication holds:

Fp1,p2(ε) > h(λ) (6)

⇒ Ffp1,fp2(qε) > h(qλ).

Every q-contraction of (ε, λ)-type is a (h, q)-
contraction of (ε, λ)-type if h(λ) = 1− λ.

Theorem 2 Let (S, F , T ) be a complete
Menger space, h : (0, 1]→ (0, 1], lim

t→0+
h(t) =

1 and lim
t→1

h(t) = 0, h is nonincreasing func-

tion and f : S → S is a (h, q)-contraction of
(ε, λ)-type. If t-norm T satisfies the following
condition:

lim
n→∞T∞i=nh(qi) = 1 (7)

then there exists unique fixed point x of the
mapping f and x = lim

n→∞ f
np for every p ∈ S.

Proof: Let p ∈ S and δ > 0 be such that
Fp,fp(δ) > 0. Since Fp,fp ∈ ∆+ such a δ ex-
ists. Let λ1 ∈ (0, 1) be such that Fp,fp(δ) >
h(λ1). From (6) we have that

Ffp,f2p(qδ) > h(qλ1)

and generally, for every n ∈ N

Ffnp,fn+1p(q
nδ) > h(qnλ1). (8)

We prove that (fnp)n∈N is a Cauchy sequence,
i.e., that for every ε > 0 and λ ∈ (0, 1) there
exists n0(ε, λ) ∈ N such that

Ffnp,fn+mp > 1− λ for every n ≥ n0(ε, λ)

and every m ∈ N.

Let ε > 0 and λ ∈ (0, 1) be given. Since

qnδ < 1 the series
∞∑
n=1

qnδ converges and so

there exists n0 = n0(ε, λ) ∈ N such that
∞∑

n=n0

qnδ < ε. Then for every n ≥ n0

Ffnp,fn+mp(ε) ≥ Ffnp,fn+mp(
∞∑

n=n0

qnδ)

≥ Ffnp,fn+mp(
n+m−1∑
i=n

qiδ)

≥ T (T (. . . T︸ ︷︷ ︸
(m−1)−times

(Ffnp,fn+1p(q
nδ),

Ffn+1p,fn+2p(q
n+1p), . . .

. . . Ffn+m−1p,fn+mp(q
n+m−1δ)).

Let n1 = n1(λ) ∈ N be such that

T∞i=n1
h(qi) > 1− λ.

Since (7) holds, such a number n1 exists.
Now, for every n ≥ max(n0, n1) and every
m ∈ N

Ffnp,fn+mp(ε) ≥ Tn+m−1
i=n h(qiλ1)

≥ Tn+m−1
i=n h(qi)

≥ T∞i=nh(qi)
> 1− λ.

The mapping f is uniformly continuous. In-
deed, let µ > 0 and ζ ∈ (0, 1) be given. Since
lim
t→0+

h(t) = 1 there exists η ∈ (0, 1) such that

h(η) > 1 − ζ. Then for ε > 0 and λ ∈ (0, 1)
such that ε = µ

q , λ = η
q we have the implica-

tion

Fp1,p2(ε) > h(λ)⇒

Ffp1,fp2(qε) = Ffp1,fp2(µ) > h(qλ) = h(η) >
1− ζ.
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So

(p1, p2) ∈ N(
µ

q
, 1−h(

η

q
))⇒ (fp1, fp2) ∈ N(µ, ζ)

where N(ε, λ) = {(u, v) : u, v ∈ S, Fu,v(ε) >
1− λ}.

The relation x = lim
n→∞ f

np implies that

fx = f( lim
n→∞ f

np) = lim
n→∞ f

np = x.

It remains to prove the uniqueness of the fixed
point x. Suppose that y = fy, y 6= x. Then
there exists ε > 0 and λ ∈ (0, 1) such that
Fx,y(ε) > h(λ). Then we have Ffx,fy(qε) >
h(qλ) and similarly

Fx,y(qnε) = Ffnx,fny(qnε) > h(qnλ)

for every n ∈ N.

Let u > 0 and η ∈ (0, 1) be given. If n0 ∈ N
is such that qn0ε < u and h(qn0λ) > 1 − η
then

Fx,y(u) ≥ Fx,y(qn0ε) > h(qn0ε)
> 1− η.

Therefore, Fx,y(u) = 1, for every u > 0, which
contradicts to x 6= y.

Corollary 1 Let (S, F , T ) be a complete
Menger space and f : S → S is a q-
contraction of (ε, λ)-type. If t-norm T sat-
isfies the following condition:

lim
n→∞T∞i=n(1− qi) = 1 (9)

then there exists unique fixed point for the
mapping f and x = lim

n→∞ f
np for every p ∈ S.

Proof: Let h(x) = 1− x. Then all the condi-
tions of previous theorem are satisfied.

Corollary 2 Let (S, F , T ) be a complete
Menger space, h : (0, 1]→ (0, 1], lim

t→0+
h(t) =

1, lim
t→1

h(t) = 0, h is nonincreasing function

and f : S → S is a (h, q)-contraction of
(ε, λ)-type. If t-norm T is a t-norm of H-
type then there exists unique fixed point for
the mapping f and x = lim

n→∞ f
np for every

p ∈ S.

Proof: By Proposition 1 all the conditions of
the Theorem 2 are satisfied.

Corollary 3 Let (S, F , TDλ ) for some λ > 0
be a complete Menger space, h : (0, 1] →
(0, 1], lim

t→0+
h(t) = 1, lim

t→1
h(t) = 0, h is non-

increasing function and f : S → S is a (h, q)-

contraction of (ε, λ)-type. If
∞∑
i=1

(1−h(qi))λ <

∞ then there exists unique fixed point for the
mapping f and x = lim

n→∞ f
np for every p ∈ S.

Proof. From equivalence (3) we have

∞∑
i=1

(1−h(qi))λ <∞⇐⇒ lim
n→∞(TDλ )∞i=nh(qi) =

1.

Corollary 4 Let (S, F , TAAλ ) for some λ >
0 be a complete Menger space, h : (0, 1] →
(0, 1], lim

t→0+
h(t) = 1, lim

t→1
h(t) = 0, h is non-

increasing function and f : S → S is a (h, q)-

contraction of (ε, λ)-type. If
∞∑
i=1

(1−h(qi))λ <

∞ then there exists unique fixed point for the
mapping f and x = lim

n→∞ f
np for every p ∈ S.

Proof. From equivalence (4) we have

∞∑
i=1

(1− h(qi))λ <∞⇐⇒

lim
n→∞(TAAλ )∞i=nh(qi) = 1.

Corollary 5 Let (S, F , TSWλ ) for some λ >
−1 be a complete Menger space, h : (0, 1] →
(0, 1], lim

t→0+
h(t) = 1, lim

t→1
h(t) = 0, h is non-

increasing function and f : S → S is a (h, q)-

contraction of (ε, λ)-type. If
∞∑
i=1

(1 − h(qi)) <
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∞ then there exists unique fixed point for the
mapping f and x = lim

n→∞ f
np for every p ∈ S.

Proof. From equivalence (5) we have

∞∑
i=1

(1− h(qi)) <∞⇐⇒

lim
n→∞(TSWλ )∞i=nh(qi) = 1.

Corollary 6 Let (Ω,A,m) be a measure
space, where m is a continuous S decompos-
able measure of (NSA)-type, s is a monotone
increasing additive generator of S, (M, d) a
complete separable metric space and f : Ω ×
S →M a random operator such that for some
q ∈ (0, 1) and every measurable mappings
X, Y : Ω→M

(∀u > 0)(∀λ ∈ (0, 1))(m{ω;ω ∈ Ω,
d(X(ω), Y (Ω)) < u}) > h(λ)⇒
m({ω;ω ∈ Ω, d((f̂X), (f̂Y )) < qu}) > h(qλ).

If h : (0, 1] → (0, 1], such that lim
t→0+

h(t) = 1,

lim
t→1

h(t) = 0 and t-norm T defined by

T (x, y) =s−1(max(0,s(x)+s(y) − 1)), x, y ∈
[0, 1],

satisfies condition

lim
n→∞T∞i=nh(qi) = 1 (10)

then there exists a random fixed point of the
operator f .

Definition 11 A function ϕ : R→ R is said
to satisfy the condition (A) if it satisfies the
following conditions:

(i) ϕ(t) = 0 if and only if t = 0

(ii) lim
t→∞ϕ(t) =∞

(iii) ϕ is left continuous in (0, ∞)

(iv) ϕ is continuous at 0.

Definition 12 Let (S, F , T ) be a Menger
space. A mapping f : S → S is said to be
a ϕ-probabilistic contraction if

Ffx,fy(ϕ(t)) ≥ Fx,y(ϕ(
t

c
)) (11)

where 0 < c < 1, x, y ∈ S and t > 0 and
function ϕ satisfies the condition (A).

Theorem 3 Let (S, F , T ) be a complete
N.A. Menger PM-space with continuous t-
norm T . Let f : S → S be continuous
and ϕ-probabilistic contraction. If there ex-
ists x0 ∈ S and x1 = fx0 such that t-norm T
satisfies condition lim

n→∞T∞i=nFx0,x1ϕ( r
ci

) = 1,
for every r > 0, 0 < c < 1 then there exists
unique fixed point z of the mapping f .

Proof: In view of the condition (i) and (iv)
in Definition 11, for all s > 0 we can find a
positive number r such that s > ϕ(r). Let
x0 ∈ S and xn = fxn−1, n = 1, 2, . . .

Then

Fxn,xn+1(s) > Fxn,xn+1(ϕ(r))
= Ffxn−1,fxn(ϕ(r))

≥ Fxn−1,xn(ϕ(
r

c
))

= Ffxn−2,fxn−1(ϕ(
r

c
))

≥ Fxn−2,xn−1(ϕ(
r

c2
))

. . .

≥ Fx0,x1(ϕ(
r

cn
))

It remains to be proved that the sequence
{xn}n∈N is a Cauchy sequence.

Fxn+1,xn+m+1(s) > Fxn+1,xn+m+1(ϕ(r))
= Ffxn,fxn+m(ϕ(r))
≥ T (T (. . . T︸ ︷︷ ︸

m−times
(Ffxn,fxn+1(ϕ(r)),

. . . , Ffxn+m,fxn+m+1(ϕ(r)))
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≥ T (T (. . . T︸ ︷︷ ︸
m−times

(Fx0,x1(ϕ(
r

cn
),

. . . , Fx0,x1(ϕ(
r

cn+m
)

= Tn+m
i=n Fx0,x1ϕ(

r

ci
)

≥ T∞i=nFx0,x1ϕ(
r

ci
)

So, the sequence {xn}n∈N is a Cauchy se-
quence, and since the space S is complete
there exists z ∈ S such that

lim
n→∞xn = z = lim

n→∞ fxn−1 = fz.

Next we show that the fixed point is unique.
Suppose that there exists w such that fw = w
and w 6= z. From the property of ϕ it follows
that for a given ε > 0 we can find ε1 > 0 such
that ε > ϕ(ε1) > 0. Then

Fw,z(ε) = Ffw,fz(ε)
≥ Ffw,fz(ϕ(ε1))

≥ Fw,z(ϕ(
ε1
c

))

= Ffw,fz(ϕ(
ε1
c

))

≥ Fw,z(ϕ(
ε1
c2

))
. . .

≥ Fw,z(ϕ(
ε1
cn

))

Letting n → ∞ in the above inequality and
we obtain z = w. This completes the proof.

Using Proposition 2 and Theorem 3 a random
fixed point theorem can be proved similarly as
in Corollary 6.
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