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Abstract

The aim of the paper is to propose
a linearized entropy of a fuzzy mea-
sure. This entropy is used as an op-
timization functional for the identifi-
cation of a fuzzy measure from learn-
ing data. The problem of identifying
a fuzzy measure can thus be trans-
formed into a linear program while
keeping the good properties of the
entropy.

Keywords: Choquet integral, fuzzy
measure, entropy, parameter identi-
fication.

1 Introduction

The Choquet integral appears as a useful
aggregation function in many fields such as
multi-criteria decision aid and data mining.
An important practical problem is the iden-
tification of the parameters of the Choquet
integral [1, 9]. Classically, the identification
of these parameters is performed from learn-
ing data. This preferential information can
classically be of three types: a comparison of
two profiles, an overall score associated to a
profile, or less intuitive preferential informa-
tion related to the importance or interaction
of the attributes. The information of the sec-
ond and the third types are not always easy
to obtain from a decision maker, especially
in multi-criteria decision aid. Moreover, as
argued in [2], the main information obtained
from empirical data of the second type is a

requirement stating that the data set shall
preserve the order deduced from the overall
scores, which corresponds to the first type of
information. We focus thus on the first type
of information in this paper.

There exist several learning methods based
on the first type of preferential information
[14, 8]. Yet, in all cases, the preferential in-
formation is considered as constraints to be
satisfied. Any method consists thus in deter-
mining the value of the parameters that fulfills
previous constraints and that maximizes some
functional. In [14], the functional to be max-
imized is the difference between the overall
scores of the two profiles in each pair belong-
ing to the learning data. In [8], the functional
is the entropy or the variance of the param-
eters. The main asset of the first method is
that it leads to linear programming, which can
be easily solved. The second method yields
non-linear optimization. However, the maxi-
mization of the entropy or the variance tends
to find the value of the parameters that is the
less specific, which is very attractive in the
case of scarse empirical data. The goal of this
paper is to define a functional that has the
good properties of the entropy but still leads
to linear programming.

The prerequisites on the Choquet integral are
given in Section 2. Two models are described:
the general Choquet integral and the two-
additive Choquet integral. Section 3 defines
the identification problem and shows the clas-
sical approaches to solve it. A linearized en-
tropy is proposed in Section 4 for the gen-
eral Choquet integral. The case of the two-

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1476–1483

Torremolinos (Málaga), June 22–27, 2008



additive Choquet integral is dealt with in Sec-
tion 5.

2 Background on fuzzy measures
and Choquet integral

We denote by N = {1, . . . , n} the set of cri-
teria or attributes. The alternatives are sup-
posed to be described by a vector in [0, 1]n,
where the ith coordinate depicts the satisfac-
tion degree w.r.t. attribute i. Considering
two alternatives x, y ∈ [0, 1]n and A ⊆ N ,
we use the notation (xA, yN\A) to denote the
compound alternative z ∈ [0, 1]n such that
zi = xi if i ∈ A and yi otherwise.

2.1 Fuzzy measures and Choquet
integral

The Choquet integral is a generalization of
the commonly used weighted sum. It is based
on the concept of fuzzy measures [16].

Definition 1 A fuzzy measure µ on N is a
function µ : 2N −→ [0, 1], satisfying the fol-
lowing axioms.

(i) µ(∅) = 0, µ(N) = 1.

(ii) A ⊆ B ⊆ N implies µ(A) ≤ µ(B).

We denote byM the set of fuzzy measures on
N . Additive measures are particular cases of
fuzzy measures when µ(A∪B) = µ(A)+µ(B)
for any pair of disjoint sets A,B. An addi-
tive measure µ is described by a probability
p: µ(A) =

∑
i∈A pi for A ⊆ N . The Möbius

transform m of a fuzzy measure µ is defined
by

m(A) :=
∑
B⊆A

(−1)|A|−|B|µ(B).

Definition 2 Let µ be a fuzzy measure on N .
The discrete Choquet integral of a vector x ∈
[0, 1]N with respect to µ is defined by

Cµ(x) =
n∑
i=1

xτ(i)

[
µ({τ(i), . . . , τ(n)})

− µ({τ(i+ 1), . . . , τ(n)})
]

where τ is a permutation satisfying xτ(1) ≤
· · · ≤ xτ(n).

The main drawback of the fuzzy measure is
that it contains much more parameters than
a simple weighted sum - namely 2n param-
eters for a fuzzy measure vs. n parameters
for a weighted sum. The use of sub-classes of
fuzzy measures containing much less than 2n

parameters is crutial in practice.

An interesting sub-class of fuzzy measures
are the so-called 2-additive fuzzy measures.
These are fuzzy measures for which the inter-
actions between more than two criteria van-
ish, or equivalently for which all Möbius coef-
ficients for coalitions of more than two criteria
are zero. The importance of criteria and the
interaction between pairs of criteria can be
modeled with 2-additive fuzzy measures. The
parameters of a 2-additive fuzzy measure are
the importances (between 0 and 1) of the cri-
teria and the interactions (between −1 and 1)
of the pairs of criteria. We denote by vµi the
importance of criterion i and Iµi,j the interac-
tion between the criteria i and j. The expres-
sion of the Choquet integral with respect to
a 2-additive fuzzy measure has the following
form :

C2
µ(x) =

∑
i∈N

vµi xi −
∑
{i,j}⊆N

Iµi,j
|xi − xj |

2
.

The importances of the criteria yield a
weighted sum whereas the interactions pro-
vide a non-linear expression proportional to
the distance between the values of the crite-
ria. The parameters vµ and Iµ must satisfy
the following constraints∑

i∈N
vµi = 1 ,

∀i ∈ N ∀ε1, . . . , εn ∈ {−1, 1}
vi +

1
2

∑
j∈N\{i}

εj × Ii,j ≥ 0

The set of two-additive fuzzy measures on N
is denoted by M2.

2.2 Interpretation of the fuzzy
measures

According to the following fundamental prop-
erty

Cµ(1A, 0N\A) = µ(A) (1)
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the parameter µ(A) corresponds to an alter-
native that is perfectly satisfactory on at-
tributes A and completely unsatisfactory on
the remaining criteria.

Concerning the 2-additive Choquet integral,
relation (1) is also true. Moreover, one has

C2
µ(1A, 0N\A) =

∑
i∈A

vµi −
1
2

∑
i∈A,j∈N\A

Iµi,j . (2)

One has

C2
µ(1i, 0.5N\i) = vµi +

∑
k∈N\i

vµk
2
− 1

2

∑
k∈N\i

Iµi,k

C2
µ(0i, 0.5N\i) =

∑
k∈N\i

vµk
2
− 1

2

∑
k∈N\i

Iµi,k

Therefore, C2
µ(1i, 0.5N\i) − C2

µ(0i, 0.5N\i) =
vµi . The importance index vµi corresponds
to the difference of global score between the
two profiles (1i, 0.5N\i) and (0i, 0.5N\i). The
importance of attribute i is thus the added-
value on the overall score when improving the
score on attribute i from 0 to 1, in the situa-
tion where the other attributes have the mean
score 0.5.

¿From relation (2), one has

C2
µ(1{i,j}, 0N\{i,j})− C2

µ(1i, 0N\i)

− C2
µ(1j , 0N\j) = Iµi,j

Hence the interaction index Iµi,j between at-
tribute i and j measures the difference be-
tween being good at both attributes i and j
together, and being good at attributes i and
j separately, in the situation where the other
attributes are very ill-satisfied.

3 Description of the identification
problem

3.1 Statement of the problem

The determination of the aggregation func-
tion is carried out through a learning phase
on the basis of some preferential information
(learning data). These data are composed of
a set

P := {(xk, yk) : k ∈ {1, . . . ,m}}

of pairs of profiles in [0, 1]n, where, for each
pair (xk, yk), the first profile xk is judged at
least as good as the second one yk by the de-
cision maker. When the decision maker pro-
vides these comparisons, he has no doubt on
them so that they must be considered as hard
constraints [14]. We are thus lead to consider-
ing the set of fuzzy measures that fulfill these
constraints:

M(P ) :=
{
µ ∈M : ∀k ∈ {1, . . . ,m}

Cµ(xk) ≥ Cµ(yk)
}
.

For the two-additive Choquet integral, one
obtains

M2(P ) :=
{
µ ∈M2 : ∀k ∈ {1, . . . ,m}

C2
µ(xk) ≥ C2

µ(yk)
}

The two sets M(P ) and M2(P ) are clearly
polytopes since all constraints on the fuzzy
measure are linear.

When the decision maker says that profile xk

is at least as good as yk, he probably means
that xk is significantly preferred to yk. It
seems then reasonable to try to maximize the
difference between the scores obtained by xk

and yk [14]

max ε under
ε ≥ 0
µ ∈M(P )
∀i ∈ {1, . . . ,m} , Cµ(xk) ≥ Cµ(yk) + ε

This problem is a linear problem. A simi-
lar problem can be obtained for two-additive
fuzzy measures.

3.2 Entropy of a fuzzy measure

We consider here the case when the prefer-
ential information is scarse. We make the
analogy with the management of uncertainty.
Consider a random experiment having n pos-
sible outcomes with probabilities p1, . . . , pn.
In order to appraise the average uncertainty
associated with the prediction of these out-
comes, or equivalently, the amount of infor-
mation received from the knowledge of which
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these outcomes occurred, several informa-
tion measures have been introduced. Among
them, the best known is probably the Shanon
entropy [15]

HS(p) :=
n∑
i=1

h(pi) ,

where h(u) = −u lnu with the convention
0 ln 0 := 0.

For assessing a probability distribution, the
maximum entropy principle is often used.
More precisely, in the case of partial knowl-
edge on the probabilities (this might be the
case when one knows the probability distribu-
tion on a coarser frame of discernment), the
probability distribution that is chosen is the
one that maximizes the entropy. A nice prop-
erty of this maximization is that one gets al-
ways a unique solution thanks to the convex-
ity of the entropy functional.

The problem we aim to solve here is quite
similar, since we want to determine the fuzzy
measure from preferential information that
does not fully specify it. The idea would thus
be to compute the fuzzy measure satisfying
to the information provided by the DM that
maximizes the entropy. One has then to de-
fine the notion of entropy for fuzzy measures.

There remains to define the notion of
entropy for fuzzy measures. Let Q(N)
denote the set of maximal chains of the
Hasse diagram

(
2N ,⊆). Recall that a

maximal chain in
(
2N ,⊆) is a sequence

∅, {τ(1)} , {τ(1), τ(2)} , . . . , {τ(1), . . . , τ(n)}
where τ is a permutation of N . On each
maximal chain, one can define the fol-
lowing probability distribution: pττ(i) =
µ({τ(i), . . . , τ(n)}) − µ({τ(i+ 1), . . . , τ(n)}).
The entropy of µ is then defined as the mean
value of the entropy of each maximal chain
[13] :

ĤS(µ) :=
1
n!

∑
τ

HS(pτ )

=
n∑
i=1

∑
A⊆N\{i}

γn|A|h(δiµ(A)) ,

where γnp = (n−p−1)!p!
n! and δiµ(A) := µ(A ∪

{i})− µ(A). This leads to solve the following
problem

max
µ∈M(P )

ĤS(µ) or max
µ∈M2(P )

ĤS(µ). (3)

This problem is non-linear and even non
quadratic, which is not so easy to solve. One
can obtain a quadratic problem under lin-
ear constraints, considering a special case of
Rényi entropy. This amounts to take function
h(u) = −u2 [8] :

ĤR(µ) := −
n∑
i=1

∑
A⊆N\{i}

γn|A|(δiµ(A))2 .

We obtain

max
µ∈M(P )

ĤR(µ) or max
µ∈M2(P )

ĤR(µ). (4)

A unique solution of (3) and (4) is attained
with previous two entropies.

4 Towards a linearized entropy for
a general fuzzy measure

In practice, it may be very interesting to rely
only on linear programming. The question
that arises is the following one: does there
exist a version of the entropy that fits into
linear programming?

4.1 Definition of an L1 entropy

The first idea is to consider function f(u) =
−|u|. This leads to the following definition

Ĥl(µ) := −
n∑
i=1

∑
A⊆N\{i}

γn|A| |δiµ(A)| .

Going back to the interpretation of the en-
tropy of a fuzzy measure in terms of chains,
we notice that

Ĥl(µ) =
1
n!

∑
τ

Hl(pτ )

where

Hl(pτ ) := −
n∑
i=1

∣∣∣pττ(i)∣∣∣.
Proceedings of IPMU’08 1479



By monotonicity of the fuzzy measure, we ob-
tain

Hl(pτ ) = −
n∑
i=1

(
µ({τ(i), . . . , τ(n)})

− µ({τ(i+ 1), . . . , τ(n)})
)

= µ(∅)− µ(N) = −1

and thus
Ĥl(µ) = −1. (5)

This shows that previous definition is not sat-
isfactory.

An entropy H of a probability distribution on
N shall satisfy several fundamental proper-
ties:

• Symmetry: H(σ ◦ p) = H(p) for any per-
mutation σ on N , where (σ ◦ p)i = pσ(i);

• Maximality: H takes its maximal value
at the uniform probability measure p =
(1/n, . . . , 1/n);

• Minimality: H takes its minimal value
at the extreme probability measure p =
(0, . . . , 0, 1, 0, . . . , 0);

¿From (5), the maximality and minimality
properties are clearly not satisfied with Hl. In
order to make sure to satisfy the minimality
property, an option is to define an entropy on
probability distributions as the L1 error be-
tween the probability and the uniform proba-
bility:

HL(p) := −
n∑
i=1

∣∣∣∣pi − 1
n

∣∣∣∣ .
This leads to the following definition of the
L1 entropy on fuzzy measures:

ĤL(µ) =
1
n!

∑
τ

HL(pτ )

= −
n∑
i=1

∑
A⊆N\{i}

γn|A|

∣∣∣∣δiµ(A)− 1
n

∣∣∣∣ .
¿From this expression, one easily shows that
the three properties Symmetry, Maximality

and Minimality are fulfilled. The fuzzy mea-
sure can then be obtained by solving the fol-
lowing optimization problem.

max
µ∈M(P )

ĤL(µ). (6)

4.2 Properties of the L1 entropy

We introduce the following problem P1:

Find s :=
{{

s+A,i, s
−
A,i

}
: i ∈ N , A ⊆ N \ {i}

}
such that

min F1(s) :=
n∑
i=1

∑
A⊆N\{i}

γ|A|(n)
(
s+A,i + s−A,i

)
under

µ ∈M(P )
∀i ∈ N , ∀A ⊆ N \ {i} s+A,i ≥ 0

and δiµ(A)− 1
n ≤ s+A,i

∀i ∈ N , ∀A ⊆ N \ {i} s−A,i ≥ 0
and δiµ(A)− 1

n ≥ −s−A,i

(7)

Problem P1 is a linear program.

Let

M1(s) =
{
µ ∈M : ∀i ∈ N , ∀A ⊆ N \ {i}

− s−A,i ≤ δiµ(A)− 1
n
≤ s+A,i

}
M1(s) corresponds to the inequalities in (7).
Set

Σ1 =
{
s ∈ R(n 2n)

+ : M1(s) 6= ∅
}
.

We define the preference relation �1 on R(n 2n)
+

by

s �1 s
′ ⇐⇒ ∀i ∈ N , ∀A ⊆ N \ {i}

s+A,i ≥ s′+A,i and s−A,i ≥ s′−A,i
Let �1 by the asymmetric part of �1. We
have s �1 s′ iff for all i ∈ N and all A ⊆
N \ {i} sA,i ≥ s′A,i and if there exists i ∈ N
and A ⊆ N \ {i} such that s+A,i > s′+A,i or
s−A,i > s′−A,i.

Lemma 1 Let s ∈ Σ1 non dominated in Σ1

in the sense of ≺1 (i.e. there does not exist
s′ ∈ Σ1 such that s′ ≺1 s). Then for all i ∈ N
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and A ⊆ N \ {i} one has either s+A,i = 0 or
s−A,i = 0. Moreover

M1(s) =
{
µ ∈M : ∀i ∈ N , ∀A ⊆ N \ {i}

δiµ(A)− 1
n

= s+A,i if s−A,i = 0

δiµ(A)− 1
n

= −s−A,i if s+A,i = 0
}

The next lemma shows thatM1(s) reduces to
a singleton for a non-dominated s.

Lemma 2 Let s ∈ Σ1 non dominated in Σ1

in the sense of ≺1. Then M1(s) reduces to a
singleton.

We now study the relationship between P1

and (6).

Lemma 3 The solution(s) to P1 is(are) non-
dominated in the sense of ≺1.

We have the following result.

Lemma 4 The two problems (6) and P1 are
equivalent.

Of course, we cannot conclude that there is
a unique solution to P1. However, there is a
unique solution for each Pareto vector s.

Example 1 Let µ1 and µ2 be defined by for
all A ⊆ N :

µ1(A) =
{ |A|

n if |A| 6= 1
1
n − ε if |A| = 1

µ2(A) =
{ |A|

n if |A| 6= 1
1
n + ε if |A| = 1

Let i ∈ N and A ⊆ N \ {i}. If |A| = 0, then

µ1(A ∪ {i})− µ1(A)− 1
n

= −ε

µ2(A ∪ {i})− µ2(A)− 1
n

= ε

If |A| = 1, then

µ1(A ∪ {i})− µ1(A)− 1
n

= ε

µ2(A ∪ {i})− µ2(A)− 1
n

= −ε

If |A| > 1, then

µ1(A ∪ {i})− µ1(A)− 1
n

= 0

µ2(A ∪ {i})− µ2(A)− 1
n

= 0

The two fuzzy measures µ1 and µ2 lead to the
following two vectors s1 and s2 respectively :

s1,+A,i =
{
ε if |A| = 1
0 otherwise

s1,−A,i =
{
ε if |A| = 0
0 otherwise

and

s2,+A,i =
{
ε if |A| = 0
0 otherwise

s2,−A,i =
{
ε if |A| = 1
0 otherwise

One has F1(s1) = F1(s2). Problem P1 may
lead to several solutions, namely s1 and s2.
However, there is a unique fuzzy measure as-
sociated to each solution (thanks to the com-
bining of Lemmas 3 and 2).

We conclude from the results of this section
that solving P1 is equivalent to solving (6).
Moreover, P1 is a linear problem. So, problem
P1 is an interesting problem to solve (6).

5 The two-additive case

We wish to define a linearized entropy for a
two-additive fuzzy measure. ¿From (1) and
(2), we have

δiµ(A) = vi − 1
2

∑
k∈A

Iµi,k +
1
2

∑
k∈N\(A∪{i})

Iµi,k

Plugging this in the expression of ĤL(µ), we
obtain a complex expression of the entropy.
We want to define a simplier expression of
a linearized entropy. To this end, our start-
ing point if the Maximality property, stating
that the entropy shall take its maximal value
for the arithmetic mean. Since the arithmetic
mean is described by the following fuzzy mea-
sure

vµ1 = · · · = vµn =
1
n
, Iµ1,2 = · · · = Iµn−1,n = 0
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a possible definition of an approximate piece-
wise linear entropy in the case of a two-
additive measure can be :

Ĥ2
L(µ) = −

n∑
i=1

∣∣∣∣vµi − 1
n

∣∣∣∣− 1
2

∑
{i,j}⊆N

∣∣∣Iµi,j∣∣∣ .
The symmetry and maximality properties are
clearly satisfied with this definition.

For {i, j} ⊆ N , µmin
i,j (resp. µmax

i,j ) is the capac-
ity such that vi = vj = 1

2 , Ii,j = 1 (resp. −1),
vk = 0 for all k ∈ N \{i, j} and Ik,l = 0 for all
{k, l} ⊆ N with {k, l} 6= {i, j}. The Choquet
integral w.r.t. this capacity is the minimum
(resp. maximum) between the scores of crite-
ria i and j. For i ∈ N , µdi is such that vi = 1,
vk = 0 for all k ∈ N \ {i}, and Ik,l = 0 for all
{k, l} ⊆ N . The Choquet integral w.r.t. this
capacity is the dictator for criterion i.

Lemma 5 We have the following result:

• If n ∈ {2, 3}, then the smallest value of
Ĥ2
L is attained at µdi for all i ∈ N ;

• If n = 4, then the smallest value of Ĥ2
L

is attained at µdi for all i ∈ N , and also
at µmin

i,j and µmax
i,j for all {i, j} ⊆ N ;

• If n ≥ 5, the smallest value of Ĥ2
L is at-

tained at µmin
i,j and µmax

i,j for all {i, j} ⊆
N .

The optimization problem becomes:

max
µ∈M2(P )

ĤL(µ) (8)

We introduce the following problem P2

Find s :=
{{
s+A, s

−
A

}
: A ⊆ N with |A| ∈ {1, 2}}

such that

min F2(s) :=
n∑
i=1

(
s+{i} + s−{i}

)
+

+
1
2

∑
{i,j}⊆N

(
s+{i,j} + s−{i,j}

)
under



µ ∈M2(P )
∀i ∈ N , s+{i}, s

−
{i} ≥ 0

and − s−{i} ≤ vµi − 1
n ≤ s+{i}

∀ {i, j} ⊆ N , s+{i,j}, s
−
{i,j} ≥ 0

and − s−{i,j} ≤ Iµi,j ≤ s+{i,j}

(9)

Let

M2(s) ={
µ ∈M2 : ∀i ∈ N − s−{i} ≤ vµi −

1
n
≤ s+{i}

and ∀ {i, j} ⊆ N − s−{i,j} ≤ Iµi,j ≤ s+{i,j}
}

and

Σ2 =
{
s ∈ Rn(n+1)/2

+ : M2(s) 6= ∅
}
.

We define the preference relation �2 on
Rn(n+1)/2

+ by

s �2 s
′ ⇐⇒ ∀A ⊆ N with |A| ∈ {1, 2}

s+A ≥ s′+A and s−A ≥ s′−A

Let �2 by the asymmetric part of �2. We
have s �2 s′ iff s � s′ and if there exists
A ⊆ N with |A| ∈ {1, 2} such that s+A > s′+A
or s−A > s′−A.

Lemma 6 Let s ∈ Σ2 non dominated in Σ2

in the sense of ≺2. Then for all A ⊆ N with
|A| ∈ {1, 2}, one has either s+A = 0 or s−A = 0.
Moreover

M2(s) =
{
µ ∈M2 :

∀i ∈ N , vµi −
1
n

= s+{i} if s−{i} = 0

∀i ∈ N , vµi −
1
n

= −s−{i} if s+{i} = 0

∀ {i, j} ⊆ N , Iµi,j = s+{i,j} if s−{i,j} = 0

∀ {i, j} ⊆ N , Iµi,j = −s−{i,j} if s+{i,j} = 0
}

Lemma 7 Let s ∈ Σ2 non dominated in Σ2

in the sense of ≺2. Then M2(s) reduces to a
singleton.

Lemma 8 The solution(s) to P2 is(are) non-
dominated in the sense of ≺2.

Lemma 9 The two problems (8) and P2 are
equivalent.

Hence, solving P2 is equivalent to solving (8).
Moreover, P2 is a linear problem.
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