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Abstract

For [0, co]-valued (monotone) mea-
sures and functions, universal in-
tegrals are introduced and inves-
tigated. For a fixed pseudo-
multiplication ® on [0, co] the small-
est and the greatest universal inte-
grals are given. Finally, a third con-
struction method for obtaining uni-
versal integrals is introduced.

Keywords: Universal integral,
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tegral, Sugeno integral.

1 Introduction

In [11,12] we have introduced the framework
for integrals with respect to normed mono-
tone measures, acting on measurable func-
tions whose range is a subset of the unit in-
terval. These restrictions are quite natural
in several areas where these integrals are ap-
plied. However, we want to extend this con-
cept to the case of (nonnegative) real num-
bers, i.e., we want to integrate nonnegative
real-valued functions with respect to arbitrary
(nonnegative) monotone set functions. Re-
call, e.g., the integral in [18] extending the
Sugeno integral to [0, 00|, as well as the Cho-
quet integral [4] (see also [25]), again acting
on [0, 00|, as prominent examples of integrals
not being restricted to [0, 1].

The aim of this contribution is to introduce
the concept of universal integrals acting on
the interval [0,00], i.e., integrals which can

be defined on an arbitrary measurable space
(X,.A) based on an arbitrary monotone set
function m: A — [0, 00] satisfying m() = 0
and m(X) > 0 (in the sequel we shall call
such an m simply a measure on (X,.A)) and
which is applicable to any measurable func-
tion f: X — [0, 00].

2 Universal integrals

For a fixed measurable space (X, A), F (X,A4)
denotes the set of all A-measurable functions
f: X — [0,00]. For a € ]0,00], A ge-
notes the set of all monotone set functions
m: A — [0,00] such that m(f) = 0 and
m(X) = a, and we put

MEAD | A,

a€]0,00]

Each nondecreasing function H: F(XA) —
[0,00] with H(0) = 0 is called an aggrega-
tion function on FA) (compare with [2]).
Which aggregation functions should be called
an integral, this is a classical and still open
problem. We give three examples of well-
known functions which are used as integrals.

Example 2.1 The Choquet, Sugeno and
Shilkret integrals (see [1,17]), respectively, are
given, for any (X, A), any f € FA) and any
m e MEA) by

Ch(m, f) = /0 Y n({f = ) dt,

Su(m, f) = t:[lolp ]min(t,m({f >t})),

Sh(m, f) = tes[gp ]t -m({f >t}),
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where the convention 0 - oo = 0 is adopted
whenever necessary.

Independently of whatever measurable space
(X, A) is actually chosen, all these integrals
map M XA 5 FEA) into [0, o] and, there-
fore, for any fixed m € M4 | they are ag-
gregation functions on F&A) . Moreover, for
any fixed f € FXA) | they are nondecreasing
mappings from MA) into [0, oc].

Let S be the class of all measurable spaces,
and put

D= U MEA) ¢ FXA)
(X, A)eS

Hence, we require an integral I to map D into
[0,00] and to be nondecreasing in each coor-
dinate. Moreover, each reasonable integral is
expected to satisfy the following minimal re-
quirements:

(i) There is a binary function ®: [0, 00]? —
[0,00] with annihilator 0 such that, for
all (m,c-14) € D, we have

I(m,c-14) =c®@m(A)

(recall the “truth functionality” in propo-
sitional logic);

(ii) T allows to reconstruct the underlying
measure: there is a constant u € ]0, o]
such that for all (m,u-14) € D we have

I(m,u-14) =m(A);

(iii) I is idempotent in the following sense:
there is a constant v € ]0,00] such that
for all measurable spaces (X, A) € S, for
all constants ¢ € [0, 00] and for all mea-

(X,A)

sures m € My we have

I(m,c) =c.
Proposition 2.2 A nondecreasing function
I: D — [0,00] satisfies (1)—(iii) only if the

binary operation ® in (i) is a nondecreasing
function with neutral element e € ]0, 0] .
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Each function ®: [0,00]? — [0,00] with the
properties mentioned in Proposition 2.2 will
be called a pseudo-multiplication.

All three integrals mentioned in Example 2.1
fulfill the following equality

I(m, f) = 1(p, g)

for all m,u € M&EA) and f,g € FEA gat-
isfying for all t € ]0, 00] ,

m({f = t}) = u({g = t}). (1)

Property (1), extended to pairs from possibly
different spaces, will be called integral equiv-
alence, with the notation (m, f) ~ (u, g), and
the indistinguishability of integral equivalent
pairs will be our last axiom for a reasonable
integral.

Example 2.3 Let I: D — [0, 00| be given by

I(m, f) = m({f > 0}) - sup f.

Then I fulfills (i)—(iii) (here ® is the stan-
dard product on [0,00] with the convention
0-00 =0), but (m, f) ~ (i, g) does not imply
I(m, f) = I(u,g). Take, e.g., X =10,1[, A =
B(]0,1]) and m: A — [0, c0] given by

m(A) =

0 otherwise.

{1 if A= X,

Then (m,1y) ~ (m,idx), but I(m,1y) = 0
and I(m,idx) = 1.

We require universality of the integral, in the
sense that they can be defined on any measur-
able space (X,.A). Therefore we will use the
name universal integral in what follows.

Definition 2.4 A function I: D — [0,00] is
called a universal integral if the following ax-
ioms hold:

(I1) For any measurable space (X,.A), I re-
stricted to MA) x FXA) g nonde-
creasing in each coordinate;

(I2) there exists a pseudo-multiplication
®: [0,00]% — [0, 0o] with neutral element

e € 10, 00] such that for all (m,c-14) € D

I(m,c-14) = c®@m(A);
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(I3) for all
(m, f), (u

integral  equivalent
,g) € D we have

I(m, f) = 1(u, 9).

pairs

Due to axiom (I3), for each universal inte-
gral I and for each pair (m,f) € D, the
value I(m, f) depends only on the function
Rm™1) 10, 00] — [0, oc] given by

hD(@) = m({f = «}).

Note that, for each (m, f) € D, the function
h(mf) is nonincreasing and thus Borel mea-
surable.

Denote by H the subset of all nonincreasing

functions from F(10:00lB(0.00])

Proposition 2.5 A function I: D — [0, 0]
1 a universal integral related to some pseudo-
multiplication ® if and only if there is a func-
tion J: H — [0,00] satisfying the following
conditions:

(J1) J is nondecreasing;
(J2) J(d-1)9q) = c@d for all ¢,d € [0, 0] ;

(J3) I(m, f) = J(R(™D) for all (m, f) € D.

An approach to universal integrals similar to
Proposition 2.5 can be traced back to [23],
compare also with [10].

Example 2.6 Let I: D — [0, 0] be given by

1 _t
/ (e =2l
0 Hm{f>15)

/ B S
o Trm(Uf> 1))

Then 1 is a universal integral. Moreover, we
have

I(m7 f) =

c-m(A)

I 1) = A
(mc-14) 1+ c+m(A)’

t.e., I is based on the pseudo-multiplication
®: [0,00]% — [0,00] given by

a-b

=27
@8 1+a+d

which has oo as its neutral element. The func-
tion J: H — [0, 00] is then given by

3 Extremal universal integrals

Following the ideas of inner and outer mea-
sures in Caratheodory’s approach [8], the fol-
lowing result is not difficult to check.

Proposition 3.1 Let ®: [0,00]? — [0, 00] be
a pseudo-multiplication on [0,00]. Then the
smallest universal integral Iy and the great-
est universal integral I® based on & are given

by

Lg(m, f) = sup{t @ m({f > t}) | ¢ € [0, 0]},
I9(m, f) = (essup,, f) ® (supm({f = t}),

where
essup,,, f = sup{t € [0,00] | m({f > t}) > 0}.

Clearly, we have Su = Iy and Sh = Ipoq,
where Min(a, b) = min(a, b) and Prod(a,b) =
a-b.

There is neither a smallest nor a greatest
pseudo-multiplication ® on [0, oo]. However,
if we fix the neutral element e € |0, 0], then
the smallest pseudo-multiplication ®. and the
greatest pseudo-multiplication ®°¢ with neu-
tral element e are given by

0 if (a,b) € [0,¢[?,
a®e b= < max(a,b) if (a,b) € [e,c]?,

min(a,b) otherwise,

min(a,b) if (a,b) € [0,€]?,
a®°b=< o0 if (a,b) € Je,00)?,

max(a,b) otherwise.

Proposition 3.2 Denote by K the set of all
universal integrals I such that

(i) for each m € MEA and each ¢ € [0, o0]
we have I(m,c) = c,
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(ii) for eachm € MXA) and each A € A we
have I(m,e-14) = m(A).

Then 1g, and 1% are the smallest and great-
est element of K, respectively, their explicit
formulas being given by

Lo, (m, f) = max(m({f > e}, essinf,n ),
where
essint,, f = sup{t € [0,00] | m({f > t}) > e},
and

1% (m, f)

min(essup,, f,m({f > 0}))
if max(essup,,f,m({f >0})) <e,

00
if min(essup,,, f,m({f > 0})) > e,

essup,,, f
if m({f > 0}) < e and essup,,,f > e,

m({f > 0})

otherwise.

4 A construction of universal
integrals

Proposition 3.1 gives two construction meth-
ods for universal integrals based on a given
pseudo-multiplication ® on [0,00]. Based
on [1], we introduce another construction
method.

For a given pseudo-multiplication ® on [0, oo],
we suppose the existence of a pseudo-addition
®: [0,00]% — [0, 00] which is continuous, as-
sociative, nondecreasing and has 0 as neutral
element (then the commutativity of @ follows,
see [9]), and which is left-distributive with re-
spect to ®, i.e., for all a, b, c € [0, 0] we have

(a@b)@c=(a®c)® (b c).

The pair (&, ®) is then called an integral op-
eration pair. For all (X, A) and f € FXA
with a finite range Ranf = {a1,...,an} such
that a1 < --- < a, we have

f=@bi-1a, (2)
i=1

Proceedings of IPMU'08

where A; = {f > a;}, ap = 0, and
b; = inf{c € [O, OO] | a;—1 Dc= ai}.

We denote the set of all functions in F&X-A4)
with finite range by ffgf’A). For any ®-based
universal integral I we have

I(m,b; - 1Ai) =b; @ m(A;).

We define the function Iy g acting on
MXA) 5 ]—"éf’A) (the elements of ]—"éf’A)
written in the form (2)) by

are

Io.o(m, ) = @b @ m(A),
i=1
and its extension to M(XA) x FXA) 1y

I (m,g)
= sup{Igo(m, f) | f € FoN f < g).

Proposition 4.1 For each integral operation
pair (&, ®) the function Ig g is a universal
integral.

Note that Choquet-like integrals studied
in [13] are a special case of universal integrals
of the type Ig o, with (&, ®) being an appro-
priate integral operation pair.

Example 4.2

(i) For each pseudo-multiplication ® on
[0, 00], the pair (V,®), where V = sup,
is an integral operation pair and we have

I\/7® = I®.

(ii) The Choquet integral is related to the
pair (+, Prod), i.e., Ch = I pyoq.

(iii) For p € ]0,00[, define the pseudo-
addition +,: [0,00]? — [0, 0] by a+,b =
(a? + bP)Y/P . The pair (+p, Prod) is an
integral operation pair, and we have

Ly, proa(m, f) = (Ch(m?, f7))!/7.

Moreover, we get lim,_. I+p,pmd = Sh,
Le., limpﬂoo I+p7Prod = Iprod-

Similarlya IiInp—>()+ I-‘rp,PrOd = IPrOd. Note
that IF™d cannot be constructed as de-
scribed in Proposition 4.1.
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