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Abstract

For [0,∞]-valued (monotone) mea-
sures and functions, universal in-
tegrals are introduced and inves-
tigated. For a fixed pseudo-
multiplication ⊗ on [0,∞] the small-
est and the greatest universal inte-
grals are given. Finally, a third con-
struction method for obtaining uni-
versal integrals is introduced.

Keywords: Universal integral,
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1 Introduction

In [11, 12] we have introduced the framework
for integrals with respect to normed mono-
tone measures, acting on measurable func-
tions whose range is a subset of the unit in-
terval. These restrictions are quite natural
in several areas where these integrals are ap-
plied. However, we want to extend this con-
cept to the case of (nonnegative) real num-
bers, i.e., we want to integrate nonnegative
real-valued functions with respect to arbitrary
(nonnegative) monotone set functions. Re-
call, e.g., the integral in [18] extending the
Sugeno integral to [0,∞], as well as the Cho-
quet integral [4] (see also [25]), again acting
on [0,∞], as prominent examples of integrals
not being restricted to [0, 1].

The aim of this contribution is to introduce
the concept of universal integrals acting on
the interval [0,∞], i.e., integrals which can

be defined on an arbitrary measurable space
(X,A) based on an arbitrary monotone set
function m : A → [0,∞] satisfying m(∅) = 0
and m(X) > 0 (in the sequel we shall call
such an m simply a measure on (X,A)) and
which is applicable to any measurable func-
tion f : X → [0,∞].

2 Universal integrals

For a fixed measurable space (X,A), F (X,A)

denotes the set of all A-measurable functions
f : X → [0,∞]. For a ∈ ]0,∞], M(X,A)

a de-
notes the set of all monotone set functions
m : A → [0,∞] such that m(∅) = 0 and
m(X) = a, and we put

M(X,A) =
⋃

a∈]0,∞]

M(X,A)
a .

Each nondecreasing function H : F (X,A) →
[0,∞] with H(0) = 0 is called an aggrega-
tion function on F (X,A) (compare with [2]).
Which aggregation functions should be called
an integral, this is a classical and still open
problem. We give three examples of well-
known functions which are used as integrals.

Example 2.1 The Choquet, Sugeno and
Shilkret integrals (see [1,17]), respectively, are
given, for any (X,A), any f ∈ F (X,A) and any
m ∈M(X,A), by

Ch(m, f) =
∫ ∞

0
m({f ≥ t}) dt,

Su(m, f) = sup
t∈[0,∞]

min(t,m({f ≥ t})),

Sh(m, f) = sup
t∈[0,∞]

t ·m({f ≥ t}),
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where the convention 0 · ∞ = 0 is adopted
whenever necessary.

Independently of whatever measurable space
(X,A) is actually chosen, all these integrals
map M(X,A) × F (X,A) into [0,∞] and, there-
fore, for any fixed m ∈ M(X,A), they are ag-
gregation functions on F (X,A). Moreover, for
any fixed f ∈ F (X,A), they are nondecreasing
mappings from M(X,A) into [0,∞].

Let S be the class of all measurable spaces,
and put

D =
⋃

(X,A)∈S
M(X,A) ×F (X,A).

Hence, we require an integral I to map D into
[0,∞] and to be nondecreasing in each coor-
dinate. Moreover, each reasonable integral is
expected to satisfy the following minimal re-
quirements:

(i) There is a binary function ⊗ : [0,∞]2 →
[0,∞] with annihilator 0 such that, for
all (m, c · 1A) ∈ D, we have

I(m, c · 1A) = c⊗m(A)

(recall the “truth functionality” in propo-
sitional logic);

(ii) I allows to reconstruct the underlying
measure: there is a constant u ∈ ]0,∞]
such that for all (m,u · 1A) ∈ D we have

I(m,u · 1A) = m(A);

(iii) I is idempotent in the following sense:
there is a constant v ∈ ]0,∞] such that
for all measurable spaces (X,A) ∈ S, for
all constants c ∈ [0,∞] and for all mea-
sures m ∈M(X,A)

v we have

I(m, c) = c.

Proposition 2.2 A nondecreasing function
I : D → [0,∞] satisfies (i)–(iii) only if the
binary operation ⊗ in (i) is a nondecreasing
function with neutral element e ∈ ]0,∞] .

Each function ⊗ : [0,∞]2 → [0,∞] with the
properties mentioned in Proposition 2.2 will
be called a pseudo-multiplication.

All three integrals mentioned in Example 2.1
fulfill the following equality

I(m, f) = I(µ, g)

for all m,µ ∈ M(X,A) and f, g ∈ F (X,A) sat-
isfying for all t ∈ ]0,∞] ,

m({f ≥ t}) = µ({g ≥ t}). (1)

Property (1), extended to pairs from possibly
different spaces, will be called integral equiv-
alence, with the notation (m, f) ∼ (µ, g), and
the indistinguishability of integral equivalent
pairs will be our last axiom for a reasonable
integral.

Example 2.3 Let I : D → [0,∞] be given by

I(m, f) = m({f > 0}) · sup f.

Then I fulfills (i)–(iii) (here ⊗ is the stan-
dard product on [0,∞] with the convention
0 ·∞ = 0), but (m, f) ∼ (µ, g) does not imply
I(m, f) = I(µ, g). Take, e.g., X = ]0, 1[ ,A =
B(]0, 1[) and m : A → [0,∞] given by

m(A) =

{
1 if A = X,

0 otherwise.

Then (m,1∅) ∼ (m, idX), but I(m,1∅) = 0
and I(m, idX) = 1.

We require universality of the integral, in the
sense that they can be defined on any measur-
able space (X,A). Therefore we will use the
name universal integral in what follows.

Definition 2.4 A function I : D → [0,∞] is
called a universal integral if the following ax-
ioms hold:

(I1) For any measurable space (X,A), I re-
stricted to M(X,A) × F (X,A) is nonde-
creasing in each coordinate;

(I2) there exists a pseudo-multiplication
⊗ : [0,∞]2 → [0,∞] with neutral element
e ∈ ]0,∞] such that for all (m, c ·1A) ∈ D

I(m, c · 1A) = c⊗m(A);
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(I3) for all integral equivalent pairs
(m, f), (µ, g) ∈ D we have

I(m, f) = I(µ, g).

Due to axiom (I3), for each universal inte-
gral I and for each pair (m, f) ∈ D, the
value I(m, f) depends only on the function
h(m,f) : ]0,∞]→ [0,∞] given by

h(m,f)(x) = m({f ≥ x}).

Note that, for each (m, f) ∈ D, the function
h(m,f) is nonincreasing and thus Borel mea-
surable.

Denote by H the subset of all nonincreasing
functions from F (]0,∞],B(]0,∞]).

Proposition 2.5 A function I : D → [0,∞]
is a universal integral related to some pseudo-
multiplication ⊗ if and only if there is a func-
tion J : H → [0,∞] satisfying the following
conditions:

(J1) J is nondecreasing;

(J2) J(d · 1]0,c]) = c⊗ d for all c, d ∈ [0,∞] ;

(J3) I(m, f) = J(h(m,f)) for all (m, f) ∈ D.

An approach to universal integrals similar to
Proposition 2.5 can be traced back to [23],
compare also with [10].

Example 2.6 Let I : D → [0,∞] be given by

I(m, f) =

∫ 1

0

m({f≥ t
1−t})

1+m({f≥ t
1−t})

dt∫ 1

0

1

1+m({f≥ t
1−t})

dt

.

Then I is a universal integral. Moreover, we
have

I(m, c · 1A) =
c ·m(A)

1 + c+m(A)
,

i.e., I is based on the pseudo-multiplication
⊗ : [0,∞]2 → [0,∞] given by

a⊗ b =
a · b

1 + a+ b

which has∞ as its neutral element. The func-
tion J : H → [0,∞] is then given by

J(h) =

∫ 1

0

h(
t

1−t )

1+h(
t

1−t )
dt∫ 1

0

1

1+h(
t

1−t )
dt

.

3 Extremal universal integrals

Following the ideas of inner and outer mea-
sures in Caratheodory’s approach [8], the fol-
lowing result is not difficult to check.

Proposition 3.1 Let ⊗ : [0,∞]2 → [0,∞] be
a pseudo-multiplication on [0,∞]. Then the
smallest universal integral I⊗ and the great-
est universal integral I⊗ based on ⊗ are given
by

I⊗(m, f) = sup{t⊗m({f ≥ t}) | t ∈ [0,∞]},
I⊗(m, f) = (essupmf)⊗ (sup

t>0
m({f ≥ t})),

where

essupmf = sup{t ∈ [0,∞] | m({f ≥ t}) > 0}.

Clearly, we have Su = IMin and Sh = IProd,
where Min(a, b) = min(a, b) and Prod(a, b) =
a · b.
There is neither a smallest nor a greatest
pseudo-multiplication ⊗ on [0,∞]. However,
if we fix the neutral element e ∈ ]0,∞] , then
the smallest pseudo-multiplication ⊗e and the
greatest pseudo-multiplication ⊗e with neu-
tral element e are given by

a⊗e b =


0 if (a, b) ∈ [0, e[2 ,
max(a, b) if (a, b) ∈ [e,∞]2,
min(a, b) otherwise,

a⊗e b =


min(a, b) if (a, b) ∈ [0, e]2 ,
∞ if (a, b) ∈ ]e,∞]2 ,
max(a, b) otherwise.

Proposition 3.2 Denote by K the set of all
universal integrals I such that

(i) for each m ∈M(X,A)
e and each c ∈ [0,∞]

we have I(m, c) = c,
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(ii) for each m ∈M(X,A) and each A ∈ A we
have I(m, e · 1A) = m(A).

Then I⊗e and I⊗e
are the smallest and great-

est element of K, respectively, their explicit
formulas being given by

I⊗e(m, f) = max(m({f ≥ e}), essinfmf),

where

essinfmf = sup{t ∈ [0,∞] | m({f ≥ t}) ≥ e},
and

I⊗
e
(m, f)

=



min(essupmf,m({f > 0}))
if max(essupmf,m({f > 0})) ≤ e,

∞
if min(essupmf,m({f > 0})) > e,

essupmf

if m({f > 0}) < e and essupmf ≥ e,

m({f > 0})
otherwise.

4 A construction of universal
integrals

Proposition 3.1 gives two construction meth-
ods for universal integrals based on a given
pseudo-multiplication ⊗ on [0,∞]. Based
on [1], we introduce another construction
method.

For a given pseudo-multiplication ⊗ on [0,∞],
we suppose the existence of a pseudo-addition
⊕ : [0,∞]2 → [0,∞] which is continuous, as-
sociative, nondecreasing and has 0 as neutral
element (then the commutativity of ⊕ follows,
see [9]), and which is left-distributive with re-
spect to ⊗, i.e., for all a, b, c ∈ [0,∞] we have

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).
The pair (⊕,⊗) is then called an integral op-
eration pair. For all (X,A) and f ∈ F (X,A)

with a finite range Ranf = {a1, . . . , an} such
that a1 < · · · < an we have

f =
n⊕

i=1

bi · 1Ai , (2)

where Ai = {f ≥ ai}, a0 = 0, and

bi = inf{c ∈ [0,∞] | ai−1 ⊕ c = ai}.
We denote the set of all functions in F (X,A)

with finite range by F (X,A)
fin . For any ⊗-based

universal integral I we have

I(m, bi · 1Ai) = bi ⊗m(Ai).

We define the function I⊕,⊗ acting on
M(X,A) ×F (X,A)

fin (the elements of F (X,A)
fin are

written in the form (2)) by

I⊕,⊗(m, f) =
n⊕

i=1

bi ⊗m(Ai),

and its extension to M(X,A) ×F (X,A) by

I⊕,⊗(m, g)

= sup{I⊕,⊗(m, f) | f ∈ F (X,A)
fin , f ≤ g}.

Proposition 4.1 For each integral operation
pair (⊕,⊗) the function I⊕,⊗ is a universal
integral.

Note that Choquet-like integrals studied
in [13] are a special case of universal integrals
of the type I⊕,⊗, with (⊕,⊗) being an appro-
priate integral operation pair.

Example 4.2

(i) For each pseudo-multiplication ⊗ on
[0,∞], the pair (∨,⊗), where ∨ = sup,
is an integral operation pair and we have
I∨,⊗ = I⊗.

(ii) The Choquet integral is related to the
pair (+,Prod), i.e., Ch = I+,Prod.

(iii) For p ∈ ]0,∞[ , define the pseudo-
addition +p : [0,∞]2 → [0,∞] by a+pb =
(ap + bp)1/p . The pair (+p,Prod) is an
integral operation pair, and we have

I+p,Prod(m, f) = (Ch(mp, fp))1/p .

Moreover, we get limp→∞ I+p,Prod = Sh,
i.e., limp→∞ I+p,Prod = IProd.

Similarly, limp→0+ I+p,Prod = IProd. Note
that IProd cannot be constructed as de-
scribed in Proposition 4.1.
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