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Abstract

The paper proposes a general ap-
proach of interaction between play-
ers or attributes. It generalizes the
notion of interaction defined for
players modeled by games, by con-
sidering functions defined on dis-
tributive lattices. A general defini-
tion of the interaction index is pro-
vided, as well as the construction
of operators establishing transforms
between games, their Möbius trans-
forms and their interaction indices.

Keywords: Lattice game, Möbius
transform, Interaction index, Equiv-
alent representations.

1 Introduction

Interaction index has been developped in [7]
by Grabisch, and can be seen as a generaliza-
tion of the Shapley value. Roughly speaking,
the interaction index quantifies the genuine
contribution of a coalition with reference to
all its subcoalitions, where a positive (resp.
negative) interaction corresponds to a positive
(resp. negative) correlation. In game theory,
it describes the synergy between players or
voters, the interest in forming or not forming
certain coalitions. In multicriteria decision, it
tells which criteria play a key role (and how),
and which criteria are redundant (with which
ones) in the decision process.

Games defined over distributive lattices are
very general objects which enable to capture a
large variety of behaviors, since every playable
action can be expressed in terms of pure or
elementary actions. An alternative use of

these games has been proposed by Faigle and
Kern [6]: from a partially ordered set of play-
ers taking part into the game (the relation of
precedence), a game is built over the set of all
feasible coalitions. An axiomatization of the
Shapley value has been proposed in [9], as well
as in [6]. In this paper, we aim at generaliz-
ing the interaction index concept for games
over distributive lattices, which is based on
our Shapley value, and which encompasses
the interaction index for classical cooperative
games, as axiomatized in [10].

In [4], the authors have worked out a frame-
work in order to underline linear and bijective
correspondences between a classical coopera-
tive game, its Möbius transform, and its inter-
action index. In [13], we generalized this con-
struction for bi-set functions, which are func-
tions defined over the set of couples of sub-
sets (A,B) (bi-coalitions) of a basis finite set
N , such that A ∩ B = ∅, A representing the
coalition of defensive players, and B, the de-
featers players. We provided a framework to
express any game in TU-form from its inter-
action index by means of the incidence alge-
bras [5]. The objective in this paper is now to
extend this framework to games defined over
distributive lattices.

In Section 2, we propose a short introduc-
tion to distributive lattices, and provide a
general definition of lattice games, with some
examples. Section 3 gives definition of the
Möbius transform, and brings some mathe-
matical background about derivative of lat-
tice functions. In Section 4, we introduce the
interaction index for lattice games. Group
actions are a useful algebraic tool which en-
able any bijective linear transformation (iso-
morphism) to operate over the set of lattice
functions. Thanks to them, we set up in Sec-
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tion 5 a commutative diagram in the set of
lattice functions, which proves that any lat-
tice function, its Möbius transform and its in-
teraction index characterize the same object.
We work out in Section 6 an explicit formula
for the Möbius transform of distributive lat-
tice functions, as well as the inversion of a
fundamental formula of Section 4 which ex-
presses the interaction index of any game in
terms of its Möbius transform. Finally, we
provide in Section 7 the inverse interaction
operator, and the straight expression of any
lattice game from its interaction index.

N denotes the set of nonnegative integers
{0, 1, 2, . . . }. If no ambiguity occurs, we de-
note by the lower case letters s, t, . . . the car-
dinals of sets S, T, . . . and we will often omit
braces for singletons.

2 Lattice functions and games

We introduce some basic notions about lat-
tices and distributive lattices. A lattice L
is any partially ordered set (poset) (L,≤) in
which every pair of elements x, y has a supre-
mum x ∨ y and an infimum x ∧ y. Note that
whenever L is finite1, L is a complete lat-
tice, that is, for any nonempty subset, their
supremum and infimum always exist. The
greatest element of a lattice (denoted ⊤) and
least element ⊥ always exist. In the sequel, it
shall be convenient to lay down the conven-
tion

∨ ∅ =
∧ ∅ = ⊥.

A lattice is distributive if ∨,∧ obey distribu-
tivity. An element j ∈ L is join-irreducible if
it cannot be expressed as a supremum of other
elements. Equivalently j is join-irreducible if
it covers only one element, where x covers y
(we also say that y is a predecessor of x, and
denote x ≻ y) means that x > y and there
is no z such that x > z > y. The set of all
join-irreducible elements of L is denoted by
J (L).

An important property is that in a distribu-
tive lattice, any element x can be written as
an irredundant supremum of join-irreducible
elements in a unique way (this is called the
minimal decomposition of x). We denote by
η∗(x) the set of join-irreducible elements in
the minimal decomposition of x, and we de-
note by η(x) the normal decomposition of x,

1In the context of the paper, all considered lattices
are finite.

defined as the set of join-irreducible elements
smaller or equal to x, i.e., η(x) := {j ∈
J (L) | j ≤ x}. Hence η∗(x) ⊆ η(x), and

x =
∨
η∗(x) =

∨
η(x).

For any poset (P,≤), Q ⊆ P is said to be a
downset of P if x ∈ Q and y ≤ x imply y ∈ Q.
We denote by O(P ) the set of all downsets
of P . One can associate to any poset (P,≤)
a distributive lattice which is O(P ) endowed
with inclusion. As a consequence of the above
results, the mapping η is an isomorphism of
L onto O(J (L)) (Birkhoff’s theorem, [1]).

In the whole paper, N := {1, . . . , n} is a finite
set which can be thought as the set of play-
ers or also voters, criteria, states of nature,
depending on the application. We consider fi-
nite distributive lattices (L1,≤1),. . . ,(Ln,≤n)
and their product L := L1 × · · · × Ln en-
dowed with the product order ≤. Elements
x of L can be written in their vector form
(x1, . . . , xn). L is also a distributive lat-
tice whose join-irreducible elements are of
the form (⊥1, . . . ,⊥i−1, ji,⊥i+1, . . . ,⊥n), for
some i and some join-irreducible element ji
of Li. In the sequel, with some abuse of lan-
guage, we shall also call ji this element of L.
We denote by J (L) the set of join-irreducible
elements of L (Section 4). A vertex of L is any
element whose components are either top or
bottom. Vertices of L will be denoted by ⊤X ,
X ⊆ N , whose coordinates are ⊤k if k ∈ X,
⊥k else.

Lattice functions are real-valued mappings de-
fined over product lattices of the above form.
Lattice functions which vanishes at ⊥ are
called lattice games (or games) on (L,≤). We
denote by RL the set of lattice functions over
L, and by G (L) the subset of games. Each
lattice (Li,≤i) may be different, and repre-
sents the (partially) ordered set of actions,
choices, levels of participation of player i to
the game. A game v is monotone if x ≤ y
implies v(x) ≤ v(y) for all x, y ∈ L. Several
particular cases of lattice games are of inter-
est.

• L = {0, 1}n. This is the classical notion
of cooperative game in pseudo-Boolean
functions form. Indeed, (L,≤) is isomor-
phic to the Boolean lattice2 (2N ,⊆) of

2To avoid heavy notations, we will sometimes de-
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the subsets of N . Monotone games of
G (2N ) are called capacities [3].

• We propose the following interpretation
for games on L in the general case, i.e., L
is any direct product of n distributive lat-
tices. We assume that each player i ∈ N
has at her/his disposal a set of elemen-
tary or pure actions j1, . . . , jni . These
elementary actions are partially ordered
(e.g. in the sense of benefit caused by
the action), forming a partially ordered
set (Ji,≤i). Then by Birkhoff’s theo-
rem (see above), the set (O(Ji),⊆) of
downsets of Ji i s a distributive lat-
tice denoted Li, whose join-irreducible
elements correspond to the elementary
actions. The bottom action ⊥ of Li is
the action which amounts to do noth-
ing. Hence, each action in Li is either
a pure action jk or a combined action
jk ∨ jk′ ∨ jk′′ ∨ . . . consisting of doing all
pure actions jk, jk′ , . . . for player i.

For example, let us suppose that for
a given player i, elementary actions are
a, b, c, d endowed with the order ≤i:=
{(a, b), (a, d), (c, d)}. They form the following
poset:

b

a

d

c

which in turn form the following lattice Li of
possible actions (black circles represent join-
irreducible elements of Li):

a

a, b

c

a, c, d

∅

a, c

a, b, c

a, b, c, d

3 The Möbius transform and
derivatives of lattice functions

We introduce in this section some useful ma-
terial for lattice functions. The Möbius trans-

note by 2m any Boolean lattice isomorphic to 2M ,
|M | = m.

form initially takes its name from number the-
ory3, and is a key concept in decision analysis
(see e.g. [2]). Let (P,≤) be any poset. The
Möbius transformmf of a mapping f : P → R
is the unique solution of the equation

f(x) =
∑
y≤x

mf (y), x ∈ P, (1)

given by

mf (x) :=
∑
y≤x

µ(y, x) f(y), x ∈ P, (2)

where µ is an integer-valued function defined
on P × P . For instance, whenever P is the
Boolean lattice 2N endowed with inclusion, it
is well-known that µ(A,B) = (−1)|B\A|, for
all subsets A,B such that A ⊆ B.

As it will be seen in the next section, deriva-
tives of lattice functions are a very useful tool,
and have been generalized (in particular) for
distributive lattice functions in [8]. Let (L,≤)
be a distributive lattice and j ∈ J (L). The
first-order derivative of the lattice function f
w.r.t. j at element x ∈ L is given by

∆jf(x) := f(x ∨ j) − f(x).

Using the minimal irredundant decomposition
η∗(y) = {j1, . . . , jm} of some y ∈ L, we iter-
atively define the derivative of f w.r.t. y at
x ∈ L by

∆yf(x) := ∆jm

(
. . .∆j2

(
∆j1f(x)

)
. . .

)
.

Note that if for some k, jk ≤ x, the deriva-
tive is null. Also, this definition does not
depend on the order of the jk’s and thus is
well defined. In particular, whenever (L,≤) is
the Boolean lattice (2N ,⊆), for any nonempty
S ⊆ N ,

∆Sf(A) :=
∑
T⊆S

(−1)s−t f(A ∪ T ), A ⊆ N.

We set ∆⊥f(x) := f(x), for any x ∈ L.

4 The interaction index for lattice
functions

From now on, L is a direct product of n finite
distributive lattices. Let v ∈ G (L). We pro-
pose a general definition of interaction as pre-
sented in the introduction. We begin by defin-
ing the importance index, introduced in [8], as

3Underlying lattice is in this case the set of all di-
visors of any positive integer endowed with divisibility
relation.
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a power index of the game defined for elemen-
tary actions of every player (that is to say,
w.r.t. each join-irreducible element of each
lattice Li). This means that we try to pro-
vide an equitable way to share the worth v(⊤)
between all elementary actions.

For a given elementary action ji, the impor-
tance index is written as a weighted average
of the marginal contributions of ji, taken at
vertices of L.

Definition 1 Let i ∈ N and ji any join-
irreducible element of L. Let v ∈ G (L). The
importance index w.r.t. ji of v is defined by

φv(ji) =
∑

Y ⊆N\i
α1
|Y | ∆jiv(⊤Y ),

where α1
k :=

k! (n − k − 1)!
n!

, for all k ∈
{0, . . . , n− 1}.

Note that if L = 2N , we obtain the defini-
tion of the Shapley value [14]. In [9], we pro-
posed an axiomatization of the Shapley value
for multichoice games, where the obtained for-
mula is also the one given above (all the Li’s
are completely ordered).

As an extension of the importance index for
every element of L, and every lattice function
f ∈ RL, we propose a definition for the inter-
action transform. For any x ∈ L, If (x) ex-
presses the interaction in the function among
all elementary actions j of the minimal de-
composition x =

∨
j∈η∗(x) j.

An interaction index has been proposed in [8].
However, the formula was only defined for el-
ements of J (L). We present here If as a
mapping defined over L. For that, we give
the following generalized definition of x for
any x ∈ L.

Definition 2 Let x ∈ L. We call antecessor
of x the unique element of L defined by x :=∨ (

η(x) \ η∗(x)).
If x ∈ J (L), the antecessor of x is obviously
its predecessor, in accordance with the nota-
tion x. By the convention of Section 2, the an-
tecessor of ⊥ is itself. Note also that the defi-
nition of x ∈ L is consistent with the structure
of direct product of distributive lattices of L.
Indeed, we easily check that x = (x1, . . . , xn).

The following proposition provides two char-
acterizations and an important property of
the antecessor.

Proposition 1 Let x ∈ L, and p(x) := {y ∈
L | y ≺ x}. Then the following assertions
hold.
(i) x =

∧
p(x).

(ii) x is the unique element s.t. [x, x] is Boo-
lean and contains p(x).

(iii) [x, x] ∼= 2η∗(x).

The interaction index Iv(x) is expressed as a
weighted average of the derivatives w.r.t. x,
taken at vertices of L.

Definition 3 Let v ∈ G (L). Let x ∈ L and
X := {i ∈ N | xi 6= ⊥i}. The interaction
index w.r.t. x of v is defined by

Iv(x) :=
∑

Y⊆N\X
α
|X|
|Y | ∆xv(x ∨⊤Y ),

where αj
k := k! (n−j−k)!

(n−j+1)! , for all j = 0, . . . , n
and k = 0, . . . , n − j.

This extends Definition 1. Besides, the for-
mula overlaps previous definitions of the inter-
action introduced and axiomatized in [4, 11]
for classical cooperative games, and also in [8]
for multichoice games whose all Li’s are iden-
tical.

The following result generalizes one given
in [8] and express the interaction index in
terms of the Möbius transform.

Theorem 2 Let v ∈ G (L) and x ∈ L. Then

Iv(x) =
∑

z∈[x,x̌]

1
k(z)− k(x) + 1

mv(z),

where x̌j := ⊤j if xj = ⊥j , x̌j := xj else, and
k(y) is the number of coordinates of y ∈ L not
equal to ⊥j, j = 1, . . . , n.

5 Linear transformations on sets of
lattice functions

In [4], the authors laid down a general frame-
work of transformations of set functions by
introducing an algebraic structure on set func-
tions and operators (set functions of two vari-
ables), which enable the writing of the for-
mulae given in the previous section under a
simplified algebraic form. Then in [13], the
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same has been done for bi-set functions, by
introducing incidence algebras [5]. Although
this tool may be useful in combinatorics of or-
der theory, we do not now proceed in the same
way for lattice functions, making the choice to
use a more suitable algebraic strucure, namely
the group actions.

We call operator on L a real-valued function
on L × L. A binary operation ⋆ (multipli-
cation or convolution) between operators is
introduced as follows:

(Φ ⋆Ψ)(x, y) :=
∑
t∈L

Φ(x, t)Ψ(t, y).

Endowed with ⋆, the set of operators contains
the identity element

∆(x, y) :=

{
1, if x = y,

0, otherwise,
x, y ∈ L,

and also satisfies associativity, which makes
it a monoid. When it exists, we denote by
Φ−1 the inverse of an operator Φ, that is to
say the operator satisfying Φ ⋆ Φ−1 = Φ−1 ⋆
Φ = ∆. Consequently, the set of all inversible
operators is a group. We denote it by G. We
denote by tΦ the transpose of the operator Φ,
i.e., tΦ(x, y) := Φ(y, x) for all x, y ∈ L.

Let ≦ be any partial order on L included in
the usual order ≤, and � the associated strict
order. We denote by I(L,≦) the set of inter-
vals of L w.r.t. the order ≦, i.e., the family
of subsets [x, y]≦ := {t ∈ L | x ≦ t ≦ y}, with
x ≦ y. An operator Φ is said to be unit upper-
triangular (resp. unit lower-triangular) rela-
tively to ≦, or shortly UUT≦ (resp. ULT≦),
if it equals 1 on the diagonal of L2, and van-
ishes at all pairs (x, y) s.t. [x, y]≦ = ∅ (resp.
[y, x]≦ = ∅):

Φ(x, y) =

{
1, if x = y,

0, if x � y,
x, y ∈ L.

Note that the transpose of any UUT≦ opera-
tor is ULT≦.

Proposition 3 The subset G(≦) of all
UUT≦ operators endowed with ⋆, is a sub-
group of G. The inverse Φ−1 of Φ ∈ G(≦)
computes recursively through

Φ−1(x, x) = 1,

Φ−1(x, y) = −
∑

x≦t�y

Φ−1(x, t)Φ(t, y), x � y.

Applying this result for the Zeta operator Z ∈
G(≤):

Z(x, y) :=

{
1, if x ≤ y,

0, otherwise,
x, y ∈ L,

(3)
we obtain the application µ which is the
Möbius operator, i.e., Z−1 = µ (see Section 3,
(2)).

In order to rewrite formulae (1), (2) and also
(7) in a reduced form, we introduce some
group actions of G on the set of lattice func-
tions: for x belonging to L, we define:

(Φ ⋆ f)(x) :=
∑
t∈L

Φ(x, t) f(t), (4)

(f ⋆Φ)(x) :=
∑
t∈L

f(t)Φ(t, x). (5)

Now, (1) and (2) respectively rewrites as

f = mf ⋆ Z, and mf = f ⋆ Z−1, f ∈ RL.

Similarly, if we set down:

Γ(x, y) :=

{
1

k(y)−k(x)+1 , if ∀i ∈ N,xi ∈ {⊥i, yi},
0, otherwise,

(6)
we notice that Γ ∈ G(≤), and we can write
from (7) the relation:

If = Γ ⋆ mf , f ∈ RL, (7)

which in turns gives by inversion

mf = Γ−1 ⋆ If , f ∈ RL. (8)

It is also possible to do without left group
actions. Indeed, we easily show that the left
action G×RL → RL can be converted into the
right action RL×G → RL by (Φ, f) 7→ (f, tΦ).
Consequently,

If = mf ⋆ tΓ, f ∈ RL.

Note that tΓ and tΓ−1 are unit lower-
triangular.

As a conclusion of these results, any lattice
function may be seen as the interaction in-
dex or the Möbius transform of some lattice
function. This actually generalizes a result
(equivalent representations) of [7] by the re-
sult below (see Figure 1).
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Theorem 4 Operators Z and Γ generate a
commutative diagram in RL.

We call interaction operator, the operator I :=
Z−1 ⋆ tΓ. Hence, the interaction index of f ∈
RL is given by If = f ⋆ I. Note that I is
neither UUT nor ULT.

f If

mf

I

I−1

Z−1

Z tΓ−1

tΓ

Figure 1: Lattice functions and their repre-
sentations (operators act on the right)

6 The Möbius and Bernoulli
operators

We now aim at giving an explicit formula for
the Möbius operator and the Bernoulli opera-
tor4 Γ−1. Let ∼ be an equivalence relation on
the set I(L,≦). We denote by [x, y]≦ the class
of any interval [x, y]≦ by the relation ∼. We
consider the following property for operators
of G(≦) relatively to this relation:

Φ is constant on each equivalence class of ∼,
i.e.,∀[x, y], [x′, y′] ∈ I(L,≦), if (9)

[x, y]≦ = [x′, y′]≦, then Φ(x, y) = Φ(x′, y′).

The relation ∼ is said to be compatible, if the
set of operators satisfying (9) is stable under
multiplication.

We now consider the particular equivalence
relation ∼= (order isomorphism) on I(L,≦).
Then it is a compatible equivalence relation
(see [5]). One can notice that relatively to ∼=
and the usual order, Z satisfies (9). However,
it is not the case of Γ in the general case; for
instance, if L := L1 = {0, 1, 2}, 1

2 = Γ(0, 1) 6=
Γ(1, 2) = 0, although [0, 1] ∼= [1, 2].

We denote by G̃(≦) the subset of G(≦) of
operators satisfying property (9) relatively to
the compatible relation ∼=. It is possible to re-
duce the algebra structure of operators when
dealing with the elements of G̃(≦): to any
Φ ∈ G̃(≦), we associate the following function

4This name is justified at the end of the section.

ϕ defined on Ĩ(L,≦), quotient set of I(L,≦)
by ∼=:

ϕ([x, y]≦) := Φ(x, y), [x, y]≦ ∈ I(L,≦).
(10)

The identity operator ∆ clearly belongs to
G̃(≦), and has for associated function

δ([x, y]≦) :=

{
1, if x = y,

0, otherwise.

Let g̃(≦) := {ϕ : Ĩ(L,≦) → R | ∀x ∈ L,

ϕ({x}) = 1}. Clearly, (10) being reversible,
we see that any real-valued mapping ϕ on
Ĩ(L,≦) such that ϕ({x}) = 1, x ∈ L, de-
termines uniquely an operator of G̃(≦). For
ϕ,ψ ∈ g̃(≦), we define

ϕ⋆ψ([x, y]≦) := Φ⋆Ψ(x, y), [x, y]≦ ∈ I(L,≦),

where Φ and Ψ are the operators of G̃(≦) re-
spectively induced by ϕ and ψ.

Proposition 5 (G̃(≦), ⋆) and (g̃(≦), ⋆) are
isomorphic groups. δ is the identity element
of (g̃(≦), ⋆).

We now address the particular order rela-
tion ≦ that enables the writing of opera-
tion ⋆ in g̃(≦) in terms of binomial coeffi-
cients, which makes brighter the terminology
“convolution”. From the description of (6) of
Γ, we define the following binary relation in L:

xE y iff ∀i ∈ N,xi = ⊥i or xi = yi.

One can easily check that E in an order re-
lation. Besides, for all x, y s.t. x E y, we
naturally define the element y − x of L by

(y − x)i :=

{
yi, if xi = ⊥i,

⊥i, if xi = yi,
i ∈ N.

Note that if xE y, k(y − x) = k(y)− k(x).

Let w(J (L)) be the width of J (L), that is
to say the cardinal of a maximal antichain of
J (L), that is also the sum of the cardinals of
maximal antichains of the J (Li)’s. As a re-
sult, the greatest intervals of L isomorphic to
a Boolean lattice, are isomorphic to 2w(J (L)).
Note that n ≤ w(J (L)) ≤ |J (L)|.
Considering the elements of Ĩ(L,≤), we de-
note by m the class of all Boolean inter-
vals isomorphic to 2m, m = 0, . . . , w(J (L)).
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In the same way, m denotes the element of
Ĩ(L,E) representing all intervals [x, y]E s.t.
k(y − x) = m, m = 0, . . . , n. Clearly, all
these classes are nonempty. In particular, 0
and 0 are the unique elements of g̃(≤) and
g̃(E) containing singletons of L: 0 = 0 =
{{x} | x ∈ L}. Consequently, the iden-
tity element of g̃(≤) (resp. g̃(E)) simply
writes as the function which is 1 onto 0 (resp.
0), and 0 elsewhere. One can note that in
the general case, Ĩ(L,E) = {0, . . . , n}, but
Ĩ(L,≤) ) {0, . . . , w(J (L))} (there are some
classes having not a “Boolean type”).

By (3) and (6), the associated functions ζ ∈
g̃(≤) of Z and γ ∈ g̃(E) of Γ respectively write

ζ(α) = 1, α ∈ Ĩ(L,≤),

and γ(m) =
1

m+ 1
, m = 0, . . . , n.

Theorem 6 For all ϕ,ψ ∈ g̃(≤), and any
m ∈ {0, . . . , w(J (L))},

ϕ ⋆ ψ(m) =
m∑

j=0

(
m

j

)
ϕ(j)ψ(m− j).

Besides, the inverse of ϕ computes recursively
through

ϕ−1(0) = 1,

ϕ−1(m) = −
m−1∑
j=0

(
m

j

)
ϕ−1(j)ϕ(m− j).

The same formulae hold for ϕ ⋆ ψ(m) and
ϕ−1(m), ϕ,ψ ∈ g̃(E) and m ∈ {0, . . . , n}.
Note that the above result is not general
and does not apply for any g̃(≦). Actually,
G̃(≤) and G̃(E) are very particular subgroups
of G(≤), which refer to particular algebras,
namely of binomial type in the framework of
incidence algebras.

Let (Bm)m∈N be the sequence of Bernoulli
numbers, computing recursively through

B0 = 1,

Bm = − 1
m+ 1

m−1∑
j=0

(
m+ 1
j

)
Bj, m ∈ N \ {0}.

(Bm)m starts with 1,−1/2, 1/6, 0,−1/30,
0, 1/42 . . . , and it is well-known that Bm = 0

for m ≥ 3 odd. From Theorem 6, we derive
the explicit expressions of ζ−1 and γ−1. Thus
by the bijection (10), we derive the following
results.

Z−1(x, y) :=

{
(−1)m, if [x, y] ∼= 2m,

0, otherwise,

and Γ−1(x, y) :=

{
Bk(y−x), if xE y,

0, otherwise,

x, y ∈ L.

7 The interaction operator and its
inverse

By means of the expression of the Bernoulli
operator and Eq. (8), for any lattice function
f , we get

mf (x) =
∑
yDx

Bk(y−x) I
f (y).

For any p ∈ N, and m = 0, . . . , p, we define

bpm :=
m∑

j=0

(
m

j

)
Bp−j,

These numbers have been introduced in [4] to
express a lattice function v from its interac-
tion index Iv. It is easy to compute them from
the sequence of Bernoulli: bp0 = Bp, p ∈ N,
and by applying the recursion of the Pascal’s
triangle:

bp+1
m+1 = bp+1

m + bpm, 0 ≤ m ≤ p.

The coefficients also satisfy the following sym-
metry:

bpm = (−1)p bpp−m, 0 ≤ m ≤ p.

The values of bpm, p ≤ 6, are

We finally give an explicit formula for the in-
verse interaction operator I−1 = Z ⋆ tΓ−1 (cf.
Section 5).

Theorem 7 For all x, y ∈ L,

I−1(x, y) = b
k(x)
k(xy),

where (xy)i :=

{
xi, if xi ≤ yi

⊥i, otherwise
, i ∈ N .

Consequently, for any lattice function f ,

f(x) =
∑
z∈L

b
k(z)
k(zx)

If (z), x ∈ L.
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m

0 1 2 3 4
p 0 1

1 − 1
2

1
2

2 1
6 − 1

3
1
6

3 0 1
6 − 1

6 0
4 − 1

30 − 1
30

2
15 − 1

30 − 1
30

8 Concluding remarks

We provided in this paper a complete frame-
work in order to determine the whole expres-
sion of any game defined on a distributive
game from its interaction transform. As a
final result, we obtain a quite simple expres-
sion for computing this transformation, which
denotes the existence of a simple polynomial
algorithm for realising this task.
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the use of Möbius inversion. Mathemati-
cal Social Sciences, 17:263–283, 1989.

[3] G. Choquet. Theory of capacities. An-
nales de l’Institut Fourier, 5:131–295,
1953.

[4] D. Denneberg and M. Grabisch. Interac-
tion transform of set functions over a fi-
nite set. Information Sciences, 48(1):15–
27, 1999.

[5] P. Doubilet, G.C. Rota, and R. Stanley.
On the foundations of combinatorial the-
ory (VI): The idea of generating func-
tion. In Berkeley University Press, editor,
6th Berkeley Symposium on Mathemati-
cal Statistics and Probability, volume 2,
pages 267–318, 1972.

[6] U. Faigle and W. Kern. The Shapley
value for cooperative games under prece-
dence constraints. International Journal
of Game Theory, 21:249–266, 1992.

[7] M. Grabisch. k-order additive discrete
fuzzy measures and their representa-
tion. Fuzzy Sets and Systems, 92:167–
189, 1997.

[8] M. Grabisch and Ch. Labreuche. Deriva-
tive of functions over lattices as a basis
for the notion of interaction between at-
tributes. Annals of Mathematics and Ar-
tificial Intelligence, 49:151–170, 2007.

[9] M. Grabisch and F. Lange. Games on
lattices, multichoice games and the Shap-
ley value: a new approach. Mathematical
Methods of Operations Research, 65:153–
167, 2007.

[10] M. Grabisch and M. Roubens. An ax-
iomatic approach of interaction in mul-
ticriteria decision making. In 5th Eur.
Congr. on Intelligent Techniques and
Soft Computing (EUFIT’97), pages 81–
85, Aachen, Germany, september 1997.

[11] M. Grabisch and M. Roubens. An ax-
iomatic approach to the concept of in-
teraction among players in cooperative
games. Int. Journal of Game Theory,
28:547–565, 1999.

[12] A. Honda and Y. Okazaki. An axiomati-
zation of Shapley values of games on set
systems, pages 185–192. Number 4617
in Lecture Notes in Computer Science.
Springer, 2007.

[13] F. Lange and M. Grabisch. Interaction
transform for bi-set functions over a fi-
nite set. Information Sciences, 176:2279–
2303, 2006.

[14] L.S. Shapley. A value for n-person games.
In H.W. Kuhn and A.W. Tucker, editors,
Contributions to the Theory of Games,
Vol. II, number 28 in Annals of Mathe-
matics Studies, pages 307–317. Princeton
University Press, 1953.

Proceedings of IPMU’08 1469


