
A Multiobjective Ant Colony Optimization Algorithm for the
1/3 Variant of the Time and Space Assembly Line Balancing

Problem

M. Chica, O. Cordón, S. Damas
European Centre for Soft Computing

c/Gonzalo Gutiérrez Quirós, s/n
33600 Mieres (Asturias, Spain)

{manuel.chica, oscar.cordon, sergio.damas}
@softcomputing.es

J. Bautista, J. Pereira
Nissan Chair - UPC ∗

Av. Diagonal, 647
08028 Barcelona (Spain)

{joaquin.bautista, jorge.pereira}
@upc.edu

Abstract

We present a new multiobjective
proposal based on Ant Colony Op-
timization to solve a more realis-
tic extension of a classical industrial
problem: Time and Space Assem-
bly Line Balancing. Promising re-
sults are shown after applying the
designed Multiobjective Ant Colony
Optimization algorithm to four real-
like problem instances.

Keywords: Ant Colony Opti-
mization, Multiobjective optimiza-
tion, Assembly Lines, Metaheuris-
tics, Manufacturing, Production.

1 Introduction

The manufacturing of a production item is
divided up into a set of tasks. Each task
requires an operation time for its execution
which is determined as a function of the man-
ufacturing technologies and resources. A sub-
set of tasks is assigned to each station of the
plant. An usual and difficult problem is to
determine how tasks can be assigned to the
stations fulfilling the restrictions.

A family of this kind of problems is the
one known as Simple Assembly Line Bal-
ancing Problem (SALBP). Taking this fam-
ily as a base, Bautista et al. recently pro-
posed a more realistic subfamily [2], Time
and Space Assembly Line Balancing Prob-
lem (TSALBP), which considers an additional

∗ Universitat Politècnica de Catalunya

space constraint. This extended variant fits
better to the real automotive industry sce-
nario where our work is focused on.

As many real-world problems, TSALBP for-
mulations have a multicriteria nature because
they contain three conflicting objectives to
be minimised: the cycle time of the assem-
bly line, their area and the number of the
stations. In this paper we have selected the
TSALBP-1/3 variant which tries to minimise
the number of stations and their area for a
given product cycle time. We have made this
decision because it is quite realistic in the au-
tomotive industry. Moreover, the design of a
multiobjective approach to solve it is one of
the novelties presented in this contribution.

TSALBP-1/3 has an important set of con-
straints like precedences or cycle time limits
for each station. Thus, the use of constructive
metaheuristics like Ant Colony Optimization
(ACO) [7] is more convenient than others like
local or global search procedures [11].

Due to the two latter reasons, i.e., the mul-
tiobjective nature of the problem and the
need to solve it through constructive algo-
rithms, we will work with a multiobjective
ACO (MOACO) algorithm [10]. This family
involves different variants of ACO algorithms
which aim to find not only one solution, but a
set of the best solutions according to several
conflicting objective functions. Pareto-based
MOACO algorithms are included in this cat-
egory and seem to be the most interesting.

We have chosen Multiple Ant Colony System
(MACS) [1] to solve the TSALBP-1/3 because

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1454–1461

Torremolinos (Málaga), June 22–27, 2008

of its good performance in the experimental
study developed in [10]. Four real-like in-
stances have been selected in order to test and
analyse the performance of our new proposal.

This paper is structured as follows. In Section
2, the initial problem and all its variants are
explained in depth. In Section 3, the details
of the MOACO algorithm applied (MACS)
are reviewed. In Section 4, a straightforward
explanation of our approach for the general
MACS scheme to solve the TSALBP-1/3 is
tackled. Every experiment we did to check
the performance of the algorithm besides their
analysis are shown in Section 5. Finally, in
Section 6, some concluding remarks and pro-
posals for future work are commented on.

2 TSALBP and TSALBP-1/3

2.1 A brief introduction to the
assembly line balancing problem

The manufacturing of a production item is di-
vided up into a set V of n tasks. Each task
j requires an operation time for its execution
tj > 0 that is determined as a function of the
manufacturing technologies and the employed
resources. Each station k is assigned to a sub-
set of tasks Sk (Sk ⊆ V), called its workload.
A task j must be assigned to one station k.

Each task j has a set of direct predecessors,
Pj , which must be accomplished before start-
ing it. These constraints are normally rep-
resented by means of an acyclic precedence
graph, whose vertices stand for the tasks and
where a directed arc (i, j) indicates that task i
must be finished before starting task j on the
production line. Thus, if i ∈ Sh and j ∈ Sk,
then h ≤ k must be fulfilled. Each station k
presents a station workload time t(Sk) that is
equal to the sum of the tasks’ lengths assigned
to the station k.

In general, SALBP [16] focus on grouping to-
gether the tasks belonging to the set V in
workstations by an efficient and coherent way.
In short, the goal is to achieve a grouping of
tasks that minimises the inefficiency of the
line or its total downtime satisfying all the
constraints imposed on the tasks and on the

stations. The literature includes a large va-
riety of exact and heuristic problem-solving
procedures as well as metaheuristics applied
to the SALBP [15, 17].

2.2 TSALBP: the need of space
constraints

The need of introducing space constraints in
the assembly lines’ design is based on two
main reasons: (a) the length of the worksta-
tion is limited in the majority of the situa-
tions, and (b) the required tools and compo-
nents to be assembled should be distributed
along the sides of the line.

An area constraint may be considered by as-
sociating a required area aj to each task j
and by associating an available area Ak to
each station k that, for the sake of simplicity,
we shall assume to be identical for every sta-
tion and equal to A : A = max∀k∈{1..n}{Ak}.
Thus, each station k will require a station area
a(Sk) that is equal to the sum of areas re-
quired by the tasks assigned to station k.

This leads us to a new family of problems that
was called TSALBP in [2]. It may be stated
as: given a set of n tasks with their temporal
tj and spatial aj attributes (1 ≤ j ≤ n) and a
precedence graph, each task must be assigned
to a single station such that:

1. all the precedence constraints are satis-
fied.

2. no station workload time, t(Sk), is
greater than the cycle time, c.

3. no area required by any station, a(Sk), is
greater than the available area per sta-
tion, A.

TSALBP presents 8 variants depending on
three optimization criteria: m (the number
of stations), c (cycle time) and A (the area
of the stations). Within these variants there
are four multiobjective problems. For exam-
ple, TSALBP-1/3 consists of minimising the
number of stations m and the station area A,
given a fixed value of the cycle time c.

Proceedings of IPMU’08 1455

Bautista et al. [2] proposed an ACO algo-
rithm to solve a single-objective variant of the
TSALBP. However, there is no approach in
the literature to tackle any of the variants of
TSALBP with a multiobjective approach.

We have chosen the 1/3 variant of TSALBP
because it is quite realistic as the annual pro-
duction of an industrial plant (and therefore,
the cycle time c) is usually set by some mar-
ket objectives. Besides, the search for the best
number of stations and areas is logical if we
want to reduce costs and make workers’ day
better by setting up less crowded stations.

3 Multiple Ant Colony System

As said, we have chosen MACS [1] because
of its good performance in the experimental
study developed in [10]. Moreover, for this
initial work, we wanted a MOACO algorithm
achieving a good convergence to all the Pareto
front surface and not only to its central part
or its extents as in other approaches [10].

MACS was proposed as a variation of the
MACS-VRPTW [9], so it is also based on
ACS [6]. Nevertheless, MACS uses a single
pheromone trail matrix, τ , and several heuris-
tic information functions, ηk, one per objec-
tive function, in our case η0 and η1. In this
way, an ant moves from node i to node j by
applying the following transition rule:

j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arg maxj∈Ω(τij · [η0

ij]
λβ · [η1

ij]
(1−λ)β),

if q ≤ q0,

î,
otherwise,

where β weights the relative importance of
the objectives with respect to the pheromone
trail, λ is computed for each ant h as λ =
h/M , with M being the number of ants, and
î is a node selected according to the following
probability distribution:

p(j) =

⎧⎨⎩
τij ·[η0

ij]
λβ ·[η1

ij]
(1−λ)β∑

u∈Ω
τiu·[η0

iu]λβ ·[η1
iu](1−λ)β , if j ∈ Ω,

0, otherwise,

Every time an ant crosses the edge aij, it per-
forms the local pheromone update as follows:

τij = (1− ρ) · τij + ρ · τ0

Initially, τ0 is calculated from a set of heuristic
solutions by taking their average costs in each
of the two objective functions, f0 and f1, and
applying the following expression:

τ0 =
1

f̂0 · f̂1

However, the value of τ0 is not fixed during
the algorithm run, as usual in ACS, but it
undergoes adaptation. At the end of each it-
eration, every complete solution built by the
ants in the colony is compared to the Pareto
set P generated till now to check if the for-
mer is a non-dominated solution. If so, it
is included in the archive and all the solu-
tions dominated by it are removed. Then, τ ′0
is calculated by applying the previous equa-
tion with the average values of each objec-
tive function taken from the solutions cur-
rently included in the Pareto set. Then, if
τ ′0 > τ0, the current initial pheromone value,
the pheromone trails are reinitialised to the
new value τ0 ← τ ′0. Otherwise, the global up-
date is performed with each solution S of the
current Pareto optimal set P by applying the
following rule on its composing edges aij:

τij = (1− ρ) · τij +
ρ

f0(S) · f1(S)

4 Our approach to solve the
TSALBP-1/3

4.1 Representation of a solution

In our case, one solution is an assignment
of different tasks to different stations. The
problem is that, contrary to other assignment
problems like QAP [12], the number of sta-
tions is not fixed. Indeed, it is a variable
to be minimised and we have to deal with
the important issue of satisfying precedence
constraints. As said, our procedure has to
be constructive and it is important to decide

1456 Proceedings of IPMU’08

what kind of representation we have to con-
sider. Using a constructive approach we can
face the precedence problem. Likewise, an or-
der codification may help us to give an ade-
quate sequence of tasks as it is usually done
for the SALBP [17]. Thus, our proposal will
work with an order representation in which a
sequence of tasks is represented.

However, giving a sequence does not solve
the problem because the station assignment
is still missing. Thus we have introduced
the separator concept within the representa-
tion. Consequently, each position of our or-
der scheme can be either a task number or
a separator. We use separators to split up
the sequence of tasks into different stations.
A separator must be an integer (greater than
the number of every task) to avoid the confu-
sion with a task. This representation has been
used in other problems like clustering [13, 14].

At the beginning, we decided to use a sepa-
rator when the station was full in relation to
the fixed cycle time c. We noticed that this
scheme did not succeed because the Pareto
front did not have enough diversity. Thus, we
introduced a new mechanism in the construc-
tion algorithm to put a separator in accor-
dance with a probability, given by the filling
rate of the station:

p(sep) =
∑

∀i∈Sk
ti

c

This probability threshold is computed at
each construction step so it is progressively
increasing its value. Once it has been com-
puted, a random number is generated to de-
cide if the station is closed using a separator
or not with respect to that threshold.

4.2 Objective functions

According to the TSALBP formulation, the
1/3 variant manages with the optimization of
the number of the stations, m, and the needed
area, A. Using the notation given in Section
2, we can formulate its objectives as:

1. Z1(x) = m =
∑UB

k=1 max1≤j≤n{xjk}
2. Z2(x) = A = max1≤k≤UB{

∑n
j=1 ajxjk}

4.3 Heuristic information

The multiobjective algorithm works with two
different heuristic information values, each of
them associated to one objective. The first
one η0

j is related with the required time for
each task and the second one η1

j with the re-
quired area:

η0
j =

tj
UBc

× | F ∗
j |

maxi∈V | F ∗
i |

η1
j =

aj

UBA
× | F ∗

j |
maxi∈V | F ∗

i |

where UBA and UBc are upper bounds for
the area (the sum of all tasks’ areas) and the
time of each task (the given cycle time for the
assembly line), respectively. All the heuristics
give a value within the interval [0, 1], with 1
being the most preferable.

Tasks having a large value of time (a large
duration) and area (occupying a lot of space)
are preferred to be firstly allocated in the sta-
tions. Regardless area and time information,
we have added another information related to
the number of succesors of the task which was
already used in [2]. Tasks with a larger num-
ber of successors are preferred to be allocated
first.

4.4 Pheromone trail and τ0

calculation

The pheromone trail information has to
memorise which tasks are the most ap-
propiate to belong to a station. Hence,
pheromone has to be associated to a pair
(tasknumber, stationnumber). It is not useful
depositing pheromone when we put a separa-
tor in our construction proccess because it is
only a mark to distinguish one station from
another.

In every ACO algorithm, an initial value for
pheromone has to be set up. This value is
called τ0 and normally is obtained from an
heuristic algorithm. We have used two single-
objective greedy algorithms, one per heuris-
tic, which work as follows. They open the

Proceedings of IPMU’08 1457

first station and select the best possible task
according to their heuristic information (re-
lated either with the area and succesors, or
the duration and succesors), repeating this
process till no more tasks can be included due
to the cycle time limit, so a new station will
be opened. When no more tasks are to be
assigned, the greedy algorithm finishes.

4.5 A basic random and an ACS
algorithm

As there are not previous contributions to
this problem, we are not able to compare our
MACS approach against other proposals. So
we have designed a basic multiobjective ran-
dom search algorithm and a single-objective
ACS algorithm [6] using the said coding.

The basic random search algorithm creates
randomly a task sequence satisfying all prece-
dence constraints. Starting with that se-
quence we need to divide it into stations ful-
filling the cycle time limit for every station
we create. To achieve that station assign-
ment, the algorithm chooses one position to
insert a separator at random but considering
not to create a station with no tasks and not
to exceed the cycle time limit. The algorithm
finishes when all tasks are assigned to a sta-
tion. The non-dominated solution archive and
all the multiobjective mechanisms have been
built as in the MACS algorithm.

On the other hand, the ACS algorithm has
been designed according to the original ver-
sion proposed in [6]. The most important is-
sue is how to tackle a multi-objective problem
designing a single-objective ACO algorithm.
This problem has been resoluted by means of
a weighted rule for the aggregation of the two
objectives into one as follows:

Z(x) = α ·m + (1− α) ·A

5 Experiments and analysis of
results

This section shows the experimentation devel-
oped and a discussion on the results consider-
ing multiobjective metrics and some graphics.

5.1 Parameter values

The MOACO algorithm and the basic ran-
dom search algorithm have been run ten times
with ten different seeds for each of the four
selected SALBP-1 instances 1. The ACS al-
gorithm has been run eleven times with differ-
ent values of α parameter in order to spread
all the extent of the Pareto front. The four
problems have different features like time vari-
ability and order strength, and their names
are arc111 (with cycle time c = 5755 and
c = 7520), barthol2 (c = 85) and wee-mag
(c = 56). Originally, these instances only have
time information but we have created their
area information from the latter by reverting
the task graph to make them bi-objective (as
done in [2]). All the considered parameter
values are shown in Table 1.

Table 1: Used parameter values

Parameter Value
Number of runs 10

Maximum run time 900 seconds
Number of ants 10

β 2
ρ 0.2
q0 {0.2, 0.5, 0.8}

α for ACS {0, 0.1, 0.2, ...0.9, 1}
PC Specs. Intel PentiumTM D

2 CPUs at 2.80GHz
OS CentOS Linux 4.0

GCC 3.4.6

5.2 Results and analysis

The quality of our proposal is measured ap-
plying unary metrics: the number of total and
different (in the objective vectors) Pareto so-
lutions of each algorithm, and the S, M2∗

and M3∗ metrics [4]. S, the size of the space
covered, measures the volume enclosed by the
Pareto front, M2∗ evaluates the distribution
of the solutions and M3∗ evaluates the extent
of the Pareto fronts 2. These metrics have
been applied to the multiobjective algorithms.

1http://www.assembly-line-balancing.de
2M1∗ has not been applied because we do not know

the optimal Pareto fronts for this real-world problem.

1458 Proceedings of IPMU’08

Table 2: Metrics about the results of each algorithm
sols(σ) # dif sols(σ) S(σ) M2*(σ) M3*(σ)

ARC111 with cycle time = 5755

Rand 11.1 (1.58) 10.9 (1.3) 9722162 (71239.19) 8.65 (0.79) 6303.02 (948.18)
M-0.2 9.7 (1.19) 9.6 (1.02) 10941016 (58244.8) 7.21 (0.98) 7951.11 (2401.1)
M-0.5 9.8 (0.98) 9.8 (0.98) 10920109 (36905.44) 6.95 (0.87) 7954.12 (3451.34)
M-0.8 8.7 (1.9) 8.6 (1.91) 10891762 (59504.72) 6.57 (1.1) 8199.41 (2791.27)

ARC111 with cycle time = 7520

Rand 11 (1.95) 11 (1.95) 11111291 (110417.72) 8.93 (1.27) 7028.72 (2109.64)
M-0.2 11.1 (1.76) 11.1 (1.76) 11824752 (75967.81) 8.02 (1.23) 9394.11 (3747.26)
M-0.5 9.9 (1.58) 9.9 (1.58) 11802513 (98203.98) 7.19 (0.8) 8169.41 (2018.62)
M-0.8 10.9 (2.17) 10.7 (1.9) 11754518 (68264.43) 8.29 (1.19) 7110.72 (1816.7)

BARTHOL2 with cycle time = 85

Rand 10.9 (1.97) 9.8 (1.72) 279722.31 (1893.13) 8.13 (1.29) 77.36 (25.17)
M-0.2 10.8 (1.94) 9.9 (1.04) 340742.5 (3055.09) 7.83 (1.1) 102.35 (37.96)
M-0.5 12.1 (3.14) 10.6 (2.29) 339581 (2608.08) 8.46 (1.38) 95.07 (36.63)
M-0.8 10.6 (2.87) 9.3 (1.79) 339321.59 (1937.75) 7.47 (1.41) 100.79 (32.8)

WEEMAG with cycle time = 56

Rand 16.3 (5.4) 8.2 (0.98) 50585.3 (431.63) 7.44 (0.73) 26.28 (2.02)
M-0.2 12.7 (4.71) 9 (1.48) 60890.7 (431.31) 7.99 (1.29) 32.15 (5.06)
M-0.5 11.6 (3.64) 8.3 (1.35) 60453.7 (566.7) 7.35 (1.28) 33.37 (14.57)
M-0.8 12 (2.93) 8.9 (1.04) 60188.9 (700.19) 8.11 (0.92) 28.32 (3.82)

Figure 1: Box-plots of the results obtained in
the C metric

In Table 2 we can observe the values of the dif-
ferent unary Pareto metrics. The MACS algo-
rithm with q0 = 0.2 achieves better and more
vast Pareto fronts than the others in most of
the cases. It obtains Pareto fronts with more
diversity and better convergence than using
higher values of q0.

On the other hand, we have considered the
binary metric C [4] to compare the obtained
Pareto sets. Graphics in Figure 1 are box-
plots based on C metric which compares the

variants of the algorithm to each other by
calculating the dominance degree of their re-
spective Pareto sets. Each rectangle contains
four box-plots (from left to right, arc111-5755,
arc111-7560, barthol2 and wee-mag) repre-
senting the distribution of the C values for
a certain ordered pair of algorithms. Each
box refers to algorithm A associated with the
corresponding row and algorithm B associ-
ated with the corresponding column and gives
the fraction of B covered by A (C(A,B)).
Consider, for instance, the top right box,
which represents the fraction of solutions of
MACS q0 = 0.8 variant covered by the non-
dominated sets produced by the basic random
search algorithm.

Joining the box-plots (Figure 1) and the
unary metrics (Table 2), we can reinforce
that the q0 = 0.2 variant is the best one,
q0 = 0.5 the second (with a short difference),
and q0 = 0.8 gets the worst results. As ex-
pected, all of them outperform the random
search algorithm. Thus, a diversity scheme
seems to be better than an intensification ap-
proach for the current problem. Neverthe-
less, in the fourth instance, wee-mag, the be-
haviour of the q0 = 0.8 variant is not as bad as
in the others. The reason is that in wee-mag
every task is quite similar in terms of time
and area, so the diversity is less important.

The graphical representation of the returned

Proceedings of IPMU’08 1459

Figure 2: Pareto fronts for arc111 problem.

Pareto fronts for the arc111-5755 instance is
shown in Figure 2. The four solutions ob-
tained by joining the eleven runs of the ACS
algorithm for this problem have been included
as well. These graphic will help us to un-
derstand the values of the metrics. Because
of space restrictions and pretty similar be-
haviours, we have only included the Pareto
front of one problem instance.

In Figure 2, we can clearly see that all MACS
variants outperform the basic random search
but on the right-most extent of the Pareto
fronts, where the largest exploration capabil-
ity of the latter algorithm allows it to get a
few additional solutions. This will be an is-
sue to be tackled in future developments by
increasing the diversity of MACS. Regardless
the random search has not got as good con-
vergence and diversity as MACS variants.

With respect to the ACS algorithm, every so-
lution but one is dominated by MACS q0 =
0.2. Besides, we can appreciate the good
distribution of the Pareto front obtained by
MACS q0 = 0.2 in comparison with the
formed ACS algorithm. Finally, we should
remark that MACS q0 = 0.5 obtains a good
convergence to the central part of the front.

6 Concluding remarks and future
work

In the current contribution we have pro-
posed a new approach to tackle the TSALBP-
1/3. The performance of a solution procedure
based on the MACS algorithm with differ-
ent parameter values has been presented and
analysed. Bi-objective variants of four real-
world assembly line problems have been used
in our study.

From the obtained results we have found out
that the yield of MACS algorithm is good
to solve the problem, as Pareto sets of good
quality with a number of different solutions
have been achieved. Comparing the results of
all MACS runs we notice that the algorithm
works better when we use 0.2 as a value for
q0 parameter. Thus, there is a need to gain
diversity in our problem to get better results.

Several ideas for future developments arise
from this preliminary study: (i) performance
of the considered MACS algorithm can be
increased with some improvements like en-
hancing exploration using ants with different
search behaviours (i.e., multi-colony); (ii) the
comparison of the MOACO algorithm with
more complex algorithms, for example, de-

1460 Proceedings of IPMU’08

signing a new GRASP [8] to solve it; (iii) se-
lecting other MOACO algorithms in order to
find out which the best one is; (iv) the solu-
tion of real-world multiobjective problem in-
stances, above all, data from a real Nissan
industry plant, placed in Barcelona (Spain).

Acknowledgements

We thank the UPC Nissan Chair as well as the
Spanish Government for partially funding this
work by means of a PROTHIUS-II project:
DPI2007-63026.

References

[1] B. Barán, M. Schaerer. A multiobjec-
tive ant colony system for vehicle rout-
ing problem with time windows. In Pro-
ceedings of the 21st IASTED Interna-
tional Conference, pages 97-102, Inns-
bruck (Germany), February 2003.

[2] J. Bautista, J. Pereira. Ant algorithms
for a time and space constrained assem-
bly line balancing problem. European
Journal of Operational Research 177,
pages 2016-2032, 2007.

[3] I. Baybars. A survey of exact algorithms
for the simple assembly line balancing
problem. Management Science 32 (8),
pages 909-932, 1986.

[4] C.A. Coello, D.A. Van Veldhuizen,
G.B. Lamont. Evolutionary Algorithms
for Solving Multi-objective Problems.
Kluwer, 2002.

[5] O. Cordón, F. Herrera, T. Stützle. A
review on the ant colony optimization
metaheuristic: Basis, models and new
trends. Mathware and Soft Computing 9
(2-3), pages 141-175, 2002.

[6] M. Dorigo, L. Gambardella. Ant colony
system: A cooperative learning approach
to the travelling salesman problem. IEEE
Transactions on Evolutionary Computa-
tion 1 (1), pages 53-66, 1997.

[7] M. Dorigo, T. Stützle. Ant Colony Opti-
mization. MIT Press, Cambridge, 2004.

[8] T.A. Feo, M.G.C. Resende. Greedy Ran-
domized Adaptive Search Procedures.
Journal of Global Optimization 6, pages
109-134, 1995.

[9] L. Gambardella, E. Taillard, G. Agazzi.
MACS-VRPTW: A multiple ant colony
system for vehicle routing problems with
time windows. In News ideas in optimiza-
tion, pages 73-76, London, 1999.

[10] C. Garćıa Mart́ınez, O. Cordón, F. Her-
rera. A taxonomy and an empirical anal-
ysis of multiple objective ant colony op-
timization algorithms for the bi-criteria
TSP. European Journal of Operational
Research 180, pages 116-148, 2007.

[11] G.A. Kochenberger, F. Glover. Hand-
book of Metaheuristics. Kluwer Aca-
demic, 2003.

[12] T.C. Koopmans, M.J. Beckmann. As-
signment problems and the location of
economics activities. Econometrica 25,
pages 53-76, 1957.

[13] J.A. Lozano, P. Larrañaga, M. Graña.
Partitional cluster analysis with genetic
algorithms: searching for the number
of clusters. In Data Science, Classifica-
tion and Related Methods, pages 117-
125. Springer, 1998.

[14] A.M. Robertson, P. Willett. Generation
of Equifrequent Groups of Words Using a
Genetic Algorithm. Journal of Documen-
tation 50 (3), pages 213-232, 1994.

[15] A. Scholl, S. Voss. Simple assembly line
balancing- Heuristic approaches. Journal
of Heuristics 2, pages 217-244, 1996.

[16] A. Scholl. Balancing and sequencing of
assembly lines. Physica-Verlag, Heidel-
berg, 1999.

[17] A. Scholl, C. Becker. State-of-the-art ex-
act and heuristic solution procedures for
simple assembly line balancing. Euro-
pean Journal of Operational Research
180, pages 116-148, 2006.

Proceedings of IPMU’08 1461

