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Abstract

This work analyzes the application
of Multi-Objective Evolutionary Al-
gorithms in order to attain the de-
sired accuracy/interpretability bal-
ance of Fuzzy Rule-Based Systems
by preserving the improved accuracy
that a tuning of membership func-
tions could give and obtaining more
compact models. The results shows
that the use of expert knowledge in
the algorithm design process can sig-
nificantly improve the search ability
of these algorithms, obtaining more
accurate and at the same time sim-
pler models with respect to the sin-
gle objective based approach.

Recently, Multi-Objective Evolutionary Al-
gorithms (MOEAs) [6, 9] have been ap-
plied to improve the accuracy/interpretability
trade-off of linguistic Fuzzy Rule-Based Sys-
tems (FRBSs), by obtaining Mamdani type
models not only accurate but also inter-
pretable. Since this problem presents a multi-
objective nature the use of MOEAs to ob-
tain a set of solutions with different accu-
racy/interpretability degrees is an interesting
way to work [5, 8, 13, 14, 15, 16]. Most
of these works were applied to classification
problems in order to obtain the complete
Pareto (set of non-dominated solutions with
different trade-off) by selecting or learning the
set of rules better representing the example
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data, i.e., improving the system accuracy and
decreasing the FRBS complexity but not con-
sidering learning or tuning [4] of the Member-
ship Functions (MF), one of the most powerful
techniques to improve the system accuracy.

Our aim in this work is to analyze different al-
ternatives in order to attain the desired accu-
racy/interpretability balance by maintaining
the improved accuracy that a tuning of MFs
could give but trying to obtain more compact
models. To do this, this work analyzes the ap-
plication of MOEAs by performing rule selec-
tion and a tuning of the MFs parameters, rep-
resenting a more complex search space that
needs of different considerations with respect
to the works in the existing literature. Indeed,
to directly apply the most recognized MOEAs
to perform together tuning and rule selection
could present some important problems.

The main problem is that it is practically
impossible to obtain the complete optimal
Pareto due to the larger search space and due
to a faster tuning of the simplest solutions
before exploring more promising rule configu-
rations. In this way, it is necessary to include
any expert knowledge in the MOEA design
process [3]. An adequate application of stan-
dard MOEAs could partially deal with this
problem by focusing the search in the most
interesting zone of the Pareto frontier. Tak-
ing into account that non-dominated solutions
with a small number of rules and high errors
are usually not interesting for an expert since
they have not the desired trade-off between
accuracy and interpretability, we could focus
the search only in the Pareto zone with the
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most accurate solutions trying to obtain the
least possible number of rules (see Figure 1).
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Figure 1: Pareto Frontier in this Problem

In this way, we propose the use of MOEAs
as the tool to get almost one improved solu-
tion with respect to the classic single objective
algorithm (a solution dominating this one).
For that, this work presents and analyzes the
application of the well-known SPEA2 (stan-
dard MOEA applying proper genetic opera-
tors) and two extended MOEAs for specific
application, SPEA2Acc in [1] and an extension
of it proposed in this paper that by applying
an intelligent crossover operator (specific for
this problem) is able to extract more useful in-
formation from different parents, SPEA2Acc2 .

Additionally, NSGA-II and two versions of it
for finding knees [2] (theoretically the most
promising Pareto zones in this problem) are
also used with comparative purposes by using
the same operators proposed for SPEA2. The
results show that the use of expert knowledge
in the MOEAs design process significantly im-
proves the search ability of these algorithms.

This work is arranged as follows. Next section
presents three specific MOEAs and appropri-
ate genetic operators for their specific applica-
tion. Section 2 shows an experimental study
of these methods in a complex problem. Fi-
nally, Section 3 points out some conclusions.

1 Three Specific MOEAs for Rule
Selection and Tuning of MFs

The proposed algorithms will perform rule se-
lection from a given fuzzy rule set together

with a parametric tuning of the MFs by in-
cluding expert knowledge in the design pro-
cess in a cumulative way. We consider one of
the most used MOEAs of the second genera-
tion, SPEA2 [18] and two extended ones for
specific application to this concrete problem,
SPEA2Acc in [1], and an extension of that,
called SPEA2Acc2 . All of them consider two
objectives, system error and number of rules.

In the next, we present SPEA2 and SPEA2Acc

algorithms and we propose SPEA2Acc2 ap-
plied for linguistic fuzzy modeling. At first,
the common components of these algorithms
are proposed and then the main steps and spe-
cific characteristic of them are described.

1.1 Common Components

As mentioned, we describe three algorithms
including expert knowledge in a cumulative
way to perform tuning and rule selection. In
the next, the common components needed to
apply these algorithms in this problem are ex-
plained. They are coding scheme, initial gene
pool, objectives and genetic operators:

• Coding scheme and initial gene pool

A double coding scheme for both rule se-
lection (CS) and tuning (CT ) is used:

Cp = Cp
SCp

T

In the Cp
S = (cS1, . . . , cSm) part, the

coding scheme consists of binary-coded
strings with size m (number of initial
rules). Depending on whether a rule is
selected or not, values ‘1’ or ‘0’ are as-
signed to the corresponding gene. In the
CT part, a real coding is considered, be-
ing mi the number of labels of each of the
n variables in the data base,

Ci = (ai
1, b

i
1, c

i
1, . . . , a

i
mi , b

i
mi , c

i
mi),

i = 1, . . . , n, Cp
T = C1C2 . . . Cn .

The initial population is obtained with
all individuals having all genes with value
‘1’ in the CS part. And in the CT part
the initial data base is included as first in-
dividual. The remaining ones are gener-
ated at random within the corresponding
variation intervals, which are calculated
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from the initial data base. For each MF,
Cj

i = (aj , bj , cj), the variation intervals
are calculated in the following way:

[Il
aj , Ir

aj ] = [aj − (bj − aj)/2, aj + (bj − aj)/2]

[Il
bj , Ir

bj ] = [bj − (bj − aj)/2, bj + (cj − bj)/2]

[Il
cj , Ir

cj ] = [cj − (cj − bj)/2, cj + (cj − bj)/2]

Besides, we have to highlight the way to
generate the CS part in the initial popu-
lation. Usually, GAs generate the initial
population totally at random (random
selection of the initial rules). However,
to get solutions with high accuracy we
should not lose rules that could present
good cooperation once their MFs have
been evolved. A way to do this is to
start with solutions selecting all the rules,
which favors a progressive extraction of
bad rules (those that do not improve with
the tuning of parameters), only by means
of the mutation at the beginning and
then by means of the crossover.

• Objectives

Two objectives are minimized: number
of rules and Mean Squared Error,

MSE =
1

2 · |E|
|E|∑
l=1

(F (xl) − yl)2,

with |E| being the size of a data set E,
F (xl) being the output obtained from
the FRBS decoded from the said chromo-
some when the l-th example is considered
and yl being the known desired output.
The fuzzy inference system to obtain
F (xl) is the center of gravity weighted by
the matching strategy as defuzzification
operator and the minimum t-norm as im-
plication and conjunctive operators.

• Genetic Operators

The crossover operator depends on the
chromosome part where it is applied:
BLX-0.5 [12] in CT and HUX [11] in CS .
Four offspring are generated by combin-
ing the two from CS with the two from
CT (the two best replace to their par-
ent). The mutation operator changes a
gene value at random in CS and CT (one
in each part) with probability Pm.

1.2 SPEA2 Based Approach

Considering the components defined and the
descriptions of the authors in [18], the SPEA2
algorithm consists of the next steps:

Input: N (population size), N (external popula-
tion size), T (maximum number of generations).

Output: A (non-dominated set).

1. Generate P0 (initial population) and cre-
ate P 0 = ∅ (empty external population).

2. Calculate fitness values of individuals in
Pt and P t.

3. Copy all non-dominated individuals in
Pt ∪ P t to P t+1. If |P t+1| > N apply
truncation operator. If |P t+1| < N fill
with dominated in Pt ∪ P t.

4. If t ≥ T , return A and stop.

5. Perform binary tournament selection
with replacement on P t+1 in order to fill
the mating pool.

6. Apply recombination (BLX-HUX) and
mutation operators to the mating pool
and set Pt+1 to the resulting population.
Go to step 2 with t = t + 1.

1.3 Accuracy-Oriented Based
Approach: SPEA2Acc Algorithm

SPEA2Acc was recently proposed in [1], and is
a particularization of SPEA2 to better solve
the problem of rule selection and tuning of
FRBSs. This algorithm tries to focus the
search on the desired Pareto zone, high accu-
racy and low number of rules, proposing two
main changes on SPEA2 for giving more selec-
tive pressure to those solutions with higher ac-
curacy (exploration in principle and explota-
tion at the end). These changes were also ap-
plied on NSGA-II in [1] showing not so good
results. The said changes are described next:

• A restarting operator is applied at the
algorithm mid, by maintaining the most
accurate individual as the sole individ-
ual in P t+1 (with size 1) and obtaining
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the remaining individuals in Pt+1 with
its same rule configuration and tuning
parameters generated at random (within
their respective variation intervals). This
operation is performed in step 4 as a sec-
ond condition, then returning to step 2
with t = t+1. The search is then concen-
trated in the desired Pareto zone (similar
solutions in a zone with high accuracy).

• In each algorithm stage (before/after
restarting), the number of solutions in
P t+1 considered to form the mating pool
is progressively reduced. To do that,
the solutions are sorted from the best to
the worst (considering accuracy as sort-
ing criterion) and the number of solu-
tions considered for selection is progres-
sively reduced from 100% at the begin-
ning to 50% at the end of each stage
(|P t+1| · TotalEvals−Evals

TotalEvals , with Evals be-
ing the number of evaluations from the
last restarting).

1.4 SPEA2Acc Extension: SPEA2Acc2

SPEA2Acc represents a good way to obtain
more accurate solutions by maintaining only
a few more rules with respect to its counter-
part (SPEA2). However, sometimes this fact
represents a problem since there are problems
in which to obtain accurate solutions could
be easy but not so easy to remove unneces-
sary rules. In this subsection, we extend this
algorithm in order to solve this problem.

To do that, we replace the HUX crossover (CS

part) by an intelligent crossover based on our
experience in this concrete problem, which is
able to profit even more from the correspond-
ing parents. To obtain each offspring the fol-
lowing steps are applied:

1. The BLX crossover is applied to obtain
the CT part of the offspring.

2. Once the real parameters are obtained for
the whole data base, for each gene in CS

the corresponding rule is independently
extracted from each individual involved
in the crossover (offspring and parents 1
and 2). The same rule is then obtained

three times with different MFs (those
concerning these three individuals).

3. Euclidean normalized distances are com-
puted between offspring and each parent
by only using the center points (vertex) of
the MFs involved in the extracted rules.
The differences between each two points
are normalized by the amplitude of their
respective variation intervals.

4. The nearest parent is the one that deter-
mines if this rule is selected or not for the
offspring by directly copying its value in
CS for the corresponding gene.

5. This process is repeated until all the CS

values are assigned for the offspring.

Four offspring are obtained by repeating this
process four times (after applying mutation,
only the two most accurate are taken as de-
scendent). By using this operator, explora-
tion is performed in the CT part and the CS

part is obtained based on the previous knowl-
edge each parent has about the use or not of
a specific configuration of MFs for each rule.

Since a better exploration is performed for the
CS part, the mutation operator does not need
to add rules (rules eliminated in the parents
for a similar bad configuration of the MFs in-
volved in them). Thus, once an offspring is
generated the mutation operator changes a
gene value at random in CT (as in the pre-
vious algorithm) and directly sets to zero a
gene selected at random in CS (one gene is
considered in each part) with probability Pm.

Applying these operators two problems are
solved. Firstly, crossing individuals with very
different rule configurations is more produc-
tive. And secondly, this way to work favors
rule extraction since mutation is only engaged
to remove unnecessary rules.

2 Experiments

In this section, we present an example on
the use of MOEAs to obtain linguistic models
with a good trade-off between interpretabil-
ity and accuracy in a real-world problem [7]
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Table 1: Methods Considered for Comparison
Method Ref. Description

WM [17] Wang & Mendel Algorithm
WM+T (T) [4] Tuning of Parameters
WM+S (S) [4] Rule Selection

WM+TS (TS) [4] Tuning & Selection
Application of standard MOEAs for general use

WM+TS-SPEA2 (SP) [18]∗ Tuning & Selection by SPEA2
WM+TS-NSGA-II (NS) [10]∗ Tuning & Selection by NSGA-II

WM+TS-NSGA-IIA (NSA) [2]∗ Tuning & Selection by NSGA-II with angle-measure
WM+TS-NSGA-IIU (NSU) [2]∗ Tuning & Selection by NSGA-II with utility-measure

Extended MOEAs for specific application
WM+TS-SPEA2Acc (SPAcc) [1] Accuracy-Oriented SPEA2

WM+TS-SPEA2Acc2 (SPAcc2) Extended SPEA2Acc
∗ based on that algorithm

with 4 input variables that consists of estimat-
ing the maintenance costs of medium voltage
lines in a town. To do that, we also compare
the studied algorithms with the paradigm of
MOEAs, NSGA-II [10] and two versions of
NSGA-II for finding knees [2] (that theoreti-
cally should obtain the most promising Pareto
zones) in order to show the good behavior of
SPEA2 in this framework. They consider the
same components described in section 1.1.

Methods considered for the experiments are
briefly described in Table 1. WM method
is considered to obtain the initial rule base
that should be improved by the proposed
post-processing methods. Although any other
method could be considered (even a rule base
obtained from experts), WM is quick and sim-
ple, and usually generates a good set of candi-
date rules (we have not found very significant
differences by using more sophisticated algo-
rithms). T and S methods perform the tuning
of parameters and rule selection respectively.
TS indicates tuning together with rule selec-
tion in the same algorithm. All of them con-
sider the accuracy of the model as the sole
objective. T, S and TS use the same or a
part of the coding scheme presented in Sec-
tion 1.1, CT , CS and CSCT respectively (as
they were proposed in [4]). In this way, TS
is the single objective counterpart of the pro-
posed algorithms. Additionally, S and T are
considered as illustrative references of both
techniques (rule selection or tuning) when
they are independently applied. On the other

hand, MOEAs considered perform rule selec-
tion from the initial fuzzy rule set (obtained
from WM) together with the parametric tun-
ing of the MFs considering two objectives,
system error and number of rules.

2.1 Problem Description

Estimating the maintenance costs of the
medium voltage electrical network in a town
[7] is a complex but interesting problem.
Since a direct measure is very difficult to ob-
tain, it is useful the use of models. These
estimations allow electrical companies to jus-
tify their expenses. Moreover, the model must
be able to explain how a specific value is
computed for a certain town. Our objective
will be to relate the maintenance costs of the
medium voltage lines with the following four
variables: sum of the lengths of all streets in
the town, total area of the town, area that is
occupied by buildings, and energy supply to the
town. We will deal with estimations of mini-
mum maintenance costs based on a model of
the optimal electrical network for a town in a
sample of 1,059 towns.

To develop the different experiments, we con-
sider a 5-folder cross-validation model, i.e.,
5 random partitions of data each with 20%,
and the combination of 4 of them (80%) as
training and the remaining one as test. For
each one of the 5 data partitions, the post-
processing methods have been run 6 times
(6 different seeds), showing for each problem
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the averaged results of a total of 30 runs. In
the case of methods with multi-objective na-
ture, the averaged values are calculated con-
sidering the most accurate solution from each
Pareto obtained. In this way, MOEAs can be
compared with several single objective based
methods. This way to work differs with the
previous works in the specialized literature in
which one or several Pareto fronts are pre-
sented and an expert should after select one
solution. Our main aim following this ap-
proach is to compare the same technique when
only the accuracy objective is considered (al-
gorithm WM+TS) with the most accurate so-
lution found by the proposed multi-objective
algorithms in order to see if the Pareto fronts
obtained are not only wide but also optimal
(almost similar solutions to that obtained by
WM+TS should be found in the final Pareto).

The initial linguistic partitions are comprised
by five linguistic terms with equally dis-
tributed triangular shape MFs. The values
of the input parameters for S, T and TS (sin-
gle objective oriented algorithms) are1: pop-
ulation size of 61, 100000 evaluations, 0.6
as crossover probability and 0.2 as mutation
probability per chromosome. In the case of
MOEAs, the best results were obtained by
taking similar sizes than those considered by
S, T and TS (with single objective) in these
kinds of problems (i.e., when the size of the
population used for parent selection takes
these values). We recommend the use of this
simple rule of thumb to fix the population size
in these kinds of problems. The input param-
eters considered by the MOEAs are shown in
the next: population size of 200 (61 in the case
of NSGA-II based algorithms), external pop-
ulation size of 61 (in the case of SPEA2 based
approaches), 100000 evaluations and 0.2 as
mutation probability per chromosome.

The results obtained by the analyzed methods
are shown in Table 2, where #R stands for the
number of rules, MSEtra/tst for the averaged
error obtained over the training/test data, σ
for their respective standard deviations and
t for the results of applying a test t-student

1Standard common parameters that work well in
most cases

Table 2: Results of the studied methods

Met. #R MSEtra/tst σtra/tst ttra/tst

WM 65.0 57605/57934 2841/4733 +/+
T 65.0 17020/21027 1893/4225 +/+
S 40.9 41158/42988 1167/4441 +/+
TS 41.3 13387/17784 1153/3344 +/+
SP 28.9 11630/15387 1283/3108 +/=‡

NS 31.4 11826/16047 1354/4070 +/+
NSA 29.7 11798/16156 1615/4091 +/+
NSU 30.7 11954/15879 1768/4866 +/+
SPAcc 32.3 10714/14252 1392/3181 =/=
SPAcc2 29.8 10325/13935 1121/2759 */*

‡ + with 94% confidence

(with 95 percent confidence) in order to ascer-
tain whether differences in the performance of
the best results are significant when compared
with that of the other algorithms in the table.
The interpretation of this column is:

? represents the best averaged result.
+ means that the best result has better per-

formance than that of the related row.

2.2 Results and Analysis

Analysing the results showed in Table 2 we
can highlight the two following facts:

• The best results were obtained by TS-
SPEA2Acc2 and TS-SPEA2Acc, showing
that the use of expert knowledge in the
design process can help to obtain more
optimal Pareto fronts. Moreover, TS-
SPEA2Acc2 is able to obtain the best re-
sults with less rules than TS-SPEA2Acc.

• All MOEAs studied get significantly sim-
pler models that those obtained by only
considering the accuracy based objective
and almost the same results (minor av-
erage values in all the cases and statisti-
cal differences in the case of the extended
MOEAs). This is a positive fact since a
proper use of MOEAs can improve the
desired trade-off with respect to the clas-
sic accuracy-based approaches, and spe-
cific adaptations can help to improve the
performance of standard MOEAs.
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Figure 2: Evolution of Pareto with (SP) and
(SPAcc2), and of the best solution with (TS)

In Figure 2, we can see the Pareto evolution
in a representative run with TS-SPEA2 and
TS-SPEA2Acc2 , and also the evolution of the
best solution in the population in a represen-
tative run of WM+TS. We can observe as the
Pareto moves along without having a wide ex-
tension but dominating the solution obtained
by WM+TS at the end.

Table 3: Results obtained by random initial-
ization of the CS part (rule part)

Met. #R MSEtra/tst σtra/tst ttra/tst

SP 21.9 18768/23951 2256/5198 +/+
NS 27.7 17688/23762 2333/7681 +/+
NSA 19.5 23981/29442 3709/7058 +/+
NSU 24.4 18728/24148 2071/5397 +/+
SPAcc 23.2 14175/18289 1752/5571 */*
SPAcc2 20.2 16539/21977 2729/5625 +/+

A study has been also performed on the im-
portance of the initialization component for
the rule selection part in the chromosome
(considering a random initialization instead
of that presented in Section 1.1). Table 3
presents the results obtained. By using ran-
dom initialization the results obtained present
too low numbers of rules with much worse re-

sults especially in the test. In any case, there
are two important facts in these results:

• TS-SPEA2Acc and TS-SPEA2Acc2 meth-
ods were not very affected by the random
initialization (very low number of rules
and a good accuracy).

• Fixing the percentage of selected rules in
the initial population (100% in Table 2
and 50% in Table 3) can be a way to regu-
late the desired trade-off since this biases
the number of rules in the final solutions.

3 Concluding Remarks

We have analyzed the application of different
MOEAs to obtain simpler but still accurate
linguistic fuzzy models by performing rule se-
lection and a tuning of the MF parameters.
Since combining rule selection and tuning of
the system parameters represents a very com-
plex search space, some considerations based
on the experience are needed in the MOEA
design process in order to get good solutions.

The results obtained have shown that a
proper use of MOEAs can represent a way to
get even more accurate and simpler linguistic
models than those obtained by only consider-
ing performance measures. Besides, popula-
tion initialization has demonstrated to be an
important component that can help to regu-
late the desired trade-off since this biases the
number of rules in the final solutions. The
best results obtained by TS-SPEA2Acc2 show
that the use of experience based knowledge in
the MOEAs design process can significantly
improve the search ability of these algorithms.

For future works, a lexicographic fitness
accuracy-size could be also considered. The
main aim would be to evolve a preferably
small, but mostly accurate rule base.
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