
Lexicographically Prioritized Multi-criteria Decisions Using Scoring
Function

Ronald R. Yager
Machine Intelligence Institute, Iona College

New Rochelle, NY 10801

yager@panix.com

Abstract
We consider multi-criteria decision
problems where there is a
lexicographically induced prioritization
relationship over the criteria. We
suggest that the prioritization between
criteria can be modeled by making the
weights associated with a criteria
dependent upon the satisfaction of the
higher priority criteria. We implement
this using a prioritized scoring
operator. We show how the lack of
satisfaction to higher order criteria
block the possibility of compensation
by lower priority criteria. We show that
in the special case where the
prioritization relationship among the
criteria satisfies a linear ordering we
can use a prioritized averaging
operator.

Keywords: Multi-Criteria Decision-Making,
aggregation, priority, compensation.

1. Introduction
Decisions based on the satisfaction of

multiple criteria are pervasive in many domains.
In these problems we have a collection of
criteria C = {C1, ..., Cn} and a set of alternatives
X = {x1, ..., xm}. Here we must choose
between these alternatives based on their
satisfaction to the criteria. In the following we
shall assume that we have a measure of the
satisfaction of criteria Ci by each alternative,
Ci(x), as a value in the unit interval. One
commonly used approach is to calculate for each
alternative a score C(x) as an aggregation of its
satisfaction to the individual criteria C(x) =

∑
i = 1

n
wi Ci(x). The w i are importance weights

associated with the criteria which typically

satisfy wi ∈ [0, 1] and ∑
i = 1

n
wi = 1

It is easy to see that this type of aggregation
is monotonic in the sense that C(x) does not
decrease if any of the Ci(x) increases. It is also
bounded, Mini[Ci(x)] ≤ C(x) ≤ Maxi[Ci(x)]. It
is also idempotent, if all Ci(x) = a then C(x) = a.
Because of these properties this is an averaging
operator. Closely related to this is what we shall
call a scoring (or precisely a weighted scoring)
operator. The difference between a scoring

operator and an averaging wijCij(x)
ij
∑ operator

is that the scoring operator does not require that

∑
i = 1

n
wi = 1. We note that while a scoring

operator is monotonic it not necessarily bounded
nor idempotent. Essentially a averaging
operator is a special case of scoring operator.
Both these operators can be used in the
alternative selection problem.

These types of aggregation operators allow
tradeoffs between criteria. In this type of
aggregation we can compensate for a decrease

of ∆ in satisfaction to criteria Ci by gain
wk
wi

∆ in

satisfaction to criteria Ck.

In some applications we may have a
lexicographic ordering of the criteria and do not
want to allow this kind of compensation
between criteria. Consider the situation in
which we are selecting a bicycle for our child
based upon the criteria of safety and cost.
However any bicycle we select must be safe. In
this situation we do not want poor safety to be
compensated for very low cost. Before even
considering cost we must be sure the bicycle is

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1438–1445

Torremolinos (Málaga), June 22–27, 2008

safe. Here we have a lexicographic ordering
induced prioritization of the criteria. Safety has
a higher priority. Consider a problem of
document retrieval in which we are looking for
documents about the American revolution and
prefer if they are from an academic website and
written after 2003. Here again we have a
lexicographic ordering on the criteria. In this
case the property of it being about the American
Revolution has a priority, if it is not about this
topic we are not interested. In organizational
decision making criteria desired by superiors
generally, have a higher priority then those of
their subordinates. The subordinate must select
from among the solutions acceptable to the
superior. Generally air traffic controller
decisions involve a prioritization of
considerations with passenger safety usually at
the top.

In this work we shall suggest scoring
operators that allow for the inclusion of a
lexicographically induced priority between the
criteria. Central to our approach will be the
modeling of priority by using importance
weights in which the importance of a lower
priority criteria will be based on its satisfaction
to the higher priority criteria [1]. As we shall
see this result in a situation in which importance
weights will not be the same across the
alternatives. In this case for a given alternative
the importance weights associated with a
criterion will depend on the alternative's
satisfaction to higher priority criteria. As we
shall subsequently see when determining the
score for an alternative this formulation will
effectively prevent the alternative's satisfaction
to lower priority criteria from compensating for
its poor satisfaction to higher priority criteria.
Lower priority criteria will only be able to
contribute to the score of alternatives that have
good satisfaction to the higher priority criteria.

2. Prioritized Scoring Functions
In the following we assume that we have a

collection of criteria partitioned into q distinct
categories, H1, H2, ..., Hq such that Hi = {Ci1,
Ci2, ..., Cini}, Here Cij are the criteria in

category Hi. We assume a prioritization
between these categories H1 > H2, ... > Hq. The
criteria in the class Hi have a higher priority
than those in Hk if i < k. The total set of criteria

is C = Hi∪
i = 1

q

. We assume n = ni∑
i = 1

q
 the total

number of criteria. Criteria in the same category
have the same priority.

In figure #1 we show the positioning of the
criteria

aa

C11, C12,, C1n1

C21, C22,, C2n2

Cq1, Cq2,, Cqnq

Figure #1. Prioritization of Criteria

We assume that for any alternative x ∈ X
we have for each criteria Cij, a value
Cij(x) ∈ [0, 1] indicating its satisfaction to
criteria Cij.

In the following we introduce an
aggregation operator F: [0, 1]n → [0, 1] such
that F((a11, ..., a1n1),, (aq1, ..., aqnq)) =

(wij aij)∑
j = 1

ni
∑

i = 1

q
. We shall refer to as the

P rioritized S coring (PS) operator. This
aggregation operator allows us to calculate C(x)
for any alternative as

C(x) = F(Cij(x)) = (wij Cij(x)∑
j = 1

ni
∑

i = 1

q
).

However here the weights which will be
dependent on x will be used to enforce the
priority relationship. In order to obtain the
weights for a given alternative x we proceed as
follows.

For each category Hi we calculate

Si = Minj[Cij(x)]

Here Si is the value of the least satisfied criteria
in category Hi under alternative x. Using this
we will associate with each criteria Cij a value
uij. In particular for those criteria in category

Proceedings of IPMU’08 1439

H1 we have u1j = 1. For those criteria in
category H2 we have u2j = S1. For those
criteria in category H2 we have u3j = S1S2. For
those criteria in category H4 we have
u4j = S1S2S3. More generally uij is the product
of the least satisfied criteria in all categories
with higher priority than Hi.

We can more succinctly and more generally

express uij = Ti, where Ti = ∏
k = 1

i
Sk-1 with the

understanding that S0 = 1 by default. We note
that we can also express Ti as

Ti = Si-1 Ti-1

This equation along with the fact that T1 = S0 =
1 gives a recursive definition at Ti.

We now see that for all Cij ∈ Hi we have uij
= Ti. Using this we obtain for each Cij a weight
wij with respect to alternative x such that wij =
uij. We see that each wij ∈ [0,1]. We further
observe that Ti ≥ Tk for i < k. From this it
follows that if i ≤ j then wij ≥ wke for all j and e.

Using these weights we then can get an
aggregated score x under these prioritized
criteria as

C(x) = ∑
i, j

wij Cij(x) = ∑
i, j

Ti Cij(x) =

∑
i=1

q
Ti(∑

j = 1

ni
Cij(x))

We note that this operator is monotonic, if
Ckj(x) increases then C(x) can't decrease. We
see this as follows:

∂C(x)
∂Ckj(x)

 = Tk + ∂Ti
∂Ckj(x)∑

i=k+1

q
∑

j = 1

ni
Cij(x)).

If Sk ≠ Ckj(x) then ∂Ti
∂Ckj(x)

 = 0 for i ≥ k + 1 and

hence ∂C(x)
∂Ckj(x)

 = Tk ≥ 0. If S k = Ckj(x) then for

i ≥ k + 1 we have ∂Ti
∂Ckj(x)

 = Sr∏
r = 1 to i-1

r≠k

i-1
 ≥ 0

and hence again ∂C(x)
∂Ckj(x)

 ≥ 0.

Following is an example using this PS
operator.

Example: Consider the following prioritized
collection of criteria:

H1 = {C11, C12}, H2 = {C21},
H3 = {C31, C32, C33}, H4 = {C41, C42}

Assume for alternative x we have: C11(x) = 0.7,
C12(x) = 1, C21(x) = 0.9, C31(x) = 0.8,
C32(x) = 1, C33(x) = 0.2, C41(x) = 1,
C42(x) = 0.9

We first calculate:

S1 = Min[C11(x), C12(x)] = 0.7

 S2 = Min[C21(x)] = 0.9,

S3 = Min[C31(x), C32(x), C33(x)] = 0.2

S4 = Min[C41(x), C42(x)] = 0.9

Using this we get:

T1 = 1, T2 = S1T1 = 0.7, T3 = S2T2 = 0.63 and
T4 = S3T3 = 0.12.

From this we obtain: u11= u12 = T1 = 1,
u21 =T2 = 0.7. u31 = u32 = u33 = T3 = 0.63.
u41 = u42 = T4 = 0.12.

In this case then we have

w11 = w12 = 1, w21 = 0.7. w31 = w32 =

w33 = 0.63, w41 = w42 = 0.12

We now calculate C(x) = wijCij(x)
ij
∑ = 3.82

We now look at some further properties of
the proposed aggregation method. We recall
Hi = {Cij | j = 1 to ni} where the criteria in
category Hi have priority over those in Hk if ii i
< k. Again letting aij = Cij(x) we have Si =

Minj[aij] and So = 1 and Ti = ∏
k = 1

i
Sk-1. Here

with uij = Ti we use as our weights in this
prioritized scoring operator wij = uij = Ti and
hence

C(x) = (∑
j = 1

ni
∑

i = 1

q
wij aij) = Ti(aij∑

j = 1

ni
)∑

i = 1

q

1440 Proceedings of IPMU’08

Letting Ai = aij∑
j = 1

ni
 we have

C(x) = Ti Ai∑
i = 1

q
.

We see that the weight associated with the

elements in the ith category is Ti = ∏
k = 1

i
Sk-1.

Thus the criteria in Hi contribute proportionally
to the product of the satisfaction of the higher
order criteria. Thus poor satisfaction to any
higher criteria reduces the ability for
compensation by lower priority criteria. This is
of course the fundamental feature of the
prioritization relationship.

We also observe that if there exists some
category Hr such that Crj(x) = 0 for some
criteria in Hr then Sr = 0 and Ti = 0 for i > r and

hence C(x) = Ti Ai∑
i = 1

r
.

Note: While in the preceding we assumed
Cij(x) ∈ [0, 1] this is not necessarily required.
If we let Fij : R → [0, 1] be some function
from the real numbers into the unit intervals
such that Fij(Cij(x)) is some measure of how
satisfied we are with a score Cij(x) for criteria
Cij then we allow the values of Cij(x) be any
number if we calculate

Si = Minj[Fij(Cij(x))]

Here we just transfer the Cij(x) into numbers in
the unit interval for calculating Si.

3. Non-Monotonicity under
Normalization

A natural question that arises is why have we
chosen this scoring type operator rather then an
averaging operator which requires that the

wij = 1∑
ij

. We see this can be easily

accomplished by a simple normalization. In
particular if instead of using wij = uij we use

wij =
uij

uij∑
j = 1

ni
∑

i = 1

q
and since u ij = T i this

simplifies to wij = Ti

niTi∑
i = 1

q
. As the

following example illustrates performing this
normalization does not always guarantee a
monotonic aggregation.

Example: Assume H1 = {C11, C12, C13, C14}
and H2 = {C21, C22, C23}. Assume for x we
have C11(x) = C12(x) = C13(x) = 1, C14(x) =0
and C21(x) = C22(x) = C23(x) = 0. In this case
S1 = 0 and hence T1 = 1 and T2 = 0. Thus we

get u1j = 1 and u2j = 0 and hence uij∑
j = 1

ni
∑

i = 1

q
 =

4. From this we get w1j = 1
4

 for j = 1 to 4 and

w2j = 0 for j = 1 to 3 and therefore

C(x) = 1
4

 (C11(x) + C12(x) + C13(x) + C14(x))

= 0.75

Consider alternative y for which we have C11(y)
= C12(y) = C13(y) = 1, C14(y) = 1 and
C21(y) = C22(y) = C23(y) = 0. The only
difference between x and y is that we have
increased the satisfaction of C14, C14(y) = 1
while C14(x) = 0. Monotonicity requires that
C(y) ≥ C(x). Let us calculate C(y). In this case
S1 = 1 and therefore T1 = 1 and T2 = 1. In this
case all uij = 1 and hence uij∑

ij
 = 7 and

therefore all wij = 1
7

. From this we get that

C(y) = 1
7

 Cij(y)∑
ij

 = 4
7

 = 0.57 < 0.75.

Thus we see that C(y) < C(x) and the
monotonicity condition has not been satisfied.

We note the use of a scoring type aggregation
operator does indeed respect the monotonicity.
In this case wij = uij. Hence for x we have w1j
= u1j = 1 and w2j = u2j = 0 From this we get
C(x) = 3. For the case of y we get w1j = u1j = 1
and w2j = u2j = 1. From this we get C(y) = 4
and hence the monotonicity is respected.

Proceedings of IPMU’08 1441

4. Averaging Operators for Linear
Ordered Criteria

In the preceding the priority relationship
between the criteria was a weak ordering, we
allowed ties as was the case for criteria in the
same category. As we shall subsequently show
if the priority relationship between the criteria is
a linear ordering, no ties allowed, then we can
obtain a prioritized averaging (PA) operator.

He we also assume we have a collection of
criteria partitioned into q distinct categories, H1,
H2, ..., Hq and we assume a prioritization
between these categories H1 > H2 > ... > Hq.
However here we assume each category has just
one member Hi = {Ci}. Thus here there is a
linear ordering among the criteria C1 > C2 > ...
> Cq. We have used only one index, as we have
no need for the second index. Our objective is
to get a collection of weights wi that respect the
prioritization and use these to calculate C(x) =

∑
i = 1

q
wj C j(x) Since we want this to be a

prioritized averaging operator we require that

wi ∈ [0, 1] and ∑
i = 1

q
wi = 1. In order to obtain

these weights we shall essentially follow the
procedure used in the preceding with the
addition of a normalization step.

For each priority category Hi we calculate
Si as the value of the least satisfied criteria in
Hi, in this case we simply get Si = Ci(x). Again
here we let T1 = 1 and for i > 1 we let Ti =

∏
k = 1

i - 1
Sk. If we let S 0 = 1 we can more

succinctly express this as Ti = ∏
k = 1

i
Sk-1 for all

i. Denoting ui = Ti as the un-normalized
weights we can obtain normalized weights wi=

ui
T

 where T = ∑
i = 1

q
ui = ∑

i = 1

q
Ti.

It is clear that the wi lie in the unit interval
and sum to one. To assure that

C(x) = ∑
i = 1

q
wi Ci(x) is an averaging operator we

must show that it is bounded and monotonic.

We now show that this PA aggregation
method is bounded and monotonic. First we see
that the value of this aggregation is bounded by
the maximum and minimum of the arguments
and hence it is also idempotent. For simplicity
let us denote ai = Ci(x). Using this we have

C(x) = ∑
i = 1

q
wi ai.

Consider now boundedness. Assume
a = Mini[ai] and b = Maxi[aj] then C(x) =

∑
i = 1

q
wi a i ≥ a and C(x) = ∑

i = 1

q
wi a i ≤ b. Now

consider the case where all the ai are the same,

ai = d. In this case since ∑
i = 1

q
wi = 1 we get

C(x) = ∑
i = 1

q
wi d = d and hence the operation is

idempotent.

We now consider the issue of monotonicity.
We shall denote the satisfaction of each criteria
to x as ai = Ci(x). We note that in this case with
one criteria at each level, Si = ai. Here then T1

= 1, T2 = a1 and more generally Ti = ∏
k = 1

i
Sk-1.

Using this we have

C(x) =
Ti ai∑

i = 1

q

T

Let us denote C(x) = M
T

 where M = ∑
i = 1

q
Ti a i

and T = ∑
i = 1

q
Ti. For monotonicity to hold we

have to show that ∂C(x)
∂aj

 ≥ 0 for any j. This

requires that
T ∂M
∂aj

 - M ∂T
∂aj

(T)2
 ≥ 0. Hence we

must show that the numerator is non-negative,

T ∂M
∂aj

 - M ∂T∂aj
 ≥ 0.

Before preceding we note that ∂Ti
∂aj

 = 0 for

i ≤ j and ∂Ti
∂aj

 = Tiaj
 for i > j. We also note that

1442 Proceedings of IPMU’08

M = ∑
i = 1

q
Ti a i = ∑

i = 1

q
Ti+1 since T i a i = T i+1.

However we shall find it more useful to express

M = ∑
i = 2

q+1
Ti.

We shall denote A = ∂M
∂aj

 = 1aj
 ∑
i = j+1

q+1
Ti.

We shall also let B = ∂T
∂aj

 hence since

T = ∑
i = 1

q
Ti we have B = ∂T

∂aj
 = 1aj

 ∑
i = j+1

q
Ti.

From this we observe that A ≥ B. In the
following we shall find it convenient to denote E

= ∑
i = 2

j
Ti.

Consider now the term T ∂M
∂aj

 - M ∂T∂aj
 =

AT - BM. We now observe that

T = ∑
i = 1

q
Ti = ∑

i = 1

j
Ti + aj B.

Since T1 = 1 then T = 1 + E + aj B. We further
observe that

M = ∑
i = 2

q+1
Ti. = E + aj A.

Using the relations we see that

AT - BM = A(1 + E + aj B) - B(E + aj A) = A
+ EA + aj BA - BE - aj BA

AT - BM = A + E(A - B)

Since A ≥ B it follows that AT - BM ≥ 0.

Thus for linear ordered criteria we can
obtain a prioritized averaging aggregation
operator.

5. Alternative Determination of Weights
In the preceding we introduced the

prioritized scoring operator as a method for
multi-criteria aggregation for the case in which
our criteria where partitioned into q categories,
Hi = {Cij : j = 1,, ni} where category Hi had
priority over Hk if i < k. For a given alternative

x we shall find it convenient in the following to
denote Cij(x) = aij. Using this notation then we
defined

So = 1

Si = Mini[aij] for i = 1 to qI

Ti = ∏
k = 1

i
Sk-1 for 1 = to q

With wij = Ti we obtained as our aggregated
value

C(x) = ∑
i = 1

q
wij aij∑

j = 1

ni
 = ∑

i = 1

q
Ti aij∑

j = 1

ni

Letting Ai = aij∑
j = 1

ni
 we can express this as C(x)

= Ti Ai∑
i = 1

n
.

In the preceding we assumed that the
satisfaction to the priority class Hi = {Ci1, ...,
Cini} under alternative x was determined by the

least satisfied criteria in Hi, Si = Minj[Cij(x)].
Here we shall suggest some alternative methods
for calculating Si.

One method we shall consider will be based
on the OWA aggregation operator [2]. Here we
associate with each priority class Hi a vector Vi
of dimension ni called the OWA weighting
vector. The components Vik of Vi are such that

Vik ∈ [0, 1] and ∑
k = 1

ni
Vik = 1. Additionally we

let indi(k) be an index of function so that bik(x)

= Cindi(k)(x) is the kth largest of Cij(x). Using

this we now calculate

Si = ∑
k = 1

ni
Vik bik(x)

We see that if Vini = 1 and Vik = 0 for k ≠ ni
then we get Si = Minj[Cij(x)], the original
method. An important special case is where Vik

= 1/ni for all k. In this case Si = 1
ni

 Cij(x)∑
j = 1

ni
.

Here we take as Si the average of the
satisfactions of the criteria in category Hi.

Proceedings of IPMU’08 1443

Another special case is when Vil = 1 and Vik =
0 for k ≠ 1. In this case Si = Maxj[Cij(x)].
Here we take Si as the score of the most
satisfied criteria in category Hi. Many other
weight vectors are possible for example if Viq =

1 for some q Si simply becomes the qth largest
of the Cij(x).

In this framework we can associate with
each weighing vector Vi a measure called its
attitudinal character denoted, A-C(Vi) [3]. We
define this as

A-C(Vi) = 1
ni - 1

∑
k = 1

ni
Vik (ni - k)

It can easily be shown [2] that for the case
where Vini = 1 we get A-C(Vi) = 0. For the

case where Vik = 1ni
 for all k then A-C(Vi) =

0.5 and for the case where Vi1 = 1 we have A-
C(Vi) = 1.

If we denote A-C(Vc) = α i then we see in
figure #2 the relationship between the value of
αi and the form for the calculation of Si. Here
then αι can be seen as a measure of the

tolerance in determining the satisfaction of the
category. While it is not necessary, it would be
seen that the default situation is to assume αι is
the same for all Hi.

a

α
i
0

S i =Min [Cj ij(x)]

0.5

Ave [Cj ij(x)]
S i =

1

Max [Cj ij(x)]S i =

Figure #2. Relationship between αi and the
form of Si.

Many of the techniques available for
calculating the OWA weights [4, 5] can be
tailored for this particular application. A
particularly interesting possibility is to use a
variation of the method originally suggested by
O'Hagan [6-8]. In this case we would supply a
desired level of tolerance α i and solve the
following mathematical programming problem
for the Vik

Min (Vik)2∑
k = 1

ni

Such that: 1
ni - 1

∑
k = 1

ni
Vik (ni - k) = αi

Vik∑
k = 1

ni
 = 1

Vik ≥ 0

We provide an example of the preceding
variation using the earlier example

Example: H1 = {C11, C12}, H2 = {C21}, H3 =
{C31, C32, C33}, H4 = {C41, C42}

For alternative x we have

C11(x) = 0.7, C12(x) = 1

C21(x) = 0.9

C31(x) =0 .8, C32(x) = 1, C33(x) = 0.2

C41(x) = 1, C42(x) = 0.9

Consider the case where Si = Maxj[Cij(x)].
Here then

S1 = 1, S2 = 0.9, S3 = 1. S4 = 1

From this we get :

T1 = 1, T2 = S1 T1 = 1, T3 = S2 T2 = 0.9,
T4 = S3 T3 = 0.9

With C(x) = Ai Ti ∑
i = 1

4
 where A i = Cij∑

j = 1

ni
 (x)

we have

C(x) = (1)(1.7) + (1)(.9) + (0.9)(2) + (0.9)(1.9) =
6.11

Another approach for calculating the Si
involves associating with each criteria in Hi an
additional local weight. In this case our form
for Hi is

Hi= {(Cij, gij) | j = 1,, ni}

where the gij indicates the importance of Cij in
calculating Si. Here we assume that gij ∈ [0, 1]

1444 Proceedings of IPMU’08

and gij∑
j = 1

ni
 = 1. Using these weights we can

calculate Si = gijCij(x)∑
j = 1

ni
.

An interesting special case of this is where
some criteria Cij has gij = 0. In this case the
criteria plays no role in the determination of Si
but still is able to contribute to the overall
calculation of C(x).

Another available method for calculating the
Si involves the idea of combining these local
weights with a tolerance level. Here we assume
for each Hi we have Hi = {(Cij, gij), j = 1,,

ni}, gij ∈ [0, 1] and gij∑
j = 1

ni
 = 1, where again g ij

is the indication at the importance of Cij in
calculating Si. In addition we assume a
tolerance level αi ∈ [0, 1] associated with Hi.
Using one of the methods for generating OWA
weights we can obtain a set of OWA weights,
Vik, for k = 1 to ni. Let ndi be an index such
ndi(k) is the index of the k largest of the Cij(x).
That is bik = Ci,ndi(k)(x) is the value of the k

most satisfied criteria in Hi. With dik =
gi,ndi(k) being the importance weight associated

with this kth most satisfied criteria on Hi we
calculate

hik = dik ⋅ Vik

dik ⋅ Vik∑
k = 1

ni

Using this we calculate

Si = hik bik∑
k = 1

ni
.

In the special case when Vik = 1ni
 for all k this

reduces to the weighted average introduced

earlier, Si = gij ⋅ Cij(x)∑
j = 1

ni
.

.

6. Conclusions
We considered multi-criteria decision

problems where there is a lexicographically

induced prioritization relationship over the
criteria. We suggested that prioritization
between criteria can be modeled by making the
weights associated with a criteria dependent
upon the satisfaction of the higher priority
criteria. This resulted in a situation in which the
weights associated with the criteria depended
upon the alternative being evaluated. We
implemented this using a prioritized scoring
operator. We noted that this scoring operator
didn't require a normalization of the weights.
We showed that in the special case where the
prioritization relationship among the criteria
satisfies a linear ordering we can use a
prioritized averaging operator.

References

[1]. Yager, R. R., "Modeling prioritized multi-
criteria decision making," IEEE Transactions on
Systems, Man and Cybernetics Part B 34, 2396-2404,
2004.

[2]. Yager, R. R., "On ordered weighted averaging
aggregation operators in multi-criteria decision
making," IEEE Transactions on Systems, Man and
Cybernetics 18, 183-190, 1988.

[3]. Yager, R. R., "On the cardinality index and
attitudinal character of fuzzy measures," International
Journal of General Systems 31, 303-329, 2002.

[4]. Xu, Z., "An overview of methods for
determining OWA weights," International Journal of
Intelligent Systems 20, 843-865, 2005.

[5]. Torra, V. and Narukawa, Y., Modeling
Decisions: Information Fusion and Aggregation
Operators, Springer: Berlin, 2007.

[6]. O'Hagan, M., "A fuzzy neuron based upon
maximum entropy-ordered weighted averaging," in
Uncertainty in Knowledge Bases, edited by
Bouchon-Meunier, B., Yager, R. R. and Zadeh, L.
A., Springer-Verlag: Berlin, 598-609, 1990.

[7]. O'Hagan, M., "Using maximum entropy-ordered
weighted averaging to construct a fuzzy neuron,"
Proceedings 24th Annual IEEE Asilomar Conf. on
Signals, Systems and Computers, Pacific Grove, Ca,
618-623, 1990.

[8]. Fuller, R. and Majlender, P., "On obtaining
minimal variability OWA weights," Fuzzy Sets and
Systems 136, 203-215, 2003.

Proceedings of IPMU’08 1445

