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Abstract 

We consider Multi Criteria Decision 

Making (MCDM) as the conjunction of 

three components: search, preference 

tradeoffs, and interactive visualization. 

The first MCDM component is the 

search process over the space of 

possible solutions to identify the non-

dominated solutions that compose the 

Pareto set. The second component is 

the preference tradeoff process to 

select a single solution (or a small 

subset of solutions) from the Pareto set. 

The third component is the interactive 

visualization process to embed the 

decision-maker in the solution 

refinement and selection loop. We 

focus on the intersection of these three 

components and we highlight some 

research challenges, representing gaps 

in the intersection.  We introduce a 

requirement framework to compare 

most MCDM problems, their solutions, 

and analyze their performances. We 

focus on the impact of uncertainty in 

each of these components and illustrate 

it with a real-world application. 

Keywords: Multi Criteria Decision Making, 

Pareto search, preference aggregation, 

interactive visualization, uncertainty 

management, MCDM research challenges. 

1. Multi Criteria Decision-Making  

We view Multi Criteria Decision Making 

(MCDM) as the intersection of three 

fundamental areas that, traditionally, have been 

addressed and developed in isolation. 

1) Solution generation via search.  We need to 

search over the space of feasible solutions. 

We must perform efficient searches in multi- 

(or sometimes many-) dimensional spaces to 

identify the non-dominated solutions that 

compose the Pareto set.  There are usually 

significant challenges in the search process, 

such as non-convex solution spaces, complex 

coupling among objectives and constraints, 

and high-dimensional objective spaces. This 

search is driven by solution evaluations that 

might be nonlinear and probabilistic or 

imprecise, rather than linear and 

deterministic.  The development of efficient 

search algorithms has been the goal of Multi-

Objective Optimization (MOO), from 

classical mathematical programming to 

evolutionary approaches.  However MOO’s 

emphasis has been on generating densely 

sampled, well-distributed Pareto sets, without 

worrying about the solution selection phase.  

2) Solution selection via preference 
aggregation and tradeoff.  We need to elicit, 

represent, evaluate, and aggregate the 

decision-maker’s preferences to select a 

single solution (or a small subset of them) 

from the Pareto set. These preferences may 

be ill defined, and state or time-dependent 

rather than constant values. The aggregation 

mechanism may be as simple as a linear 

combination or as complex as knowledge-

driven models.  The development of methods 

to capture and aggregate preferences has 

been the goal of Bayesian and Fuzzy 

decision-making techniques.  However, their 

emphasis has been on the aggregation 

mechanisms to select a solution, rather than 

the solution generation phase. 

3) Interactive visualization. We need a process 

to enhance our cognitive model of the 

problem and enable us to perform 

progressive decisions. We often need to 

embed the decision-maker in the solution 

refinement and selection loop. To this end, 

we need to understand and present the 

impacts that intermediate tradeoffs in one 

sub-space could have in the other ones, while 

allowing him/her to retract or modify any 
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intermediate decision steps to strike 

appropriate tradeoff balances [25].  

These three research areas are the components 

of Horn definition of MCDM [11]: search for 

solutions, aggregation of preferences, and 

decision selection.  Horn consider these cases: 

1) Aggregation before search.  We reduce the 

dimensionality of the problem by adding more 

ordering information, thus transforming a multi-

criteria decision making problem into a single-

criterion one. This is quite common in optimal 

control problems, when we select a control 

action that optimizes an aggregated performance 

function. However, this computational 

efficiency has some drawbacks:  

i) No Pareto set is generated, so the DM 

needs to describe all tradeoffs at once, 

without knowing the space of alternatives.   

ii) Only one global tradeoff is used to 

generate decision (usually a linear tradeoff 

based on a weight vector) 

iii) In such case, it is unsuitable when the 

performance set is not convex 

2) Search before aggregation.  We postpone 

tradeoffs until large numbers of inferior, 

dominated solutions are eliminated and the 

efficient Pareto set has been identified. Then we 

perform a global aggregation, considering all 

objectives at once and making a selection in a 

one-step aggregation.  This approach suffers of 

drawbacks ii) and iii) above described, since we 

cannot understand the impacts of intermediate 

tradeoffs, retracting local decisions, or 

transforming some objectives into constraints 

once an acceptable level of performance is 

achieved. Furthermore, this approach lacks 

transparency in the decision-making process, 

since we cannot easily document the decision 

path that led to the selection.    

3) Iterative integration of search aggregation.  
We start with a multi-criteria search to provide 

the DM with a preliminary idea of possible 

tradeoffs.  The DM then makes multi-criteria 

decisions, reducing the search space 

dimensionality.  If needed, a new search is 

performed in this region of the solution space. 

The fist two cases represent the independent 

development of the search and aggregation 

components. This third case, requiring the 

intersection of the three components, is needed 

in complex problems, where we need to justify 

and explain our decision making process (for 

legal, compliance, business or ethical reasons). 

2.  MCDM Framework 

With this perspective, we will focus on the 

intersection of search, preference tradeoff, and 

interactive visualization and highlight some 

research challenges, representing gaps in the 

intersection.  We introduce a requirement 

framework to compare most MCDM problems, 

their solutions, and analyze their performances. 

Specifically, we consider the following criteria:  

1) Deployment requirements, e.g., real-time 

vs. batch mode.  Stringent requirement for 

on-board MCDM deployments, MCDM 

applications to real-time information 

streams, etc. 

2) Deployment architecture, e.g., centralized 

or distributed architectures. 

3) Response evaluation, e.g., deterministic, 

uncertain, vague, or imprecise.  Many 

MCDM’s application use unrealistic 

assumptions of perfect information in 

inputs and solution evaluations. 

4) Search complexity, e.g., scalability in 

high-dimensional performance spaces. 

Many (evolutionary) search algorithms do 

not to maintain their performance in 10+ 

dimensional spaces (typical in design 

problems).  In such cases, we need to use 

hybrid search methods, leverage our 

domain knowledge and problem structure, 

and interactively guide the search. 

5) Objectives and constraints complexity, 
e.g., non-convex regions that prevents the 

use of fast searches or aggregations. 

6) Uncertainty management, e.g., 

vagueness, uncertainty, or imprecision in 

solutions evaluation. 

7) Leveraging domain knowledge in 

decision-making process, e.g., internal and 

external knowledge representations to 

improve search [4], content-dependent 

preference aggregation, and customized 

(case-based) visualization configuration 

management. 

8) Preferences representation/aggregation, 

e.g., complete or partial ordering, linear or 

nonlinear aggregations, etc. 

9) Decision-making requirements and 
methods, e.g., automated decisions for 

real-time applications, interactive and 

progressive decision-making for batch 

applications. 
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Figure 1. Framework to describe Multi Criteria Decision Making Problems 

 

10) Update requirements for solution fidelity, 

e.g., retraining/updating deployed data-

driven or knowledge-driven evaluators.  

An earlier version of this framework was first 

proposed in [3] and used in [23] to illustrate two 

MCDM applications. 

3.  MCDM Research Challenges 

In this paper we revisit this framework to distill 

and describe six major research challenges in 

MCDM.  Then, we will focus on the first one, 

related to the management of uncertainty.  

1) Uncertainty, fuzziness, and imprecision 

in the inputs and in the solution 

evaluation methods 

2) High-dimensional objective space and 

interactive decision-making process 

3) Fuzzy preferences, context dependent 

aggregation 

4) Leveraging domain knowledge in 

decision making process  

5) Real-time, high throughput requirements 

and model learning update 

6) Deployment and maintenance of 

adaptive, distributed decision-making 

systems 
 

The first challenge, perhaps the most relevant 

to the topics of this conference, addresses 

questions such as the impact of uncertainty on 

the search algorithms - in terms of dominance, 

distances, filtering, etc. - and the management 

of uncertainty as it impacts solution sensitivity, 

extrapolation errors, tracking region of 

confidence competence etc. 
 

The second challenge is caused by the 

complexity of searching for solutions in high-

dimensional spaces.  Many multi-objective 

evolutionary algorithms perform very well  (i.e., 

they produce accurate, densely sampled Pareto 

sets) in low-dimensional spaces, but their time-

complexity increases exponentially (e.g., they 

do not scale-up) in high-dimensional spaces 

[21], [18].  Researchers have proposed learning-

follows decomposition methods of the space 

[14], hierarchical fair competition (HFC) [12], 

and dimensionality reduction via interactive 

human interaction – transforming objectives into 

constraints after partial search [9].  Beyond 

managing search complexity, we also need to 

properly visualize and interact with such high-

dimensional objective space. This usually 

stresses our cognitive limitations, especially if 

the evaluations are uncertain. 
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The third challenge is related to the difficulties 

of eliciting, representing, and aggregating 

preferences to guide tradeoff and selection 

decisions.  It has been noted in [6] that 

“numerical scales (either cardinal or ordinal) 

provide a complete order over the preferences. 

However, they are quite limited in their 

representational power, as they require a 

synthetic precision that does not reflect the true 

meaning of the DM’s preferences.” 

Alternatively, the use of linguistic or fuzzy 

preferences with local semantics (membership 

functions defining the meaning of the labels as 

fuzzy preferences) provides a more natural 

representation but only induces a partial order 

on the universe of preferences.  Partial or global 

aggregations of these preferences must reflect 

tradeoffs that usually are not easy to elicit and 

might not be uniform in the solution space.  

These aggregations have been a research focus 

in the fuzzy logic community.  
 

The fourth challenge, extending the third one, 

deals with the efficient representation of 

domain knowledge to improve search, 

preference aggregation, and interaction 

visualization of solutions. Domain knowledge 

can be embedded in evolutionary search, as 

described in [4], using internal representations, 

such as customized data structures and 

variational operators, or external 

representations, such as meta-heuristics.  

Knowledge in preference aggregation has been 

partially described in the third challenge. We 

could further add the use of local or global 

search to tune the parameters (term sets) and 

structures (rules) of this representation, based on 

past cases (selection and performance).  Finally, 

domain knowledge can be used to configure the 

solutions visualization, via customized subsets 

of projections (or specific orders in a parallel 

coordinates plot), which could be initialized by a 

case-based reasoner. 
 

The fifth challenge is created by the need of 

porting MCDM techniques to real-time 

applications using Field Programmable Gate 

Arrays (FPGA), ASICs, Cell Broadband Engine, 

etc. For example, in [5], the authors note that 

“since evolutionary algorithms work with a 

population of solutions, parallelizing the fitness 

computation has the benefit of significant 

speedup. For the efficient execution of 

applications requiring high-frequency multi-

objective optimization constrained by the size of 

the computational unit, it is desirable to develop 

a multi-objective evolutionary technique that 

enables high optimization speed-ups with a 

small computational footprint. An example of 

such an application is in unmanned vehicle 

control, where a high optimization speed is 

required, the computational hardware footprint 

and weight constraints are severe, and the 

domain demands simultaneous consideration 

and optimization of multiple conflicting 

objectives such as thrust and range given 

varying mission needs while operating with a 

finite fuel resource.”  In the above reference the 

authors run an Evolutionary Multi Objective 

Optimization (EMOO) problem on an FPGA, 

achieving performance improvements over 300 

times faster than on a 3GHz workstation. 
 

The sixth challenge is the result of allowing 

distributed MCDM systems (e.g., adaptive 

solution evaluators running on multiple 

platforms) to learn and adapt during their 

deployment. The key issues are the management 

of local adaptation, knowledge sharing, local 

verification and validation (V&V), model 

updating, and version control of multiple, 

distributed, deployed learning systems. 
 

Due to space constraints, we will focus on the 

first challenge, i.e., the presence of uncertainty, 

fuzziness, and imprecision in the inputs and in 

the solution evaluation methods. Then we will 

describe an illustrative example, containing 

some useful approaches to this challenge. 

4. First Challenge: MCDM with 

uncertain solution evaluation 

In many real-world applications, the solution 

evaluation is not a deterministic process.  As 

such, the output is not a crisp value, but rather 

an interval, a distribution, or a fuzzy value. For 

instance, Paenke uses local approximate models 

to estimate expected fitness and variance [17]. 

One of the most common sources of uncertainty 

is the use of a function approximation model, 

such as a neural network (NN), to evaluate the 

fitness vector of a solution during the 

evolutionary search.  Several researchers have 

studied the error bounds of NN [1], and special 

types NN, such as Radial Basis Functions [27]. 

If we use NN’s to compute each solution’s 

coordinates in performance space, we will have 

a hyper-rectangle (or a hyper-ellipsoid) rather 

than a point as the solution’s image under the 

NN mapping. A way to reduce this uncertainty 

is to develop multiple models (e.g., NNs), 
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trained on different subsets of the training set 

and of the feature space – to increase their 

diversity – and fuse their outputs to increase the 

overall accuracy [2], [28]. 

In any case, we need to redefine the concept 

of dominance.  This can be achieved by a 

variety of methods, such as including a tolerance 

parameter in the dominance filter, e.g. ε-

indistinguishibility [13], extending the concept 

of dominance relations to fuzzy arguments [26], 

or treating the evaluations as crisp, expected 

values and then compensating for this 

simplification by limiting the magnitude of 

solution changes [23], [24].   

Reference [19] exemplifies the impact of 

uncertainty in search. The authors modified an 

NSGA-II evolutionary algorithm to 

accommodate the uncertainty derived from 

imprecise fitness function evaluation. To this 

extent, they modified and extended the 

computation of three elements in the NSGA-II:   

1) Precedence (dominance) operator 

2) Non-dominated sorting of the individuals 

3) Crowding distance – used to assess local 

solutions density and uniformly sample 

the front. 

A second source of uncertainty is caused by 

extrapolation errors in the solution evaluation. 

This occurs when we operate a model outside of 

its competence region, i.e., if the image of the 

training set under the mapping results in interior 

points that are far from the Pareto front. This 

situation will be illustrated in the application 

example described in the following section. 

An additional uncertainty source is the use of 

imprecise constraints, which define a fuzzy 

feasibility region in the solution space.   A 

partial constraint satisfaction score could be 

computed and used to discount the performance 

metrics of the obtained solutions, in a manner 

similar to fuzzy scheduling [22].  

5.  Example of MCDM application with 

uncertain solution evaluation 

An illustrative case for this first MCDM 

challenge is the management of a power plant, 

which integrates predictive modeling based on 

neural networks, optimization based on multi-

objective evolutionary algorithms, and 

automated decision-making based on Pareto set 

down-selection techniques [23]. [24].  The 

predictive models are adaptive, and continually 

update themselves to reflect with high fidelity 

the gradually changing underlying system 

dynamics. The integrated approach, embedded 

in a real-time plant optimization and control 

software environment has been deployed to 

dynamically optimize emissions and efficiency 

while simultaneously meeting load demands and 

other operational constraints in a complex real-

world power plant.  

We used nonlinear neural-network models to 

generate mappings between the inputs space of 

control variables and time-variable ambient 

uncontrollable variables, and the various outputs 

(objectives and constraints) of interest.  We used 

first-principles-based methods and domain-

knowledge to identify the relevant NN inputs.  

The evolutionary multi-objective optimizer 

generates test inputs/set-points and receives as 

feedback the corresponding output performance 

metrics after transformation by suitable 

objective (performance) functions.  

The multi-objective optimizer uses this 

feedback to generate and identify the Pareto-

optimal set of input-output vector tuples that 

satisfy operational constraints.  
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A decision function is superimposed on this 

Pareto-optimal set of input-output vector tuples 

to identify a deployable input-output vector, 

which is then dispatched to the underlying plant 

control system, or recommended to the operator 

for execution. This is illustrated in Figure 2. 

Uncertainty derived by the functional 

approximation.  

A more accurate representation of the image of a 

solution X
r

under the NN mapping would be an 
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ellipsis rather than a point in (HR, NOx).  This 

would more accurately represent the uncertainty 

induced by the NN mapping. 

To reduce this kind of uncertainty, we use a 

committee of predictive models (NN’s) and an 

intelligent fusion of their predictions. Fusing the 

outputs from an ensemble of models in an 

effective way can often boost overall model 

accuracy. A prerequisite for a successful fusion 

is to create a strong diversity of the models to be 

fused [15]. This concept is further developed in 

[28], wherein we present a novel method called 

locally weighted fusion, which aggregates the 

results of multiple predictive models based on 

local accuracy measures of these models in the 

neighborhood of the probe point for which we 

want to make a prediction. This fusion method 

may be applied to develop highly accurate 

predictive models. The locally weighted fusion 

method boosts the predictive performance by 

20~40% over the baseline single model 

approach for the various prediction targets.  In 

[2], we further refine the performance by using 

CART algorithms to pre-compile a segmentation 

of the input space for each model.  Using this 

approach we improve the predictive 

performance by 34~48% over the same baseline. 

Relative to these approaches, fusion strategies 

that apply averaging or globally weighting only 

produce a 2~6% performance boost over the 

baseline. 

Uncertainty derived by extrapolation error. 

A Pareto-optimal front that jointly minimizes 

NOx and Heat Rate (inversely related to 

efficiency) for a 400MW target load demand in 

a 400MW power plant is shown in Figure 3. In 

this figure, the circles show the range of 

historical operating points from a NOx—Heat 

Rate perspective. The stars and inter-connecting 

line show the optimized Pareto frontier in the 

NOx—Heat Rate space. Each point not on this 

frontier is a sub-optimal operating point—the 

goal being the operation of the plant or process 

at a Pareto optimal point at all times. Moving 

the system operation from the interior of the 

decision space to the Pareto frontier results in a 

large operational savings opportunity. All these 

points are feasible solutions, satisfying load, 

CO, and SO emission constraints. 

The Pareto frontier in NOx—Heat Rate space, 

identified by the multi-objective search and 

depicted in Figure 3, is clipped by the systematic 

application of profit-based and operational-need 

constraints for each of NOx and Heat Rate. 

Next, a solution from this reduced frontier that is 

the closest in inputs space to the current plant 

state is selected and transmitted to the plant 

control system. Such an approach minimizes the 

state deviations while achieving Pareto-optimal 

operation and end-user acceptability. The 

decision-making approach further highlights the 

inherent flexibility of Pareto frontier techniques 

whereby the entire efficient set of solutions is 

first identified without regard to situation 

specific down-selection, and later a flexible 

decision function is superimposed to identify a 

deployable input set (or set point). 
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Figure 3. Pareto tradeoff between NOx emissions 

and Heat Rate for a 400MW power plant 
 

The results of these experiments are reported 

in [23], where we describe the characteristics of 

this application within the framework proposed 

in section 2. 

 

 
Figure 4: Pareto frontier tradeoff optimization of 

NOx and Heat Rate and NOx only optimization. 
 

Figure 4 shows the performance gains that 

may be achieved in NOx emissions using this 

decision-making approach. When a decision-

making function is used which simultaneously 

considers a tradeoff Pareto point at each instant, 

roughly 18% improvement in NOx emissions 

may be achieved (upper figure half). However, 

if the optimization favors a NOx minimization 
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that satisfies a given Heat Rate constraint, more 

significant NOx emissions improvement is 

possible (lower figure half). Similarly, 1-2% 

improvements in Heat Rate are possible. In a 

typical power plant setting, such savings in NOx 

and Heat Rate are very significant and could 

lead to operational savings of hundreds of 

thousands to millions of dollars per year. 

6. Conclusions 

Summary.  This paper formalizes some of the 

author’s ideas originally presented in oral form 

at the First IEEE Symposium of Computational 

Intelligence in Multicriteria Decision Making 

[3].  We described MCDM as the intersection of 

three components: 1) a search process over the 

space of possible solutions; 2) a preference 

tradeoff process to guide the down-selection; 

and 3) an interactive visualization process to 

understand the tradeoff impacts. 

We presented a framework to represent 

different requirements for MCDM problems.  

Within this framework, we highlighted MCDM 

research challenges ranging from uncertainty in 

inputs and solution evaluations, to high-

dimensional objective spaces and cognitive 

limitations, interactive decision-making 

processes, fuzzy preferences, leveraging domain 

knowledge to customize search, aggregations 

and visualizations, real-time, high throughput 

requirements, and deployment/maintenance of 

adaptive, distributed decision-making systems. 

Finally, we focused on the impact of 

uncertainty in inputs and solution evaluations, 

and we illustrated it with a case study describing 

the development and deployment of a MCDM 

system to optimize power plant management. 

Current and Future Work.  We organized this 

special session on MCDM to explore various 

facets of the framework and research challenges 

defined above. These efforts are illustrated by 

[20], where Sanchez et al. address the first 

challenge, the presence of uncertainty in 

solution evaluation, by developing a fuzzy rule-

based system for a diagnostics problem. In [16], 

Montero et al. address the second challenge, 

supporting the decision-maker cognitive 

limitations, by estimating objectives from 

preferences and interacting via graphical 

representations. Two other papers [8], [29] 

address the third challenge, preference 

aggregation, by leveraging goal interactions to 

structure the aggregation, and by analyzing the 

properties of a lexicographic, prioritized 

aggregation, respectively. In [10], the authors 

address the fourth challenge, leveraging domain 

knowledge, by customizing the initial 

population and the operators of an evolutionary 

search to improve the legibility of fuzzy rule 

sets, while tuning their parameters for improved 

accuracy. Finally, in [7], the authors examine a 

multiple ant colony system as an alternative 

search method, illustrating it with a real-world 

problem. 

 In conclusions, we believe that we just started 

to identify and describe some key research 

challenges in MCDM. Addressing such 

challenges will result in the development of 

robust, efficient techniques that will extend 

MCDM applicability to complex, real-world 

problems that are currently outside its reach.  
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