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Abstract

A method based on relative entropy is

proposed to identify Choquet integral

parameters for classification purposes.

While the entropy-based method ini-

tially developed by Kojadinovic [11]

assigns a high importance to the at-

tributes which allow to differentiate

many classes, the relative entropy-

based method proposed focuses on the

researched classes. This is done in or-

der to obtain the attribute confidence

by the integration of expert knowledge

concerning these classes. The values

of the relative entropy for different sub-

sets of attributes are considered as the

values of Choquet capacity coefficients.

The proposed identification method is

integrated in an aiding system aiming

at interpreting 3D-tomographic images

of electrotechnical parts made of com-

posite materials and manufactured by

Schneider Electric. Four attributes ex-

tracted from the tomographic images

are aggregated by the Choquet inte-

gral using the parameters identified by

the proposed method. The result is a

3D cartography of the sought-after re-

gions within the tomographic image.

Quantitative assessments of classifica-

tion highlight the relevance of the pro-

posed approach.

Keywords: Identification, Choquet in-

tegral, relative entropy, classification.

1 Introduction

In classification and pattern recognition, rele-

vant information, called features, and concern-

ing classes of interest about an object is first ex-

tracted. Then, it is transformed into membership

degrees according to the different classes and fi-

nally, it is combined (aggregation process) in or-

der to improve decision-making concerning the

class of the object.

In many applications, there are interactions be-

tween the features [15, 3, 16, 10] and these inter-

actions bring complementarity or redundancy in

the information fusion process. In order to take

these interactions into account, the aggregation

tool called Choquet Integral [9], relying on fuzzy

measures, has given good results in many practi-

cal problems [3, 15, 4, 7].

The fuzzy measures used in the Choquet Integral

enable to weight the importance of each subset of

attributes. Therefore, in order to apply this pow-

erful aggregation tool, identifying the fuzzy mea-

sures is required. However, it is a difficult prob-

lem [8] since it is equivalent to determining 2N−2
parameters for N attributes of information.

In some practical applications, experts are able to

provide some values of the fuzzy measure but it

requires a deep knowledge of the information at-

tributes. When the parameters cannot be provided

by a priori knowledge, automatic methods have

been proposed by several authors [5].

In the decision-aiding field, these methods gen-

erally rely on the concept of preference between

attributes [17, 4, 14, 7]. In the classification field,

the concept of confidence in the attributes is pre-

ferred in order to identify the importance of each
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subset of attributes [1]. A few methods have been

developed in this view [3, 2] which this paper fo-

cuses on.

The recent identification method proposed by Ko-

jadinovic [11] consists in assigning a weight to

a subset of attributes according to its capability,

or power, of discrimination between the different

classes. This power of discrimination is deter-

mined by the entropy measure associated to the

probability distribution of membership class de-

grees.

In supervised classification and pattern recogni-

tion, expert knowledge is available in the form of

an annotated learning set. In this context, how is

this prior information to be used in Kojadinovic’s

entropy-based identification method. In this pa-

per, we propose a solution for this problem, based

on relative entropy, that extends Kojadinovic’s

approach. The fuzzy measure is computed by the

relative entropy between:

• the probability distribution provided by a set

of attributes in referenced data annotated by

experts as the class associated to the Cho-

quet Integral considered,

• and the probability distribution provided by

the same set of attributes in referenced data

annotated by experts as the complement to

the class considered.

The relative entropy (also named the Kullback-

Leibler divergence) here quantifies the distance

between a distribution associated to a class and a

distribution associated to the other classes. There-

fore, the identification method of Choquet In-

tegral parameters uses, at the same time, pos-

itive and negative examples as in the powerful

support vector machine (SVM) learning process

well-known in machine learning [16]. In this ap-

proach, a different set of Choquet integral param-

eters is identified for each considered class. Fi-

nally, the classification decision simply consists

in choosing the class that has the maximal degree.

We also propose a thresholding process in order to

create a class of rejects that is important in classi-

fication. The threshold value is called a degree of

severity that is set by experts.

This learning method has been assessed on an in-

dustrial application in collaboration with Schnei-

der Electric company where the goal is to de-

tect regions of interest in 3D-tomographic im-

ages [10].

This paper is organised as follows: Section 2 de-

scribes the Choquet Integral, Section 3 presents

the learning process of Choquet Integral parame-

ters and finally Section 4 is dedicated to experi-

ments.

2 Choquet capacities and Choquet

Integral

Let N = {A1, A2, . . . Ai, . . . An} denote the set

of attributes. A Choquet capacity is a fuzzy mea-

sure that weights the importance of a subset of

attributes G = {Ai, ..., Aj} ⊆ S and is defined

by:

µ : 2N → [0, 1]
G 7→ µ(G)

(1)

The measure µ is a Choquet capacity if the fol-

lowing constraints are satisfied [9]:

• µ(∅) = 0, µ(N) = 1

• S ⊆ T ⇒ µ(S) ≤ µ(T ) (monotonicity)

The capacity is said to be:

• additive when µ(S ∪ T ) = µ(S) + µ(T ),
∀S, T ⊆ N such that S ∩ T = ∅ (probabil-

ity measure),

• super-additive when µ(S ∪ T ) ≥ µ(S) +
µ(T ), ∀S, T ⊆ N such that S ∩ T = ∅,
• sub-additive when µ(S∪T ) ≤ µ(S)+µ(T ),
∀S, T ⊆ N such that S ∩ T = ∅.

In classification problems, the capacity is used

in order to describe interactions between at-

tributes [6]. One Choquet Integral is tuned for

each class and each Choquet Integral aggregates

the information provided by the attributes as fol-

lows [9]:

C(a1, a2, ..., an) =
n∑

i=1

(a(i) − a(i−1)) · µ(G(i))
(2)

where:

• a(i) are the values associated to classCk pro-

vided by attribute A(i),
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• µ(G(i)) is the importance of subset G(i) =
{A(i), ..., A(n)}, and attributes are ordered

according to the values a(i) associated to

class Ck. The notation (.) indicates a per-

mutation of indices according to the values

provided by the attributes such as a(i) ≤
a(i+1) ≤ ... ≤ a(n).

In some cases, the expression (2) is not adapted

and too complex for practical problems. The ap-

proximated form called 2-additive Choquet Inte-

gral has often been used and consists in consid-

ering a 2nd order capacity [9] which only takes

the weights of each attribute and the interaction

between two attributes into account:

C(a1, a2, ..., an) =
n∑

i=1

νi · ai −

1
2
·

n∑
i=1

n∑
j=i+1

Iij · | ai − aj |
(3)

where:

• νi is the weight Ai for the detection of class

Ck,

• Iij is the coefficient of interaction between

both Ai and Aj for the detection of class Ck.

The parameters of the 2-additive Choquet Inte-

gral, i.e. νi and Iij , can be obtained from the

coefficient of importance µ(Gi) of a subset of at-

tributes Gi by the following expressions [9]:

νi =
∑

T⊆N\i

(n− |T | − 1)!|T |!
n!

×

(µ(T ∪ {i})− µ(T )) (4a)

Iij =
∑

T⊆N\{i,j}

(n− |T | − 2)!|T |!
(n− 1)!

×
(
µ(T ∪ {i, j})− µ(T ∪ {i})−
µ(T ∪ {j}) + µ(T )

)
(4b)

3 Identification of Choquet Integral

parameters

Several methods have been proposed for the iden-

tification of Choquet capacities in the context of

decision-aiding [17, 4, 14, 11] by interpreting

them as preferences for attributes that are aggre-

gated. In the context of classification, the capaci-

ties are rather interpreted as degrees of confidence

in attributes. Kojadinovic’s entropy-based identi-

fication method [11] allows to solve classification

problems. In the next paragraph, we describe this

method and then we present our proposed relative

entropy-based method.

3.1 Identification based on entropy

In Kojadinovic’s entropy-based identification

method [11], the confidence in each subset of at-

tributes is interpreted as a discrimination power

of the subset given a class. The larger number

of classes a subset of attributes differentiates, the

higher the confidence in this subset for the clas-

sification process. Therefore, the discrimination

power is related to the diversity of membership

degrees provided by a subset of attributes, which

explains the use of entropy to quantify the confi-

dence:

Hk(Gi) =
∑
gi

P (gi) · log(P (gi)) (5)

where:

• Hk(Gi) is the entropy of subset

Gi = {Ai, ..., An} describing class

Ck,

• gi gathers the vectors {ai, ..., an} of mem-

bership degrees to class Ck provided by the

subset Gi,

• P (gi) is the distribution of joint probabilities

associated to gi,

• Hk(N) is the entropy of subsets

{A1, ..., An}.
Moreover, when normalized as follows:

µk(Gi) =
Hk(Gi)
Hk(N)

(6)

the entropy measure satisfies the constraints of

Choquet capacities. One can remark that there are

as many Choquet capacities µk as the number of

classes Ck.
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This method of identification is based on the

whole set of membership degrees without tak-

ing prior information concerning classes into ac-

count. Considering that the confidence of an

attribute is related to the maximum number of

classes that this attribute can differentiate, is not

relevant when the number of researched classes is

limited. Moreover, integrating expert knowledge

on some membership degrees where the class is

precisely known seems to be an interesting ex-

tension that could improve results. For that, we

propose a relative entropy-based approach.

3.2 Relative entropy

The relative entropy takes the distributions P (gk
i )

and P (gk
i ) into account. They are computed from

both data referenced as the class Ck and data ref-

erenced as classes different from Ck and denoted:

Ck =
⋃
j 6=k

Cj (7)

The relative entropy is therefore:

Hk
R(Gi) =

∑
gk

i

P (gk
i ) · log

(P (gk
i )

P (gk
i )

)
(8)

where:

• P (gk
i ) is the distribution of probabilities of

subset gk
i of membership degrees to class Ck

provided by the subset of attributes Gi and

corresponding to class Ck,

• P (gk
i ) is the distribution of probabilities of

subsets gk
i of membership degrees to class

Ck provided by the subset of attributes Gi

and corresponding to the other classes Ck.

This approach strongly depends on prior knowl-

edge brought by experts. In the industrial appli-

cation considered in the experiment section, this

information is provided by expert pointers under

the form of graphical pointing.

3.3 From relative entropy to Choquet

capacities

The relative entropy has to satisfy the conditions

presented in Section 2 in order to be interpreted as

a Choquet capacity. For that, the relative entropy

Hk
R(Gi) for a subset Gi is normalized as in Ko-

jadinovic’s method by the relative entropy of the

whole set of attributes Hk
R(N):

µk(Gi) =
Hk

R(Gi)
Hk

R(N)
(9)

Moreover, the relative entropy is null when the

set Gi is empty but also when both distributions

P (gk
i ) and P (gk

i ) are identical. Therefore, an

attribute that provides the same membership de-

grees for a researched class Ck and for the other

classes Ck is assigned a low importance value

since it cannot distinguish class Ck from the oth-

ers.

The relative entropy also has to satisfy the mono-

tonicity constraint (Section 2). Given two at-

tributes Ai and Aj , the relative entropy has to sat-

isfy the following equations:

µ({Ai, Aj}) ≥ µ({Ai}) (10a)

µ({Ai, Aj}) ≥ µ({Aj}) (10b)

In order to check these constraints, the relative en-

tropy can be rewritten as [12, 13]:

Hk
R({Ai, Aj}) =
HR({Ai}) +Hk

R({Aj | Ai}) (11)

and it is always positive [12] therefore it has a

monotonic behaviour:

Hk
R({Ai, Aj}) ≥ Hk

R({Ai}) (12a)

Hk
R({Ai, Aj}) ≥ Hk

R({Aj}) (12b)

This reasoning can easily be extended to larger

subsets of attributes. Therefore, the normalized

relative entropy satisfies all the constraints in or-

der to be interpreted as a Choquet capacity.

3.4 Modelling positive and negative

interactions

When attributes Ai and Aj , that provide distribu-

tions P (gk
i ) and P (gk

i ), are independent, the rel-

ative entropy has an additive behaviour [13]:

Hk
R({Ai, Aj}) = Hk

R({Ai}) +Hk
R({Aj}) (13)

When attributes Ai and Aj are interacting with

each other, the relative entropy can be expressed

by:

Hk
R({Ai, Aj}) = Hk

R({Ai}) +Hk
R({Aj})

+
(
Hk

R({Aj |Ai})−Hk
R({Aj})

)
(14)
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where the last term can be negative or positive

according to attributes Ai and Aj implying that

the identified Choquet capacities can be super-

additive or sub-additive. Therefore the proposed

method allows to model and identify both pos-

itive and negative interactions whereas Kojadi-

novic’s approach can only identify negative inter-

actions [11].

3.5 Distributions support

In order to use the relative entropy, the support

of the distribution P (gk
i ) must be included in the

support of the distribution P (gk
i ). In the opposite

case, the relative entropy diverges towards infin-

ity. In order to satisfy this constraint, we propose

to use the Skew divergence defined as:

DS(Gi) =
∑
gk

i

P (gk
i )×

log

(
P (gk

i )

α · P (gk
i ) + (1− α) · P (gk

i )

) (15)

This Skew divergence consists in adding a low

percentage α (e.g. 0.1) of the distribution P (gk
i )

to distribution P (gk
i ). This process allows to

check the constraint concerning the distribution

support. Since the Skew divergence is a particu-

lar type of relative entropy, it can be interpreted

as a Choquet capacity.

4 Tomographic images interpretation

An information fusion system has been developed

in order to give a hand to the experts of Schneider

Electric company for electrotechnical part analy-

sis based on a non-destructive process called 3D-

tomography. The analysis of fiber organization

within the parts enables experts to assess the qual-

ity of these parts. An example of tomography

is illustrated in figure 1 where the experts have

pointed some reference regions corresponding to

the researched classes:

• oriented regions denoted C1 where the fibers

have similar orientations,

• disordered regions denoted C2 where the

fibers are mixed together,

• lack of reinforcement regions denoted C3

that contain a few quantity of fibers.

Therefore, prior knowledge provided by experts

is available for the classification.

Lack of reinforcement

Oriented region

Non oriented region

Figure 1: Pointed (referenced) regions given by

experts.

In order to detect the sought-after regions, four

attributes have been extracted from the original

images (c.f. figure 1):

• Attributes A1, A2, A3 provide information

on fiber orientation using gradients of inten-

sities by three different measures

• Attribute A4 provides information on fiber

homogeneity based on texture analysis using

co-occurence matrix.

This information is not commensurate therefore

its interpretation by experts is difficult. In order to

solve this problem, the measures provided by the

attributes have been transformed into membership

maps expressed in the same scale ([0, 1]). One

map is computed for each sought-after region by

a mechanism of comparison between pointed re-

gions. The proposed mechanism is independent

from the identification method and has been thor-

oughly described in [10]. These maps (see ex-

amples in figure 2) represent relevant information

concerning the regions and present complemen-

tarity and redundancy that can be exploited by

Choquet Integrals.

a) b)

c) d)

Figure 2: Membership maps of lack of reinforce-

ment regions obtained from the attributes A1, A2,

A3 and A4.
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The membership degrees, such as the ones il-

lustrated in figure 2, are aggregated using a 2-

additive Choquet Integral (eq. 3). The reason for

which we do not use the expression (2) is that the

2-additive form is more easily interpreted by ex-

perts since the interaction coefficients only con-

cern two attributes at a time. The tables 1 and 2

summarize the parameters identified by the meth-

ods based respectively on the entropy and the rel-

ative entropy. The method based on the entropy

uses the whole map, unlike the method based

on the relative entropy which uses the regions

pointed by experts. The probability distributions

computed respectively on the lack of reinforce-

ment regions and on the other regions and pro-

vided by attributes A1 and A4, are presented on

the figure 3(a) and (b). The distributions com-

puted on the attributes A4 are rather similar. This

attribute does not really allow to distinguish the

oriented regions from the other sought-after re-

gions. Unlike the attribute A4, the distributions

computed on the attribute A1 are really different.

This attribute allows to dissociate the oriented re-

gions from the other regions.

a) Membership degrees build from the source A
1
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Figure 3: Probability distributions of membership

degrees on the oriented region (clear color) and

on the other regions (dark color) provided by two

attributes A1 and A4.

The Skew divergence (eq. 15) has been applied

to the probability distributions where α = 0.1.

The Choquet capacities identified have been con-

verted into weights and interaction coefficients by

the equations (eq. 4a) and (eq. 4b) to allow inter-

pretation by the experts.

The parameters identified by the method based

on the entropy leads to a quasi-weighted average

(interactions are negligible in the table 2). The

proposed method based on the relative entropy al-

lows to determine the key attributes in the differ-

entiation of the sought-after regions. The identi-

fication method based on the relative entropy al-

lows to obtain more important interaction coeffi-

cients. The attributes A1, A2 and A3 which char-

acterize the orientation of intensity gradients are

more important than the attribute A4 which char-

acterizes the texture homogeneity. That is correct

because the orientation is the main characteris-

tic of the oriented regions. Moreover, the iden-

tification method based on the relative entropy

provides negative and positive interaction coeffi-

cients.

Weights

C1 C2 C3

H HR H HR H HR

A1 0.05 0.49 0.12 0.48 0.17 0.14

A2 0.42 0.29 0.18 0.39 0.56 0.25

A3 0.10 0.15 0.14 0.05 0.17 0.34

A4 0.43 0.07 0.56 0.08 0.10 0.27

Table 1: Weights identified by the method based

on the entropy H(Gi) and the method based on

the relative entropy HR(Gi) for all the attributes

A1, A2, A3 et A4.

Interaction coefficients

C1 C2 C3

H HR H HR H HR

A1, A2 -0.04 -0.35 -0.05 -0.61 -0.07 0.01

A1, A3 -0.01 -0.14 -0.01 -0.03 -0.04 -0.13

A1, A4 -0.01 -0.09 -0.02 -0.10 -0.01 -0.13

A2, A3 -0.04 -0.15 -0.01 -0.05 -0.07 -0.33

A2, A4 -0.05 -0.02 -0.03 -0.10 -0.02 -0.28

A3, A4 -0.03 -0.03 -0.03 -0.04 -0.02 -0.38

Table 2: Interaction coefficients identified by the

method based on the entropy H(Gi) and the

method based on the relative entropy HR(Gi) for

all the attributes A1, A2, A3 et A4.
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The Choquet integral provides one membership

map per class. Then, the cartography building is

based on a thresholding. For example, the ori-

ented regions on the cartography contain all the

voxels which have a membership degree on the

oriented region greater than the others and greater

than a threshold named severity degree. This pro-

cess is applied on each sought-after region. When

all the membership degrees are lower than the

threshold, the voxels are included in rejected re-

gions. This threshold is set by the experts accord-

ing to the severity level of the part study. As it is

presented in the figure 4, the cartography contains

white regions (lack of reinforcement), clear grey

regions (non-oriented regions), dark grey regions

(oriented regions) and black regions (rejected re-

gions).

Lack of reinforcement

Oriented region

Non oriented region

Figure 4: The pointed regions are shown on the

cartography obtained from the entropy.

The cartographies of sought-after regions (c.f.

figures 4 and 5) have been evaluated with the con-

fusion matrix. The pointed regions used in the

evaluation are different from the pointed regions

used in the identification. Four performance mea-

sures have been extracted from the confusion ma-

trix [18]: the classification rate, the recall, the pre-

cision and the F-measure.

Figure 5: The part cartography obtained from the

relative entropy.

The classification rate evaluates the rate of vox-

els correctly classified out of all the voxels of

the evaluation set. The recall quantifies the rate

of voxels correctly classified out of all the vox-

els classified in a sought-after region. The preci-

sion is the rate of voxels correctly classified out

off all the voxels in a sought-after region describe

on the evaluation set. The F-measure summarizes

the two last evaluations.

(a) The evaluation of the cartography obtained

from the entropy.

Recall Precision F-measure

C1 80% 93% 86%
C2 13% 61% 21%
C3 99% 37% 53%

(b) The evaluation of the cartography obtained

from the relative entropy.

Recall Precision F-measure

C1 80% 92% 85%
C2 56% 76% 64%
C3 99% 55% 71%

Table 3: The recall, precision and F-measure of

two different cartographies.

The system composed of the identification

method based on the entropy does not correctly

detect all the regions pointed by experts (c.f. fig-

ure 4). Its classification rate on the pointed re-

gions for evaluation is 50.8%. The identification

method proposed in this paper, integrates expert

knowledge to improve the cartography quality.

The classification rate in the evaluation regions is

improved to reach 93.8%. The method proposed

allows to improve the classification rate by 43%.

The tables 3a and 3b summarize the evaluations of

the cartographies obtained from the two identifi-

cation methods presented. The F-measures (com-

puted with β = 1) show the improvement pro-

vided by the proposed identification method. The

F-measures have increased respectively by 43%
and 18% for the non oriented regions and the lack

of reinforcement regions.

5 Conclusion

This paper presents an extension of the method

proposed by Kojadinovic to identify the Cho-

quet integral parameters. This method is ap-

plied specifically to the data classification field.

The importance coefficients identified are inter-

preted as the confidence placed on each attribute.

The proposed relative entropy allows to quan-
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tify the confidence according to the considered

classes. Moreover, the interaction coefficients de-

duced from the Choquet capacities can be posi-

tive or negative according to the attributes and the

sought-after regions. The identification method

proposed is integrated into an aiding system of

tomographic image interpretation. This system

fuses attributes extracted from the tomographic

images with the Choquet integral. The proposed

method increases the quality of the cartography

compared with the results obtained with an iden-

tification method based on the entropy. It will

be interesting to analyse the sensitiveness of the

identification method according to the regions

pointed by experts and the building method of

membership maps.
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the “Cité de l’image en mouvement” and the LIS-

TIC from the University of Savoie.

References

[1] J. Bezdek, J. Keller, R. Krisnapuram, N. Pal.

Fuzzy models and algorithms for pattern recog-

nition and image processing. Kluwer Academic

Publishers, 1999.

[2] J.H. Chiang, Aggregating membership values by a

Choquet-fuzzy-integral based operator. Fuzzy Sets

and Systems, 114 : 367-375, 2000

[3] P.D. Gader, M.A. Mohamed, J.M. Keller. Fusion

of handwritten word classifiers Pattern Recogni-

tion Letters, 17 : 577–584, 1996.

[4] M. Grabisch. A new algorithm for identifying

fuzzy measures and its application to pattern

recognition. IEEE International Conference on

Fuzzy Systems, 1 : 145–150, 1995.

[5] M. Grabisch, I. Kojadinovic, P. Meyer. A review

of methods for capacity identification in Choquet

integral based multi-attribute utility theory Ap-

plications of the Kappalab R package European

Journal of Operational Research, 189 : 766-785,

2008.

[6] M. Grabisch, M. Sugeno. Multi-attribute classi-

fication using fuzzy integral. IEEE International

Conference on Fuzzy Systems, 1992, 47–54.

[7] M. Grabisch. The application of fuzzy integrals in

multicriteria decision making. European Journal

of Operational Research, 89 : 445–456, 1996.

[8] M. Grabisch, I. Kojadinovic, P. Meyer. Using

the Kappalab package for Choquet integral based

multi-attribute utility theory. Information Pro-

cessing and Management of Uncertainty (IPMU),

2006.

[9] M. Grabisch, k-order additive discrete fuzzy mea-

sures and their representation. Fuzzy Sets and Sys-

tems, 92 : 167–189, 1997.

[10] S. Jullien, L. Valet, G. Mauris, Ph. Bolon, S.

Teyssier. Système d’aide a l’évaluation de la
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