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Abstract

The aim of this contribution is
to present the concept of unipo-
lar parametric evaluation of aggre-
gation functions, and unify the ideas
of global and local unipolar para-
metric evaluations. We show that
several well–known parameters in-
troduced in special classes of ag-
gregation functions are included in
this framework, and we also propose
some new parameters for aggrega-
tion functions.
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1 Introduction

Aggregation functions used for aggregating
input data depend on the solved problem and
the expectations of evaluators. In order to
choose an appropriate aggregation function,
we should be able to measure the degree of
the required properties of aggregation func-
tions (or their defect), that is, to assign to ag-
gregation functions some values - parameters
- characterizing the properties of aggregation
functions. The process of assigning parame-
ters to aggregation functions we call paramet-
ric evaluation of aggregation functions.

Although in special classes of aggregation
functions, for example, in the class of OWA
operators, root–power operators, triangular

norms, copulas, etc., certain parameters ex-
pressing the degree of an investigated prop-
erty were already introduced, a systematic ap-
proach to the parametric evaluation of aggre-
gation functions is missing.

If a class A of aggregation functions contains
an extremal element E (with respect to the or-
dering of aggregation functions) possessing a
property P, then this extremal element can be
chosen as the prototype, and all other mem-
bers of the class can be compared to it. A
unipolar measure of similarity is a function
µ : A → [0, 1], such that µ(E) = 1 (0 is at-
tained by the other extremal element of A if
such an element exists) and with the property
|E −A| ≤ |E −B| ⇒ µ(A) ≥ µ(B)
for all A, B ∈ A. The function µ measures
the degree of the property P for all members
of the class and expresses similarity between
aggregation functions of the considered class
and the prototype with respect to P. An ex-
ample of a unipolar measure of similarity is,
e.g., the measure of the degree of orness [16]
with prototype Max, or, in the dual case, the
measure of the degree of andness with proto-
type Min.

In classes of aggregation functions with the
greatest and smallest elements A and A, re-
spectively, which possess a property P in two
dual forms (e.g., increasing and decreasing
functional dependence) and where exists an
element O representing total absence of that
property (e.g., independence), we can define
a function measuring the difference of aggre-
gation functions from the element O - a cen-
tral element of the class. The range of the
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function is the interval [−1, 1]; for the central
element O its value is zero, the values −1 and
1 are usually attained for the extremal ele-
ments of the class only. The functions of this
type are called bipolar measures of dissimilar-
ity. A non–trivial example of a bipolar mea-
sure of dissimilarity (with respect to the prod-
uct copula Π as the central element) is, e.g.,
the Spearman rho, a well–known measure of
association introduced in statistics [13]. An-
other bipolar parametric measure of dissimi-
larity (again with central element Π) in the
class of copulas is Blomqvist’s beta [13]. A
more detailed discussion of bipolar paramet-
ric evaluation can be found in [10].

2 Preliminaries

As mentioned above, in special classes of
aggregation functions certain parameters ex-
pressing the degree of some property P have
already been introduced. For example, for
OWA operators Yager [16] defined the mea-
sure of the degree of orness/andness, ex-
pressing the possibility of an OWA oper-
ator to stand as an operator for disjunc-
tion/conjunction. In [17] Yager et al. stud-
ied possible generalizations of “and” operator
for conjunction in fuzzy logics and discussed
a special parametric evaluation of triangular
norms [7].
Another distinguished class of aggregation
functions is the class of root–power opera-
tors (Ap)p∈[−∞,∞], see, e.g., [6]. For a fixed
n ∈ N, and p ∈] − ∞, 0[∪ ]0,∞[, the n–ary
root–power operator Ap : [0, 1]n → [0, 1] is
defined by

Ap(x1, . . . , xn) =

(
1
n

n∑
i=1

xpi

) 1
p

,

and the limit operators are: A0 - the geomet-
ric mean G, A−∞ = Min and A∞ = Max.
Evidently, A1 is the arithmetic mean M .

For measuring the degree of disjunc-
tive/conjunctive behavior of root–power
operators Dujmovic [3] proposed the concept
of mean local orness/andness. E.g., the mean

local orness of Ap was defined by∫
[0,1]n

Ap(x)−Min(x)
Max(x)−Min(x)

dx. (1)

This value was later again studied as the or-
ness average value in the class of averaging
(mean) operators by Fernández Salido and
Murakami in [14], see also [5] and [12].

In [4] Dujmovic characterized root–power op-
erators by the mean value, defined for an n–
ary operator Ap by

m(Ap) =
∫

[0,1]n

Ap(x1, . . . , xn) dx1 . . . dxn.

(2)
The family (Ap)p∈[−∞,∞] is increasing and
continuous with respect to the parameter p.
It holds m(A−∞) = 1

n+1 , m(A∞) = n
n+1 , and

for any fixed n ∈ N and α ∈
[

1
n+1 ,

n
n+1

]
,

there is a unique parameter p ∈ [−∞,∞]
such that m(Ap) = α. Based on the mean
value, Dujmovic [4] introduced the global
orness/andness, initially called the disjunc-
tion/conjunction degree. For example, the
global orness of Ap was defined by

ωg(Ap) =
m(Ap)−m(Min)
m(Max)−m(Min)

=
(n+ 1)m(Ap)− 1

n− 1
. (3)

3 Unipolar parametric evaluation
of aggregation functions

The formula (2) can be considered for any
measurable n–ary aggregation function A.
Recall that an n–ary aggregation function
function A : [0, 1]n → [0, 1] satisfies the prop-
erties

(A1) A(0, . . . , 0) = 0, A(1, . . . , 1) = 1;

(A2) A(x1, . . . , xn) ≤ A(y1, . . . , yn) for all
(x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such
that xi ≤ yi, i ∈ {1, . . . , n}.

We define the mean value m(A) of any mea-
surable n–ary aggregation function A by

m(A) =
∫

[0,1]n

A(x1, . . . , xn) dx1 . . . dxn. (4)
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For the weakest and strongest aggregation
functions Aw and As, respectively, which are
defined by

Aw(x) =
{

1 if x = (1, . . . , 1),
0 otherwise,

As(x) =
{

0 if x = (0, . . . , 0),
1 otherwise,

we have m(Aw) = 0 and m(As) = 1. Ob-
viously, m(A) = 0 if, and only if, A = Aw
a.e., and m(A) = 1 if, and only if, A = As
a.e.. For each weighted arithmetic mean Mw

it holds m(Mw) = 1
2 , further, m(Min) =

1
n+1 , m(Max) = n

n+1 , the mean value for
the drastic product TD (the weakest t–norm)
is m(TD) = 0, and for the drastic sum SD
(the strongest t–conorm) m(SD) = 1. More-
over, for the product t–norm TP and the
 Lukasiewicz t–norm TL it holds m(TP ) = 1

2n ,
m(TL) = 1

(n+1)! .

Note that we will respect the notations of
functions usual at special classes of aggrega-
tion functions and moreover, we will use the
same notation for all n–ary forms of aggrega-
tion functions.

Formula (3) can also be generalized. In each
subclass A of n–ary aggregation functions
with the smallest and greatest elements A and
A, respectively, one can introduce the normal-
ized mean value by

m̃(A) =
m(A)−m(A)
m(A)−m(A)

, (5)

or by

m̃∗(A) =
m(A)−m(A)
m(A)−m(A)

. (6)

Note that if in A there is only one extremal el-
ement then the previous formulae can be mod-
ified by using inf or sup of the set {m(B) |B ∈
A} instead of m(A) and m(A), respectively.

It holds m̃(A) = 1, m̃(A) = 0, and conversely
for m̃∗. The functions m̃, m̃∗ : A → [0, 1]
defined by (5) and (6) are unipolar measures
of similarity, mentioned in Introduction, with
prototypes A and A, respectively. Evidently,
they are complementary, m̃(A) + m̃∗(A) = 1.
If Ad is a standard dual aggregation function

to A ∈ A, i.e., Ad(x1, . . . , xn) = 1 − A(1 −
x1, . . . , 1 − xn) for all (x1, . . . , xn) ∈ [0, 1]n,
then m(Ad) = 1 − m(A), and if A is closed
under duality, then it holds

m̃(Ad) = 1− m̃(A) = m̃∗(A).

Clearly, if Ad = A, that is, if A is a self–
dual function (symmetric sum), then neces-
sarily m(A) = m̃(A) = m̃∗(A) = 0.5.

The normalized mean value of aggregation
functions given by (5) in the classes of av-
eraging, conjunctive and disjunctive aggrega-
tion functions are in detail discussed in [10].
Let us briefly recall several facts.

� In the class Aav of averaging aggregation
functions, i.e., aggregation functions charac-
terized by the propertyMin ≤ A ≤Max, for-
mula (5) leads to the global disjunction mea-
sure which, in what follows, will be denoted
by GDM , i.e., for each A ∈ Aav,

GDM(A) =

(n+ 1)
∫

[0,1]n
A(x) dx− 1

n− 1
. (7)

The parameter GDM(A) expresses the degree
of similarity between A and Max, the basic
operator for disjunction. The function GDM
is a unipolar measure of similarity in the class
Aav with prototype Max.
Note that Dujmovic’s concept of global or-
ness/andness has been extended to the Cho-
quet integrals (forming a subclass of Aav) by
Marichal in [11] and in the class Aav has been
studied by Salido and Murakami in [14], and
by Dujmovic in [5]. As shown in [14], Yager’s
OWA orness coincides with (7).

Note that the complementary function m̃∗av in
the class Aav is a unipolar measure of similar-
ity with prototype Min. It will be called the
global conjunction measure.

� In the classes of conjunctive and disjunctive
aggregation functions, in notation Ac and Ad,
respectively, this approach to evaluation leads
to some new global parameters, e.g., to global
idempotency measure.
Recall that an aggregation function A is
idempotent if for all x ∈ [0, 1] it holds
A(x, . . . , x) = x. For aggregation functions
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the idempotency of A is equivalent to the
property Min ≤ A ≤Max, which means that
all averaging aggregation functions are idem-
potent. In the class Ac of all conjunctive ag-
gregation functions, i.e., aggregation functions
bounded from above by Min, the only idem-
potent function is Min. Similarly, in the class
Ad of all disjunctive aggregation functions,
i.e., aggregation functions bounded from be-
low by Max, the only idempotent function is
just Max. To obtain the degree of idempo-
tency, one can compare conjunctive (disjunc-
tive) aggregation functions to Min (Max).
In the class Ac the smallest element is
the function Aw, the greatest Min. Since
m(Min) = 1

n+1 and m(Aw) = 0, the normal-
ized mean value of a conjunctive aggregation
function A is given by

m̃c(A) =
m(A)−m(Aw)
m(Min)−m(Aw)

= (n+ 1)m(A).

(8)
The number m̃c(A) expresses the degree of
similarity between a conjunctive aggregation
function A and Min, and can be interpreted
as the degree of the idempotency of A. It
holds m̃c(A) = 1 if, and only if, A = Min,
i.e., a conjunctive aggregation function A is
idempotent if, and only if, the value m̃c(A) =
1. Therefore we define the global idempotency
measure of a conjunctive aggregation function
A, with notation GIMc(A) instead of m̃c(A),
by:

GIMc(A) = (n+ 1)
∫

[0,1]n

A(x) dx. (9)

In fuzzy logics, and consequently, in fuzzy
set theory, important conjunctive aggregation
functions are t–norms. In the class T of
all (measurable) t–norms (with extremal el-
ements TM and TD) formula (5) also leads to
the global idempotency measure given by (9).
For t-norms this parameter has already been
introduced and studied in [8], compare also
[15, 18].

Example 1 (i) Let n = 2. It can be shown
that the global idempotency measure of the
product t–norm TP is GIMc(TP ) = 0.75,
for the  Lukasiewicz t–norm TL we obtain

GIMc(TL) = 0.5 and for the nilpotent min-
imum TnM we have GIMc(TnM ) = 0.75.

(ii) Consider the Sugeno-Weber family of t–
norms

(
TSWλ

)
λ∈[−1,∞]

, where

TSWλ (x, y) =


max

{
0, x+y−1+λxy

1+λ

}
λ ∈]− 1,∞[,

TD λ = −1,
TP λ =∞.

For λ ∈]− 1, 0[∪ ]0,∞[ we obtain

GIMc(TSWλ ) =
3
4
− 3

4λ
− 3

2λ2
+

3λ+ 3
λ2

log(1+λ).

and

GIMc(TSW−1 ) = 0 , GIMc(TSW0 ) = 0.5 ,

GIMc(TSW∞ ) = 0.75.

For ordinal sums of t–norms [7] we have the
following result.

Proposition 1 Let n = 2 and let T =
(〈ak, bk, Tk〉)k∈K be an ordinal sum of t–
norms. Then

GIMc(T ) = 1−
∑
k∈K

(bk−ak)3(1−GIMc(Tk)) .

Since idempotency is in fact the property of
A on the diagonal of the unit cube [0, 1]n, it
has sense to define the diagonal idempotency
measure of a conjunctive aggregation function
A ∈ Ac by

DIM c(A) = 2
∫

[0,1]

δA(x)dx,

where δA(x) = A(x, . . . , x) is the diagonal sec-
tion of A.
Note that this formula can naturally be
derived from (5), where instead of the
mean value m over [0, 1]n the mean value
over the diagonal is considered. Clearly,
DIM c(Min) = 1, DIM c(Aw) = 0. In this
sense, the function DIM c is a unipolar mea-
sure of similarity with Min as the prototype.

Example 2 For n = 2 the values of the di-
agonal idempotency measure of t–norms TD,
TL, TnM and TP are

DIM c(TD) = 0 , DIM c(TL) = 0.5,
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DIM c(TnM ) = 0.75, but DIM c(TP ) =
2
3
,

compare with the previous example.

The global idempotency measure GIMd(A) of
a disjunctive aggregation function A ∈ Ad
can be defined directly following (6) or, as
the global idempotency measure of the corre-
sponding dual conjunctive aggregation func-
tion, GIMd(A) = GIMc(Ad).
Finally, let us note that the parameter intro-
duced for t-norms by Yager et al. in [17] (in
the normalized form) can also be explained
as a unipolar measure of similarity with pro-
totype TM [10].

4 Global and local unipolar
parametric evaluations

A common property of unipolar measures of
similarity is that they measure the degree
of some property of aggregation functions by
comparing with a prototype. From the def-
inition of a unipolar measure of similarity µ
the monotonicity of µ can be deduced. Let
us consider the case that for all A, B ∈ A,
A ≤ B ⇒ µ(A) ≤ µ(B). Next, a natural
required property of µ is the validity of the
property

µ

(∑
i
λiAi

)
=
∑
i
λi µ(Ai)

for all convex combinations of aggregation
functions. Two solutions with expected prop-
erties are the global and local parametric eval-
uations which for n–ary aggregation functions
are given by

µG(A) = f

 ∫
[0,1]n

A(x)dP (x)

 , (10)

µL(A) =
∫

[0,1]n

fx (A(x)) dP (x), (11)

respectively, where P is a probability measure
on the Borel subsets of [0, 1]n and f : R→ R
is an increasing function with the property

f

(∑
i
λi xi

)
=
∑
i
λi f(xi)

for all convex combinations of arguments. By
[1] the only functions of this property are

those of the form f(u) = b + c u, where
b ∈ R, c > 0. The same holds for functions
fx, see below.
� First, let us consider a global parametric
evaluation µG,

µG(A) = b+ c

∫
[0,1]n

A(x)dP (x). (12)

According to the chosen probability measure
P on B([0, 1]n) and the considered class of ag-
gregation functions we obtain various types of
measures of similarity. For example:
(i) Let A = Aav and let P be the probabil-
ity measure uniformly distributed on [0, 1]n.
From the requirements µG(Max) = 1,
µG(Min) = 0 and the values∫
[0,1]n

Max(x)dx =
n

n+ 1
,

∫
[0,1]n

Min(x)dx =
1

n+ 1
,

we can compute the constants c and b and
conclude that in the class Aav formula (12) is
of the form

µG(A) =

(n+ 1)
∫

[0,1]n
A(x) dx− 1

n− 1
,

which coincides with the formula for the
global disjunction measure GDM in the class
Aav.
(ii) Let A = Ac and let P be the probability
measure uniformly distributed over the diag-
onal of the unit cube [0, 1]n. Then

µG(A) = b+ c

∫
[0,1]

A(x, . . . , x) dx.

The constants b and c can be determined from
the conditions µG(Min) = 1 and µG(Aw) = 0.
It holds b = 0, c = 2, i.e.,

µG(A) = 2
∫

[0,1]

A(x, . . . , x) dx, A ∈ Ac,

which is the formula for the diagonal idempo-
tency measure DIMc for conjunctive aggre-
gation functions introduced in Section 3.
� Now, let us consider a local parametric eval-
uation given by (11), where fx(u) = bx + cx u
with local constants bx ∈ R, cx > 0 corre-
sponding to the points x ∈ [0, 1]n. In a class
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A of aggregation functions with the greatest
element A as the prototype and the smallest
element A, a pointwise fitting gives the fol-
lowing equations for computing bx, cx:

bx + cxA(x) = 0, bx + cxA(x) = 1.

After a short computation we obtain

µL(A) =
∫

[0,1]n

A(x)−A(x)
A(x)−A(x)

dP (x), (13)

where the convention 0
0 = 0 is considered.

(i) If A = Aav and P is the probability mea-
sure uniformly distributed on B([0, 1]n), the
right-hand side of the previous formula is of
the form ∫

[0,1]n

A(x)−Min(x)
Max(x)−Min(x)

dx, (14)

and defines the mean local disjunction mea-
sure of A, in notation LDM(A). This value
coincides with orness average value studied by
Fernández Salido and Murakami in [14].
In [14] the authors proved that for all OWA
operators GDM(A) = LDM(A). Marichal
[12] extended this result for any discrete Cho-
quet integral. As the following example shows
the class of aggregation functions fulfilling
this property is certainly larger.

Example 3 Let e ∈]0, 1[. Consider the func-
tion Ue : [0, 1]2 → [0, 1] given by

Ue(x, y) =
{

min{x, y} if y ≤ fe(x)
max{x, y} if y > fe(x),

where

fe(x) =
{

1− 1−e
e x if x ∈ [0, e]

e
1−e(1− x) if x ∈ ]e, 1] .

The function fe is piecewise linear, its graph
links the points (0, 1), (e, e) and (1, 0). For
each e ∈ ]0, 1[ the function Ue is a non-trivial
conjunctive uninorm. It is only a matter of
computation to show that the mean value

m(Ue) =
∫

[0,1]2

Ue(x, y)dxdy =
2− e

3
,

and consequently, the global disjunction mea-
sure of Ue is GDM(Ue) = 3m(Ue)−1 = 1−e.
On the other hand, since for all (x, y) ∈ [0, 1]2,
x 6= y,
Ue(x,y)−Min(x,y)
Max(x,y)−Min(x,y)

=

=
{

0 if x ∈ [0, 1], y ≤ fe(x)
1 if x ∈ [0, 1], y > fe(x),

the mean local disjunction measure of Ue com-
puted by formula (14) is LDM(Ue) = 1 − e,
i.e., GDM(Ue) = LDM(Ue).

The question for which types of averaging ag-
gregation functions GDM and LDM coincide
is still open.

(ii) If we consider the class Ac of all conjunc-
tive aggregation functions and the probabil-
ity uniformly distributed over [0, 1]n, the local
parametric evaluation (13) gives for A ∈ Ac
the value ∫

[0,1]n

A(x)
Min(x)

dx, (15)

which expresses the mean local idempotency
measure of a conjunctive aggregation func-
tion A. It will be denoted by LIMc(A),
i.e., LIMc(A) =

∫
[0,1]n

A(x)
Min(x)dx. The pa-

rameter LIMc(A) coincides with the idempo-
tency average value of a conjunctive aggre-
gation function A introduced by Marichal in
[12]. For example, by (15) for the product t–
norm TP (binary form) we have LIMc(TP ) =
2
3 . As mentioned above, GIMc(TP ) = 3

4
and DIMc(TP ) = 2

3 . In general, for n–
ary form of the product t–norm it holds
GIMc(TP ) = n+1

2n , DIMc(TP ) = 2
n+1 and by

[12], LIMc(TP ) = 2n−1

(2n−1
n ) .

5 A mixed approach

The concepts of local and global parametric
evaluations can be unified into a more gen-
eral mixed approach assigning to n–ary ag-
gregation functions parameters defined by

µ(A) = f

 ∫
[0,1]n

fx (A(x)) dP (x)

 , (16)
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with the same general requirements on f , fx
and P as in the previous part. Evidently, if f
is the identity function, µ coincides with µL
and µG is a special case of µ for fx = id.
Using the linear form of functions f and fx
and the requirements µ(A) = 0 and µ(A) = 1
we obtain the following formula for µ(A):

µ(A) =

∫
[0,1]n

cxA(x)dP (x)− ∫
[0,1]n

cxA(x)dP (x)∫
[0,1]n

cxA(x)dP (x)− ∫
[0,1]n

cxA(x)dP (x)
.

(17)
For example, in the class of averaging aggre-

gation functions the previous formula is of the
form
µ(A) =

=

∫
[0,1]n

cxA(x)dP (x)− ∫
[0,1]n

cxMin(x)dP (x)∫
[0,1]n

cxMax(x)dP (x)− ∫
[0,1]n

cxMin(x)dP (x)
.

(18)
Not to prefer any of the coordinates, we will

always suppose that cx is symmetric.

The next parametric class of parametric eval-
uations is motivated by the moments of ran-
dom variables in statistics.

Example 4 Using (18), let us introduce in
the class of averaging aggregation functions
a moment parametric evaluation µ(p), p ∈] −
1,∞[, based on the weighting function c

(p)
x =(

n∏
i=1

xi

)p
and on the uniform probability P

on Borel subsets of [0, 1]n.
Then, for example, for n = 3 we have∫
[0,1]3

xpypzp min{x, y, z}dxdydz

= 6
1∫
0

x∫
0

y∫
0

xpypzp+1dxdydz

= 6
(p+2)(2p+3)(3p+4) .

Similarly,
∫

[0,1]3
xpypzp max{x, y, z}dxdydz

= 6
(p+1)(2p+2)(3p+4) , and∫

[0,1]3
xpypzpmed{x, y, z}dxdydz

= 6
(p+1)(2p+3)(3p+4) .

Substituting these values into (18) we obtain
the parametric evaluation of median,

µ(p)(Med) =
2p+ 2
3p+ 4

.

Therefore, for ternary OWA operators which
are convex combination of Min, Max and
Med, whose parameters are µ(p)(Min) = 0,
µ(p)(Max) = 1 and µ(p)(Med) = 2p+2

3p+4 , it
holds

µ(p)(OWA) = w2
2p+ 2
3p+ 4

+ w3.

For the arithmetic mean M it can easily be
computed that
1∫
0

1∫
0

1∫
0

xpypzp x+y+z3 dxdydz

= 1
(p+1)2(p+2)

and next, by (18),

µ(p)(M) =
5p+ 6
9p+ 12

.

Observe that M can be seen as an
OWA operator with weighting vector w =
(1/3, 1/3, 1/3), thus

µ(p)(M) =
1
3

2p+ 2
3p+ 4

+
1
3

=
5p+ 6
9p+ 12

,

which confirms the previous result.
For the geometric mean G it holds

1∫
0

1∫
0

1∫
0

xpypzp 3
√
x y zdxdydz =

27
(3p+ 4)3

,

thus by (18)

µ(p)(G) =
(p+ 1)2(15p+ 22)

(3p+ 4)3
.

Note that for p = 1 it holds
µ(1)(OWA) = 4

7w2 + w3, µ(1)(M) = 11
21 ,

µ(1)(G) = 148
343 ,

and the limit values are

lim
p→−1

µ(p)(OWA) = w3, lim
p→−1

µ(p)(M) = 1
3 ,

lim
p→−1

µ(p)(G) = 0;

and further,
lim
p→∞µ

(p)(OWA) = 2
3w2 + w3,

lim
p→∞µ

(p)(M) = 5
9 , lim

p→∞µ
(p)(G) = 5

9 .
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