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Abstract

In this paper we study generators
of t-norms on the lattice LI of
closed subintervals of the unit inter-
val. Starting from a minimal set of
axioms that any addition and mul-
tiplication operator on LI must ful-
fill, we investigate the properties of
the additive and multiplicative gen-
erators on LI obtained using these
arithmetic operators. We also in-
vestigate under which conditions the
generators on LI generate a t-norm.

Keywords: Triangular norm, addi-
tive generator, interval-valued fuzzy
set.

1 Introduction

Additive generators are very useful in the
construction of t-norms: any generator on
([0, 1],≤) can be used to generate a t-norm.
Generators play also an important role in the
representation of continuous Archimedean t-
norms on ([0, 1],≤). Moreover, some proper-
ties of t-norms which have a generator can be
related to properties of their generator. See
e.g. [13, 14, 15, 17] for more information about
generators on the unit interval.

Interval-valued fuzzy set theory [12, 18] is an
extension of fuzzy theory in which to each
element of the universe a closed subinter-
val of the unit interval is assigned which ap-
proximates the unknown membership degree.

Another extension of fuzzy set theory is in-
tuitionistic fuzzy set theory introduced by
Atanassov [1]. In [7] it is shown that in-
tuitionistic fuzzy set theory is equivalent to
interval-valued fuzzy set theory and that both
are equivalent to L-fuzzy set theory in the
sense of Goguen [11] w.r.t. a special lattice
LI . In [3] we introduced additive and multi-
plicative generators on LI based on a special
kind of addition introduced in [4]. In [9] an-
other addition was introduced and many more
additions can be introduced. Therefore, in
this paper we will investigate additive gen-
erators on LI independently of the addition.
For some special additions we will investigate
which t-norms can be generated by continu-
ous additive generators which are a natural
extension of an additive generator on the unit
interval.

2 The lattice LI

Definition 2.1 We define LI = (LI ,≤LI ),
where

LI ={[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2]≤LI [y1, y2]⇐⇒ (x1 ≤ y1 and x2 ≤ y2),

for all [x1, x2], [y1, y2] in LI .

Similarly as Lemma 2.1 in [7] it can be shown
that LI is a complete lattice.

Definition 2.2 [12, 18] An interval-valued
fuzzy set on U is a mapping A : U → LI .

Definition 2.3 [1] An intuitionistic fuzzy set
on U is a set

A = {(u, µA(u), νA(u)) | u ∈ U},
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where µA(u) ∈ [0, 1] denotes the membership
degree and νA(u) ∈ [0, 1] the non-membership
degree of u in A and where for all u ∈ U ,
µA(u) + νA(u) ≤ 1.

An intuitionistic fuzzy set A on U can be rep-
resented by the LI-fuzzy set A given by

A : U → LI :
u 7→ [µA(u), 1 − νA(u)],

In Figure 1 the set LI is shown. Note that to
each element x = [x1, x2] of LI corresponds a
point (x1, x2) ∈ R2.
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Figure 1: The grey area is LI .

In the sequel, if x ∈ LI , then we denote its
bounds by x1 and x2, i.e. x = [x1, x2], or,
equivalently, ([x1, x2])1 = x1 and ([x1, x2])2 =
x2. The length x2−x1 of the interval x ∈ LI is
called the degree of uncertainty and is denoted
by xπ. The smallest and the largest element
of LI are given by 0LI = [0, 0] and 1LI = [1, 1].
Note that, for x, y in LI , x <LI y is equivalent
to x ≤LI y and x 6= y, i.e. either x1 < y1 and
x2 ≤ y2, or x1 ≤ y1 and x2 < y2. We define
the relation ≪LI by x ≪LI y ⇐⇒ x1 < y1

and x2 < y2, for x, y in LI . We define for
further usage the sets

D = {[x, x] | x ∈ [0, 1]},
L̄I = {[x1, x2] | (x1, x2) ∈ R2

and x1 ≤ x2},
D̄ = {[x, x] | x ∈ R};

L̄I
+ = {[x1, x2] | (x1, x2) ∈ [0, +∞[2

and x1 ≤ x2},

D̄+ = {[x, x] | x ∈ [0, +∞[},
L̄I

+,0 = {[x1, x2] | (x1, x2) ∈ ]0, +∞[2

and x1 ≤ x2},
L̄I
∞,+ = {[x1, x2] | (x1, x2) ∈ [0, +∞]2

and x1 ≤ x2},
D̄∞,+ = {[x, x] | x ∈ [0, +∞]}.

Note that for any non-empty subset A of LI

it holds that

sup A = [sup{x1 | x1 ∈ [0, 1] and
(∃x2 ∈ [x1, 1])([x1, x2] ∈ A)},
sup{x2 | x2 ∈ [0, 1] and
(∃x1 ∈ [0, x2])([x1, x2] ∈ A)}];

inf A = [inf{x1 | x1 ∈ [0, 1] and
(∃x2 ∈ [x1, 1])([x1, x2] ∈ A)},
inf{x2 | x2 ∈ [0, 1] and
(∃x1 ∈ [0, x2])([x1, x2] ∈ A)}].

Theorem 2.1 (Characterization of
supremum in LI) [5] Let A be an arbitrary
non-empty subset of LI and a ∈ LI . Then
a = sup A if and only if

(∀x ∈ A)(x ≤LI a)
and (∀ε1 > 0)(∃z ∈ A)(z1 > a1 − ε1)
and (∀ε2 > 0)(∃z ∈ A)(z2 > a2 − ε2).

Definition 2.4 A t-norm on LI is a com-
mutative, associative, increasing mapping T :
(LI)2 → LI which satisfies T (1LI , x) = x, for
all x ∈ LI .

A t-conorm on LI is a commutative, asso-
ciative, increasing mapping S : (LI)2 → LI

which satisfies S(0LI , x) = x, for all x ∈ LI .

Example 2.1 [6, 8] We give some special
classes of t-norms on LI . Let T , T1 and T2 be
t-norms on ([0, 1],≤) such that T1(x1, y1) ≤
T2(x1, y1) for all x1, y1 in [0, 1], and let t ∈
[0, 1]. Then we have the following classes:

• t-representable t-norms: TT1,T2(x, y) =
[T1(x1, y1), T2(x2, y2)], for all x, y in LI ;

• pseudo-t-representable t-norms: TT (x, y)
= [T (x1, y1), max(T (x1, y2), T (x2, y1))],
for all x, y in LI ;
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• TT,t(x, y) = [T (x1, y1), max(T (t, T (x2,
y2)), T (x1, y2), T (x2, y1))], for all x, y in
LI ;

• T ′T (x, y) = [min(T (x1, y2), T (x2, y1)),
T (x2, y2)], for all x, y in LI ;

If for a mapping f on [0, 1] and a mapping F
on LI it holds that F (D) ⊆ D̄, and F ([a, a]) =
[f(a), f(a)], for all a ∈ [0, 1], then we say that
F is a natural extension of f to LI . E.g. TT,T ,
TT , TT,t and T ′T are all natural extensions of
T to LI .

Example 2.2 Let, for all x, y in [0, 1],

TW (x, y) = max(0, x + y − 1),
TP (x, y) = xy,

TD(x, y) =

{
min(x, y), if max(x, y) = 1,

0, else,

SW (x, y) = min(1, x + y).

Then TW , TP and TD are t-norms, and SW is
a t-conorm on ([0, 1],≤). Let now, for all x, y
in LI ,

TW (x, y) = [max(0, x1 + y1 − 1),
max(0, x1 + y2 − 1, x2 + y1 − 1)],

TP (x, y) = [x1y1, max(x1y2, x2y1)],
SW (x, y) = [min(1, x1 + y2, x2 + y1), x2 + y2].

Then TW = TTW
and TP = TTP

are t-norms,
and SW is a t-conorm on LI . Furthermore,
TW , TP and SW are natural extensions of TW ,
TP and SW respectively.

3 Arithmetic operators on L̄I

We start from two arithmetic operators ⊕ :
(L̄I)2 → L̄I and ⊗ : (L̄I

+)2 → L̄I satisfying
the following properties,

(add-1) ⊕ is commutative,

(add-2) ⊕ is associative,

(add-3) ⊕ is increasing,

(add-4) [α,α] ⊕ b = [α + b1, α + b2], for all
α ∈ [0, +∞[ and b ∈ L̄I ,

(mul-1) ⊗ is commutative,

(mul-2) ⊗ is associative,

(mul-3) ⊗ is increasing,

(mul-4) [α,α] ⊗ b = [αb1, αb2], for all α ∈
[0, +∞[ and b ∈ L̄I

+.

The conditions (add-1)–(add-3) and (mul-1)
–(mul-3) are natural conditions for any addi-
tion and multiplication operators. The condi-
tions (add-4) and (mul-4) ensure that these
operators are natural extensions of the addi-
tion and multiplication of real numbers to L̄I .

Note that from (add-3) and (add-4) it follows
that, for all a, b in L̄I , a ⊕ b ≥LI a, if b ≥LI

0LI . Similarly, we find that a ⊗ b ≥LI a, if
b ≥LI 1LI , for all a, b in L̄I

+.

Define the mapping ⊖ by, for all x, y in L̄I ,

1LI ⊖ x = [1− x2, 1− x1], (1)

and

x⊖ y = 1LI ⊖ ((1LI ⊖ x)⊕ y). (2)

Define finally the mapping ⊘ by, for all x, y
in L̄I

+,0,

1LI ⊘ x =
[

1
x2

,
1
x1

]
, (3)

and

x⊘ y = 1LI ⊘ ((1LI ⊘ x)⊗ y). (4)

Clearly, (L̄I ,≤LI ,⊕) and (L̄I
+,≤LI ,⊗) are

commutative partially ordered monoids (in
the sense of Birkhoff [2]) with identity element
0LI and 1LI respectively. On the other hand,
(L̄I ,⊕, 0LI ) and (L̄I

+,0,⊗, 1LI ) are not groups
[9].

Example 3.1 We give some examples of
arithmetic operators satisfying the conditions
(add-1)–(add-4), (mul-1)–(mul-4), (1), (2),
(3) and (4).

• In the interval calculus (see e.g. [16]) the
following operators are defined: for all
x, y in L̄I ,

x⊕ y = [x1 + y1, x2 + y2],
x⊖ y = [x1 − y2, x2 − y1],

1338 Proceedings of IPMU’08



x⊗ y = [x1y1, x2y2], if x, y in L̄I
+,

x⊘ y =
[x1

y2
,
x2

y1

]
, if x, y in L̄I

+,0.

• In [4] the following operators are defined:
for all x, y in L̄I ,

x⊕LI y = [min(x1 + y2, x2 + y1), x2 + y2],
x⊖LI y = [x1 − y2, max(x1 − y1, x2 − y2)],
x⊗LI y = [x1y1, max(x1y2, x2y1)],

if x, y in L̄I
+,

x⊘LI y =
[
min

(x1

y1
,
x2

y2

)
,
x2

y1

]
,

if x, y in L̄I
+,0.

Other examples can be found in [9].

4 The arithmetic operators and
t-norms and t-conorms on LI

Theorem 4.1 [9] The mapping S⊕ : (LI)2 →
LI defined by, for all x, y in LI ,

S⊕(x, y) = inf(1LI , x⊕ y), (5)

is a t-conorm on LI if and only if ⊕ satisfies
the following condition:

(∀(x, y, z) ∈ (LI)3)
(((inf(1LI , x⊕ y)⊕ z)1 < 1 and (x⊕ y)2 > 1)
=⇒ (inf(1LI , x⊕ y)⊕ z)1

= (x⊕ inf(1LI , y ⊕ z))1).
(6)

Furthermore S⊕ is a natural extension of SW

to LI .

Theorem 4.2 [9] The mapping T⊕ : (LI)2 →
LI defined by, for all x, y in LI ,

T⊕(x, y) = sup(0LI , x⊖ (1LI ⊖ y)), (7)

is a t-norm on LI if and only if ⊕ satisfies
(6). Furthermore, T⊕ is a natural extension
of TW to LI .

Theorem 4.3 [9] The mapping T⊗ : (LI)2 →
LI defined by, for all x, y in LI ,

T⊗(x, y) = x⊗ y,

is a t-norm on LI . Furthermore T⊗ is a nat-
ural extension of TP to LI .

Theorem 4.4 [9] Assume that ⊕ satisfies the
following condition:

(∀(x, y) ∈ L̄I
+ × LI)

((([x1, 1]⊕ y)1 < 1 and x2 ∈ ]1, 2])
=⇒ ([x1, 1] ⊕ y)1 = (x⊕ y)1).

(8)

Then the mappings T⊕,S⊕ : (LI)2 → LI de-
fined by, for all x, y in LI ,

T⊕(x, y) = sup(0LI , x⊖ (1LI ⊖ y)),
S⊕(x, y) = inf(1LI , x⊕ y),

are a t-norm and a t-conorm on LI respec-
tively. Furthermore T⊕ is a natural extension
of TW to LI , and S⊕ is a natural extension of
SW to LI .

Example 4.1 [9] We give t-norms T⊕, T⊗
and t-conorms S⊕ on LI defined using the
examples for ⊕ and ⊖ given in the previous
section.

• Let ⊕, ⊖ and ⊗ be the addition, sub-
traction and multiplication used in the
interval calculus, then, for all x, y in
LI , T⊕ = TTW ,TW

, T⊗ = TTP ,TP
and

S⊕ = SSW ,SW
. Thus the t-norms T⊕,

T⊗ and the t-conorm S⊕ obtained using
the arithmetic operators from the inter-
val calculus are t-representable.

• Using ⊕LI , ⊖LI and ⊗LI we obtain, for
all x, y in LI , T⊕LI

= TW , T⊗LI
= TP and

S⊕LI
= SW . Thus the t-norm T⊕LI

and
the t-conorm S⊕LI

are the  Lukasiewicz t-
norm and t-conorm on LI , and T⊗ is the
product t-norm on LI , which are pseudo-
t-representable.

5 Additive generators on LI

Definition 5.1 [10, 13, 14] A mapping f :
[0, 1] → [0, +∞] satisfying the following con-
ditions:

(ag.1) f is strictly decreasing;
(ag.2) f(1) = 0;
(ag.3) f is right-continuous in 0;
(ag.4) f(x) + f(y) ∈ rng(f)∪ [f(0), +∞], for

all x, y ∈ [0, 1];
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is called an additive generator on ([0, 1],≤).

Definition 5.2 [13, 14] Let f : [0, 1] →
[0, +∞] be a strictly decreasing function. The
pseudo-inverse f (−1) : [0, +∞] → [0, 1] of f
is defined by, for all y ∈ [0, +∞], f (−1)(y) =
sup({0} ∪ {x | x ∈ [0, 1] and f(x) > y}).
We extend these definitions to LI as follows.

Definition 5.3 Let f : LI → L̄I∞,+ be a
strictly decreasing function. The pseudo-
inverse f(−1) : L̄I∞,+ → LI of f is defined by,
for all y ∈ L̄I∞,+,

f(−1)(y)

=



sup{x | x ∈ LI and f(x) ≫LI y},
if y ≪LI f(0LI );

sup({0LI} ∪ {x | x ∈ LI and (f(x))1 > y1

and (f(x))2 ≥ (f(0LI ))2}),
if y2 ≥ (f(0LI ))2;

sup({0LI} ∪ {x | x ∈ LI and (f(x))2 > y2

and (f(x))1 ≥ (f(0LI ))1}),
if y1 ≥ (f(0LI ))1.

Note that if f(0LI ) ∈ D̄∞,+, then, for all y ∈
L̄I∞,+, f(−1)(y) = sup Φy, where

Φy =



{x | x ∈ LI and f(x) ≫LI y},
if y ≪LI f(0LI );

{0LI} ∪ {x | x ∈ LI and (f(x))1 > y1

and (f(x))2 = (f(0LI ))2},
if y2 ≥ (f(0LI ))2.

(9)

Definition 5.4 A mapping f : LI → L̄I∞,+

satisfying the following conditions:

(AG.1) f is strictly decreasing;

(AG.2) f(1LI ) = 0LI ;
(AG.3) f is right-continuous in 0LI ;
(AG.4) f(x) ⊕ f(y) ∈ R(f), for all x, y in

LI , where R(f) = rng(f) ∪ {x | x ∈
L̄I∞,+ and [x1, (f(0LI ))2] ∈ rng(f) and
x2 ≥ (f(0LI ))2} ∪ {x | x ∈ L̄I∞,+

and [(f(0LI ))1, x2] ∈ rng(f) and x1 ≥
(f(0LI ))1}∪ {x | x ∈ L̄I∞,+ and x ≥LI

f(0LI )};

(AG.5) f(−1)(f(x)) = x, for all x ∈ LI ;

is called an additive generator on LI .

If f(0LI ) ∈ D̄∞,+, then R(f) = rng(f) ∪ {x |
x ∈ L̄I∞,+ and [x1, (f(0LI ))2] ∈ rng(f) and
x2 ≥ (f(0LI ))2} ∪ {x | x ∈ L̄I∞,+ and x ≥LI

f(0LI )}.
Theorem 5.1 Let f be an additive generator
on ([0, 1],≤) and let f : LI → L̄I∞,+ the map-
ping defined by, for all x ∈ LI ,

f(x) = [f(x2), f(x1)]. (10)

Then, for all y ∈ L̄I∞,+,

f(−1)(y) = [f (−1)(y2), f (−1)(y1)]. (11)

Lemma 5.2 Let f : LI → L̄I∞,+ be a con-
tinuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then
there exists a continuous additive generator f
on ([0, 1],≤) such that, for all x ∈ LI ,

f(x) = [f(x2), f(x1)].

Lemma 5.3 Let f : LI → L̄I∞,+ be a con-
tinuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then
R(f) = L̄I∞,+ and f satisfies (AG.4).

Theorem 5.4 A mapping f : LI → L̄I∞,+ is a
continuous additive generator on LI for which
f(D) ⊆ D̄∞,+ if and only if there exists a
continuous additive generator f on ([0, 1],≤)
such that, for all x ∈ LI ,

f(x) = [f(x2), f(x1)]. (12)

Theorem 5.4 shows that no matter which op-
erator ⊕ satisfying (add-1)–(add-4) is used
in (AG.4), a continuous additive generator f

on LI for which f(D) ⊆ D̄∞,+ can be repre-
sented using an additive generator on ([0, 1],
≤).

Theorem 5.5 Let f be an additive generator
on ([0, 1],≤). Then the mapping f : LI →
L̄I∞,+ defined by, for all x ∈ LI ,

f(x) = [f(x2), f(x1)],

is an additive generator on LI associated to
⊕ if and only if, for all x, y in LI ,

f(x)⊕ f(y) ∈ (rng(f) ∪ [f(0), +∞])2.
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6 Additive generators and t-norms
on LI

Lemma 6.1 Let f be an additive generator on
LI associated to ⊕. Then the mapping Tf :
(LI)2 → LI defined by, for all x, y in LI ,

Tf(x, y) = f(−1)(f(x)⊕ f(y)),

is commutative, increasing and Tf(1LI , x) =
x, for all x ∈ LI .

Theorem 6.2 Let f be a continuous additive
generator on LI associated to ⊕ for which
f(D) ⊆ D̄∞,+. The mapping Tf : (LI)2 → LI

defined by, for all x, y in LI ,

Tf(x, y) = f(−1)(f(x)⊕ f(y)),

is a t-norm on LI if and only if ⊕ satisfies
the following condition:

(∀(x, y, z) ∈ A3)
(((inf(α, x⊕ y)⊕ z)1 < α1 and (x⊕ y)2 > α1)
=⇒ (inf(α, x ⊕ y)⊕ z)1 = (x⊕ inf(α, y ⊕ z))1),

(13)
where α = f(0LI ) and A = {x | x ∈ L̄I∞,+ and
x ≤LI f(0LI )}.
The condition (13) is very similar to (6). In
the following lemma we show that in some
cases both conditions are equivalent.

Lemma 6.3 Let for all α ∈ D̄+ \ {0LI},
Pα ⇐⇒ (∀(x, y, z) ∈ A3

α)
(((inf(α, x⊕ y)⊕ z)1 < α1 and (x⊕ y)2 > α1)
=⇒ (inf(α, x ⊕ y)⊕ z)1 = (x⊕ inf(α, y ⊕ z))1),

(14)
where Aα = {x | x ∈ L̄I

+ and x ≤LI α}.
Assume that

(addmuldistr) [c, c]⊗(x⊕y) = ([c, c]⊗x)⊕
([c, c] ⊗ y), for all c ∈ ]0, +∞[ and x, y
in L̄I

+.

Then, for any α, β in D̄+ \ {0LI}, Pα ⇐⇒
Pβ .

Lemma 6.3 shows that if (addmuldistr)
holds, then (13) and (6) are equivalent to each
other.

The following theorem shows that there is a
close relationship between t-norms generated
by a continuous additive generator and S⊕.

Theorem 6.4 Let f be a continuous additive
generator on LI associated to ⊕ for which
f(D) ⊆ D̄∞,+ and f(0LI ) ∈ L̄I

+. Define the
mappings Tf, S⊕ : (LI)2 → LI by, for all x, y
in LI ,

Tf(x, y) = f(−1)(f(x)⊕ f(y)),
S⊕(x, y) = inf(1LI , x⊕ y).

If (addmuldistr) holds, then Tf is a t-norm
on LI if and only if S⊕ is a t-conorm on LI .

Taking into consideration the above men-
tioned similarity between the conditions (6)
and (13), we consider a condition which is
similar to (8) and prove that it is a sufficient
condition for ⊕ so that a (not necessarily con-
tinuous) additive generator associated to ⊕
generates a t-norm. First we give a lemma.

Lemma 6.5 Let f be an additive generator on
LI associated to ⊕. Assume that ⊕ satisfies
the following conditions:

(∀(x, y) ∈ L̄I
+ ×A)

((([x1, α2]⊕ y)1 < α1 and x2 ∈ ]α2, 2α2])
=⇒ ([x1, α2]⊕ y)1 = (x⊕ y)1),

(15)
and

(∀(x, y) ∈ L̄I
+ ×A)

((([α1, x2]⊕ y)2 < α2 and x1 ∈ ]α1, 2α1])
=⇒ ([α1, x2]⊕ y)2 = (x⊕ y)2),

(16)
where α = f(0LI ) and A = {x | x ∈ L̄I∞,+

and x ≤LI f(0LI )}. Then, for all x ∈ LI and
y ∈ R(f) such that y ≤LI f(0LI )⊕ f(0LI ),

f(x)⊕ f(f(−1)(y)) ∈ R(f)

and

f(−1)(f(x)⊕ f(f(−1)(y))) = f(−1)(f(x)⊕ y).
(17)

Using Lemma 6.5, the following theorem can
be shown.

Theorem 6.6 Let f be an additive generator
on LI associated to ⊕. If ⊕ satisfies (15) and
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(16), then the mapping Tf : (LI)2 → LI de-
fined by, for all x, y in LI ,

Tf(x, y) = f(−1)(f(x)⊕ f(y)),

is a t-norm on LI .

Theorem 5.4 and Theorem 5.1 show that no
matter which operator ⊕ is used in (AG.4),
a continuous additive generator f on LI sat-
isfying f(D) ⊆ D̄∞,+ is representable and has
a representable pseudo-inverse. Therefore it
depends on the operator ⊕ which classes of
t-norms on LI can have continuous additive
generators that extend additive generators on
([0, 1],≤).

We show that in some cases the conditions
(15) and (16) are equivalent with (8). Note
first that if α ∈ D̄+ \ {0LI}, then, for any
x ∈ L̄∞,+ and y ∈ A (where A is defined as in
Lemma 6.5), ([α1, x2]⊕y)2 ≥ ([α1, x2]⊕y)1 ≥
α1 = α2, so (16) holds.

Lemma 6.7 Let for all α ∈ D̄+ \ {0LI},
Qα ⇐⇒ (∀(x, y) ∈ L̄I

+ ×Aα)
((([x1, α1]⊕ y)1 < α1 and x2 ∈ ]α1, 2α1])
=⇒ ([x1, α1]⊕ y)1 = (x⊕ y)1),

(18)
where Aα = {x | x ∈ L̄I

+ and x ≤LI α}. If
(addmuldistr) holds, then, for any α, β in
D̄+ \ {0LI}, Qα ⇐⇒ Qβ.

The following theorem shows that if (add-
muldistr) holds, then it is sufficient to prove
the property Qα mentioned in Lemma 6.7 for
just one α ∈ D̄+\{0LI} in order to obtain that
the mappings T⊕, S⊕ and Tf are t-(co)norms
on LI .

Corollary 6.8 Assume that (addmul-
distr) holds, and that for an arbitrary α ∈
D̄+ \ {0LI}, ⊕ satisfies Qα, where Aα = {x |
x ∈ L̄I

+ and x ≤LI α}. Then the following
properties hold.

• The mappings T⊕,S⊕ : (LI)2 → LI de-
fined by, for all x, y in LI ,

T⊕(x, y) = sup(0LI , x⊖ (1LI ⊖ y)),
S⊕(x, y) = inf(1LI , x⊕ y),

are a t-norm and a t-conorm on LI re-
spectively. Furthermore, T⊕ and S⊕ are
a natural extension of TW and SW to LI .

• For any additive generator f on LI asso-
ciated to ⊕ for which f(0LI ) ∈ D̄∞,+, the
mapping Tf : (LI)2 → LI defined by, for
all x, y in LI ,

Tf(x, y) = f(−1)(f(x)⊕ f(y)),

is a t-norm on LI .

7 Examples of additive generators
of specific t-norms on LI

7.1 The t-norm T⊕

The mapping fW : [0, 1] → [0, +∞] defined
by, for all x ∈ [0, 1], fW (x) = 1 − x, is an
additive generator of TW (see [13, 14]). Define
the mapping fW : LI → L̄I∞,+ by fW (x) =
1LI ⊖ x = [fW (x2), fW (x1)], for all x ∈ LI .
Then fW is an additive generator on LI of
T⊕.

7.2 The t-norm T⊗

The mapping fP : [0, 1] → [0, +∞] defined
by, for all x ∈ [0, 1], fP (x) = − ln(x), is an
additive generator of TP (see [13, 14]). Define
the mapping fP : LI → L̄I∞,+ by fP (x) =
0LI ⊖ ln(x) = [fP (x2), fP (x1)], for all x ∈ LI .
Then fP is an additive generator on LI of T⊗
if and only if for all a, b in L̄I∞,+,

exp(0LI ⊖a)⊗exp(0LI⊖b) = exp(0LI ⊖(a⊕b)).

8 Conclusion

In this paper we investigated additive gener-
ators on LI based on any arithmetic oper-
ators satisfying the axioms proposed in [9].
We showed that independently of the choice
of the addition, any continuous additive gen-
erator which is a natural extension of an ad-
ditive generator on the unit interval, can be
represented by this generator in a componen-
twise way. Conversely, we gave a necessary
and sufficient condition such that any map-
ping which is defined componentwisely using
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an additive generator on the unit interval, is
an additive generator on LI . We gave a nec-
essary and sufficient condition such that an
additive generator on LI generates a t-norm
on LI . When a weakened form of the distribu-
tivity of ⊕ and ⊗ is imposed, the fact that an
addition operator ⊕ generates a t-conorm on
LI which extends the  Lukasiewicz t-conorm
is equivalent to the fact that an additive gen-
erator based on ⊕ generates a t-norm on LI .
Finally, we extended some additive generators
of well-known t-norms on the unit interval to
additive generators on LI .
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