Additive generators in interval-valued fuzzy set theory

Glad Deschrijver

Fuzziness and Uncertainty Modelling Research Unit, Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 (S9), B-9000 Gent, Belgium Glad.Deschrijver@UGent.be http://www.fuzzy.UGent.be

Abstract

In this paper we study generators of t-norms on the lattice \mathcal{L}^{I} of closed subintervals of the unit interval. Starting from a minimal set of axioms that any addition and multiplication operator on \mathcal{L}^{I} must fulfill, we investigate the properties of the additive and multiplicative generators on \mathcal{L}^{I} obtained using these arithmetic operators. We also investigate under which conditions the generators on \mathcal{L}^{I} generate a t-norm.

Keywords: Triangular norm, additive generator, interval-valued fuzzy set.

1 Introduction

Additive generators are very useful in the construction of t-norms: any generator on $([0,1], \leq)$ can be used to generate a t-norm. Generators play also an important role in the representation of continuous Archimedean t-norms on $([0,1], \leq)$. Moreover, some properties of t-norms which have a generator can be related to properties of their generator. See e.g. [13, 14, 15, 17] for more information about generators on the unit interval.

Interval-valued fuzzy set theory [12, 18] is an extension of fuzzy theory in which to each element of the universe a closed subinterval of the unit interval is assigned which approximates the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy set theory introduced by Atanassov [1]. In [7] it is shown that intuitionistic fuzzy set theory is equivalent to interval-valued fuzzy set theory and that both are equivalent to L-fuzzy set theory in the sense of Goguen [11] w.r.t. a special lattice \mathcal{L}^{I} . In [3] we introduced additive and multiplicative generators on \mathcal{L}^{I} based on a special kind of addition introduced in [4]. In [9] another addition was introduced and many more additions can be introduced. Therefore, in this paper we will investigate additive generators on \mathcal{L}^{I} independently of the addition. For some special additions we will investigate which t-norms can be generated by continuous additive generators which are a natural extension of an additive generator on the unit interval.

2 The lattice \mathcal{L}^{I}

Definition 2.1 We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}}),$ where

$$\begin{split} L^{I} &= \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, 1]^{2} \text{ and } x_{1} \leq x_{2} \}, \\ [x_{1}, x_{2}] &\leq_{L^{I}} [y_{1}, y_{2}] \Longleftrightarrow (x_{1} \leq y_{1} \text{ and } x_{2} \leq y_{2}), \\ \text{for all } [x_{1}, x_{2}], [y_{1}, y_{2}] \text{ in } L^{I}. \end{split}$$

Similarly as Lemma 2.1 in [7] it can be shown that \mathcal{L}^{I} is a complete lattice.

Definition 2.2 [12, 18] An interval-valued fuzzy set on U is a mapping $A: U \to L^I$.

Definition 2.3 [1] An intuitionistic fuzzy set on U is a set

$$A = \{ (u, \mu_A(u), \nu_A(u)) \mid u \in U \},\$$

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU'08, pp. 1336–1343 Torremolinos (Málaga), June 22–27, 2008 where $\mu_A(u) \in [0,1]$ denotes the membership degree and $\nu_A(u) \in [0,1]$ the non-membership degree of u in A and where for all $u \in U$, $\mu_A(u) + \nu_A(u) \leq 1$.

An intuitionistic fuzzy set A on U can be represented by the \mathcal{L}^{I} -fuzzy set A given by

$$\begin{array}{rcl} A & : & U & \to & L^I & : \\ & u & \mapsto & [\mu_A(u), 1 - \nu_A(u)], \end{array}$$

In Figure 1 the set L^{I} is shown. Note that to each element $x = [x_1, x_2]$ of L^{I} corresponds a point $(x_1, x_2) \in \mathbb{R}^2$.

Figure 1: The grey area is L^{I} .

In the sequel, if $x \in L^{I}$, then we denote its bounds by x_{1} and x_{2} , i.e. $x = [x_{1}, x_{2}]$, or, equivalently, $([x_{1}, x_{2}])_{1} = x_{1}$ and $([x_{1}, x_{2}])_{2} = x_{2}$. The length $x_{2}-x_{1}$ of the interval $x \in L^{I}$ is called the degree of uncertainty and is denoted by x_{π} . The smallest and the largest element of \mathcal{L}^{I} are given by $0_{\mathcal{L}^{I}} = [0, 0]$ and $1_{\mathcal{L}^{I}} = [1, 1]$. Note that, for x, y in L^{I} , $x <_{L^{I}} y$ is equivalent to $x \leq_{L^{I}} y$ and $x \neq y$, i.e. either $x_{1} < y_{1}$ and $x_{2} \leq y_{2}$, or $x_{1} \leq y_{1}$ and $x_{2} < y_{2}$. We define the relation $\ll_{L^{I}}$ by $x \ll_{L^{I}} y \iff x_{1} < y_{1}$ and $x_{2} < y_{2}$, for x, y in L^{I} . We define for further usage the sets

$$D = \{ [x, x] \mid x \in [0, 1] \},\$$

$$\bar{L}^{I} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in \mathbb{R}^{2}$$

and $x_{1} \leq x_{2} \},\$

$$\bar{D} = \{ [x, x] \mid x \in \mathbb{R} \};\$$

$$\bar{L}^{I}_{+} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, +\infty[^{2}$$

and $x_{1} \leq x_{2} \},\$

$$\bar{D}_{+} = \{ [x, x] \mid x \in [0, +\infty[] \},$$

$$\bar{L}_{+,0}^{I} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in]0, +\infty[^{2} \text{ and } x_{1} \leq x_{2} \},$$

$$\bar{L}_{\infty,+}^{I} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, +\infty]^{2} \text{ and } x_{1} \leq x_{2} \},$$

$$\bar{D}_{\infty,+} = \{ [x, x] \mid x \in [0, +\infty] \}.$$

Note that for any non-empty subset A of L^{I} it holds that

$$\begin{split} \sup A &= [\sup\{x_1 \mid x_1 \in [0,1] \text{ and} \\ &\quad (\exists x_2 \in [x_1,1])([x_1,x_2] \in A)\}, \\ &\quad \sup\{x_2 \mid x_2 \in [0,1] \text{ and} \\ &\quad (\exists x_1 \in [0,x_2])([x_1,x_2] \in A)\}]; \\ \inf A &= [\inf\{x_1 \mid x_1 \in [0,1] \text{ and} \\ &\quad (\exists x_2 \in [x_1,1])([x_1,x_2] \in A)\}, \\ &\quad \inf\{x_2 \mid x_2 \in [0,1] \text{ and} \\ &\quad (\exists x_1 \in [0,x_2])([x_1,x_2] \in A)\}]. \end{split}$$

Theorem 2.1 (Characterization of supremum in \mathcal{L}^{I}) [5] Let A be an arbitrary non-empty subset of L^{I} and $a \in L^{I}$. Then $a = \sup A$ if and only if

$$\begin{array}{l} (\forall x \in A)(x \leq_{L^{I}} a)\\ and \ (\forall \varepsilon_{1} > 0)(\exists z \in A)(z_{1} > a_{1} - \varepsilon_{1})\\ and \ (\forall \varepsilon_{2} > 0)(\exists z \in A)(z_{2} > a_{2} - \varepsilon_{2}) \end{array}$$

Definition 2.4 A t-norm on \mathcal{L}^{I} is a commutative, associative, increasing mapping \mathcal{T} : $(L^{I})^{2} \rightarrow L^{I}$ which satisfies $\mathcal{T}(1_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.

A t-conorm on \mathcal{L}^{I} is a commutative, associative, increasing mapping $\mathcal{S} : (L^{I})^{2} \to L^{I}$ which satisfies $\mathcal{S}(0_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.

Example 2.1 [6, 8] We give some special classes of t-norms on \mathcal{L}^{I} . Let T, T_{1} and T_{2} be t-norms on $([0,1], \leq)$ such that $T_{1}(x_{1}, y_{1}) \leq T_{2}(x_{1}, y_{1})$ for all x_{1}, y_{1} in [0,1], and let $t \in [0,1]$. Then we have the following classes:

- t-representable t-norms: $\mathcal{T}_{T_1,T_2}(x,y) = [T_1(x_1,y_1), T_2(x_2,y_2)]$, for all x, y in L^I ;
- pseudo-t-representable t-norms: $\mathcal{T}_T(x, y)$ = $[T(x_1, y_1), \max(T(x_1, y_2), T(x_2, y_1))],$ for all x, y in L^I ;

Proceedings of IPMU'08

- $\mathcal{T}_{T,t}(x,y) = [T(x_1,y_1), \max(T(t,T(x_2, y_2)), T(x_1,y_2), T(x_2,y_1))],$ for all x, y in L^I ;
- $\mathcal{T}'_T(x,y) = [\min(T(x_1,y_2), T(x_2,y_1)), T(x_2,y_2)],$ for all x, y in L^I ;

If for a mapping f on [0, 1] and a mapping Fon L^{I} it holds that $F(D) \subseteq \overline{D}$, and F([a, a]) =[f(a), f(a)], for all $a \in [0, 1]$, then we say that F is a natural extension of f to L^{I} . E.g. $\mathcal{T}_{T,T}$, \mathcal{T}_{T} , $\mathcal{T}_{T,t}$ and \mathcal{T}'_{T} are all natural extensions of T to L^{I} .

Example 2.2 Let, for all x, y in [0, 1],

$$T_W(x, y) = \max(0, x + y - 1),$$

$$T_P(x, y) = xy,$$

$$T_D(x, y) = \begin{cases} \min(x, y), & \text{if } \max(x, y) = 1, \\ 0, & \text{else}, \end{cases}$$

$$S_W(x, y) = \min(1, x + y).$$

Then T_W , T_P and T_D are t-norms, and S_W is a t-conorm on $([0, 1], \leq)$. Let now, for all x, yin L^I ,

$$\begin{aligned} \mathcal{T}_W(x,y) &= [\max(0,x_1+y_1-1),\\ \max(0,x_1+y_2-1,x_2+y_1-1)],\\ \mathcal{T}_P(x,y) &= [x_1y_1,\max(x_1y_2,x_2y_1)],\\ \mathcal{S}_W(x,y) &= [\min(1,x_1+y_2,x_2+y_1),x_2+y_2]. \end{aligned}$$

Then $\mathcal{T}_W = \mathcal{T}_{T_W}$ and $\mathcal{T}_P = \mathcal{T}_{T_P}$ are t-norms, and \mathcal{S}_W is a t-conorm on \mathcal{L}^I . Furthermore, $\mathcal{T}_W, \mathcal{T}_P$ and \mathcal{S}_W are natural extensions of T_W , T_P and \mathcal{S}_W respectively.

3 Arithmetic operators on \bar{L}^{I}

We start from two arithmetic operators \oplus : $(\bar{L}^{I})^{2} \rightarrow \bar{L}^{I}$ and \otimes : $(\bar{L}^{I}_{+})^{2} \rightarrow \bar{L}^{I}$ satisfying the following properties,

 $\begin{array}{l} (\text{ADD-1}) \ \oplus \ \text{is commutative,} \\ (\text{ADD-2}) \ \oplus \ \text{is associative,} \\ (\text{ADD-3}) \ \oplus \ \text{is increasing,} \\ (\text{ADD-4}) \ [\alpha, \alpha] \ \oplus \ b = \ [\alpha + b_1, \alpha + b_2], \ \text{for all} \\ \alpha \in \ [0, +\infty[\ \text{and} \ b \in \ \bar{L}^I, \end{array}$

(MUL-1) \otimes is commutative,

(MUL-2) \otimes is associative,

(MUL-3) \otimes is increasing,

The conditions (ADD-1)–(ADD-3) and (MUL-1)–(MUL-3) are natural conditions for any addition and multiplication operators. The conditions (ADD-4) and (MUL-4) ensure that these operators are natural extensions of the addition and multiplication of real numbers to \bar{L}^I .

Note that from (ADD-3) and (ADD-4) it follows that, for all a, b in \overline{L}^I , $a \oplus b \ge_{L^I} a$, if $b \ge_{L^I} 0_{\mathcal{L}^I}$. Similarly, we find that $a \otimes b \ge_{L^I} a$, if $b \ge_{L^I} 1_{\mathcal{L}^I}$, for all a, b in \overline{L}^I_+ .

Define the mapping \ominus by, for all x, y in \overline{L}^I ,

$$1_{\mathcal{L}^{I}} \ominus x = [1 - x_2, 1 - x_1], \tag{1}$$

and

$$x \ominus y = 1_{\mathcal{L}^I} \ominus ((1_{\mathcal{L}^I} \ominus x) \oplus y). \quad (2)$$

Define finally the mapping \oslash by, for all x, y in $\bar{L}^{I}_{+,0}$,

$$1_{\mathcal{L}^{I}} \oslash x = \left[\frac{1}{x_2}, \frac{1}{x_1}\right],\tag{3}$$

and

$$x \oslash y = 1_{\mathcal{L}^{I}} \oslash ((1_{\mathcal{L}^{I}} \oslash x) \otimes y).$$
 (4)

Clearly, $(\bar{L}^{I}, \leq_{L^{I}}, \oplus)$ and $(\bar{L}^{I}_{+}, \leq_{L^{I}}, \otimes)$ are commutative partially ordered monoids (in the sense of Birkhoff [2]) with identity element $0_{\mathcal{L}^{I}}$ and $1_{\mathcal{L}^{I}}$ respectively. On the other hand, $(\bar{L}^{I}, \oplus, 0_{\mathcal{L}^{I}})$ and $(\bar{L}^{I}_{+,0}, \otimes, 1_{\mathcal{L}^{I}})$ are not groups [9].

Example 3.1 We give some examples of arithmetic operators satisfying the conditions (ADD-1)–(ADD-4), (MUL-1)–(MUL-4), (1), (2), (3) and (4).

• In the interval calculus (see e.g. [16]) the following operators are defined: for all x, y in \bar{L}^{I} ,

$$x \oplus y = [x_1 + y_1, x_2 + y_2],$$

$$x \oplus y = [x_1 - y_2, x_2 - y_1],$$

$$\begin{aligned} x \otimes y &= [x_1y_1, x_2y_2], \quad \text{if } x, y \text{ in } \bar{L}_+^I, \\ x \oslash y &= \Big[\frac{x_1}{y_2}, \frac{x_2}{y_1}\Big], \quad \text{if } x, y \text{ in } \bar{L}_{+,0}^I. \end{aligned}$$

 In [4] the following operators are defined: for all x, y in L
^I,

$$\begin{aligned} x \oplus_{\mathcal{L}^{I}} y &= [\min(x_{1} + y_{2}, x_{2} + y_{1}), x_{2} + y_{2}], \\ x \oplus_{\mathcal{L}^{I}} y &= [x_{1} - y_{2}, \max(x_{1} - y_{1}, x_{2} - y_{2})], \\ x \otimes_{\mathcal{L}^{I}} y &= [x_{1}y_{1}, \max(x_{1}y_{2}, x_{2}y_{1})], \\ & \text{if } x, y \text{ in } \bar{L}_{+}^{I}, \\ x \otimes_{\mathcal{L}^{I}} y &= \left[\min\left(\frac{x_{1}}{y_{1}}, \frac{x_{2}}{y_{2}}\right), \frac{x_{2}}{y_{1}}\right], \\ & \text{if } x, y \text{ in } \bar{L}_{+,0}^{I}. \end{aligned}$$

Other examples can be found in [9].

4 The arithmetic operators and t-norms and t-conorms on \mathcal{L}^{I}

Theorem 4.1 [9] The mapping $\mathcal{S}_{\oplus} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\mathcal{S}_{\oplus}(x,y) = \inf(1_{\mathcal{L}^{I}}, x \oplus y), \qquad (5)$$

is a t-conorm on \mathcal{L}^{I} if and only if \oplus satisfies the following condition:

$$(\forall (x, y, z) \in (L^{I})^{3})$$

$$(((\inf(1_{\mathcal{L}^{I}}, x \oplus y) \oplus z)_{1} < 1 and (x \oplus y)_{2} > 1)$$

$$\implies (\inf(1_{\mathcal{L}^{I}}, x \oplus y) \oplus z)_{1}$$

$$= (x \oplus \inf(1_{\mathcal{L}^{I}}, y \oplus z))_{1}).$$

(6)

Furthermore S_{\oplus} is a natural extension of S_W to L^I .

Theorem 4.2 [9] The mapping $\mathcal{T}_{\oplus} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\mathcal{T}_{\oplus}(x,y) = \sup(0_{\mathcal{L}^{I}}, x \ominus (1_{\mathcal{L}^{I}} \ominus y)), \quad (7)$$

is a t-norm on \mathcal{L}^{I} if and only if \oplus satisfies (6). Furthermore, \mathcal{T}_{\oplus} is a natural extension of T_{W} to L^{I} .

Theorem 4.3 [9] The mapping $\mathcal{T}_{\otimes} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\mathcal{T}_{\otimes}(x,y) = x \otimes y,$$

is a t-norm on \mathcal{L}^I . Furthermore \mathcal{T}_{\otimes} is a natural extension of T_P to L^I .

Theorem 4.4 [9] Assume that \oplus satisfies the following condition:

$$(\forall (x, y) \in \bar{L}_{+}^{I} \times L^{I})$$

((([x_{1}, 1] \oplus y)_{1} < 1 and x_{2} \in]1, 2]) (8)
$$\implies ([x_{1}, 1] \oplus y)_{1} = (x \oplus y)_{1}).$$

Then the mappings $\mathcal{T}_{\oplus}, \mathcal{S}_{\oplus} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\begin{aligned} \mathcal{T}_{\oplus}(x,y) &= \sup(0_{\mathcal{L}^{I}}, x \ominus (1_{\mathcal{L}^{I}} \ominus y)), \\ \mathcal{S}_{\oplus}(x,y) &= \inf(1_{\mathcal{L}^{I}}, x \oplus y), \end{aligned}$$

are a t-norm and a t-conorm on \mathcal{L}^{I} respectively. Furthermore \mathcal{T}_{\oplus} is a natural extension of T_{W} to L^{I} , and \mathcal{S}_{\oplus} is a natural extension of S_{W} to L^{I} .

Example 4.1 [9] We give t-norms \mathcal{T}_{\oplus} , \mathcal{T}_{\otimes} and t-conorms \mathcal{S}_{\oplus} on \mathcal{L}^{I} defined using the examples for \oplus and \ominus given in the previous section.

- Let \oplus , \ominus and \otimes be the addition, subtraction and multiplication used in the interval calculus, then, for all x, y in $L^{I}, \mathcal{T}_{\oplus} = \mathcal{T}_{T_{W},T_{W}}, \mathcal{T}_{\otimes} = \mathcal{T}_{T_{P},T_{P}}$ and $\mathcal{S}_{\oplus} = \mathcal{S}_{S_{W},S_{W}}$. Thus the t-norms $\mathcal{T}_{\oplus},$ \mathcal{T}_{\otimes} and the t-conorm \mathcal{S}_{\oplus} obtained using the arithmetic operators from the interval calculus are t-representable.
- Using $\bigoplus_{\mathcal{L}^I}$, $\bigoplus_{\mathcal{L}^I}$ and $\bigotimes_{\mathcal{L}^I}$ we obtain, for all x, y in L^I , $\mathcal{T}_{\bigoplus_{\mathcal{L}^I}} = \mathcal{T}_W$, $\mathcal{T}_{\bigotimes_{\mathcal{L}^I}} = \mathcal{T}_P$ and $\mathcal{S}_{\bigoplus_{\mathcal{L}^I}} = \mathcal{S}_W$. Thus the t-norm $\mathcal{T}_{\bigoplus_{\mathcal{L}^I}}$ and the t-conorm $\mathcal{S}_{\bigoplus_{\mathcal{L}^I}}$ are the Lukasiewicz tnorm and t-conorm on \mathcal{L}^I , and \mathcal{T}_{\otimes} is the product t-norm on \mathcal{L}^I , which are pseudot-representable.

5 Additive generators on \mathcal{L}^{I}

Definition 5.1 [10, 13, 14] A mapping $f : [0,1] \rightarrow [0,+\infty]$ satisfying the following conditions:

(ag.1) f is strictly decreasing;

- (ag.2) f(1) = 0;
- (ag.3) f is right-continuous in 0;
- (ag.4) $f(x) + f(y) \in \operatorname{rng}(f) \cup [f(0), +\infty], \text{ for } all x, y \in [0, 1];$

Proceedings of IPMU'08

is called an additive generator on $([0,1],\leq)$.

Definition 5.2 [13, 14] Let $f : [0,1] \rightarrow$ $[0, +\infty]$ be a strictly decreasing function. The pseudo-inverse $f^{(-1)}: [0, +\infty] \to [0, 1]$ of f is defined by, for all $y \in [0, +\infty]$, $f^{(-1)}(y) =$ $\sup(\{0\} \cup \{x \mid x \in [0,1] \text{ and } f(x) > y\}).$

We extend these definitions to L^{I} as follows.

Definition 5.3 Let \mathfrak{f} : L^I \rightarrow $\bar{L}^I_{\infty,+}$ be a strictly decreasing function. The pseudoinverse $\mathfrak{f}^{(-1)}: \overline{L}^I_{\infty,+} \to L^I$ of \mathfrak{f} is defined by, for all $y \in \bar{L}^I_{\infty,+}$,

$$f^{(-1)}(y) = \begin{cases} \sup\{x \mid x \in L^{I} \text{ and } \mathfrak{f}(x) \gg_{L^{I}} y\}, \\ if \ y \ll_{L^{I}} \mathfrak{f}(0_{\mathcal{L}^{I}}); \\ \sup(\{0_{\mathcal{L}^{I}}\} \cup \{x \mid x \in L^{I} \text{ and } (\mathfrak{f}(x))_{1} > y_{1} \\ and \ (\mathfrak{f}(x))_{2} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{2}\}), \\ if \ y_{2} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{2}; \\ \sup(\{0_{\mathcal{L}^{I}}\} \cup \{x \mid x \in L^{I} \text{ and } (\mathfrak{f}(x))_{2} > y_{2} \\ and \ (\mathfrak{f}(x))_{1} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{1}\}), \\ if \ y_{1} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{1}. \end{cases}$$

Note that if $\mathfrak{f}(0_{\mathcal{L}^{I}}) \in \overline{D}_{\infty,+}$, then, for all $y \in$ $\bar{L}_{\infty,+}^{I}, \mathfrak{f}^{(-1)}(y) = \sup \Phi_y$, where

$$\Phi_{y} = \begin{cases}
\{x \mid x \in L^{I} \text{ and } \mathfrak{f}(x) \gg_{L^{I}} y\}, \\
\text{if } y \ll_{L^{I}} \mathfrak{f}(0_{\mathcal{L}^{I}}); \\
\{0_{\mathcal{L}^{I}}\} \cup \{x \mid x \in L^{I} \text{ and } (\mathfrak{f}(x))_{1} > y_{1} \\
\text{and } (\mathfrak{f}(x))_{2} = (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{2}\}, \\
\text{if } y_{2} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{2}.
\end{cases}$$
(9)

Definition 5.4 A mapping $f: L^I \to \overline{L}^I_{\infty,+}$ satisfying the following conditions:

$$(AG.1) \ \mathfrak{f} \ is \ strictly \ decreasing;$$

$$(AG.2) \ \mathfrak{f}(1_{\mathcal{L}^{I}}) = 0_{\mathcal{L}^{I}};$$

$$(AG.3) \ \mathfrak{f} \ is \ right-continuous \ in \ 0_{\mathcal{L}^{I}};$$

$$(AG.4) \ \mathfrak{f}(x) \oplus \mathfrak{f}(y) \in \mathcal{R}(\mathfrak{f}), \ for \ all \ x, y \ in \ L^{I}, \ where \ \mathcal{R}(\mathfrak{f}) = \operatorname{rng}(\mathfrak{f}) \cup \{x \mid x \in \overline{L}_{\infty,+}^{I} \ and \ [x_{1}, (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{2}] \in \operatorname{rng}(\mathfrak{f}) \ and \ x_{2} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{2}\} \cup \{x \mid x \in \overline{L}_{\infty,+}^{I} \ and \ [(\mathfrak{f}(0_{\mathcal{L}^{I}}))_{1}, x_{2}] \in \operatorname{rng}(\mathfrak{f}) \ and \ x_{1} \ge (\mathfrak{f}(0_{\mathcal{L}^{I}}))_{1}\} \cup \{x \mid x \in \overline{L}_{\infty,+}^{I} \ and \ x \ge_{L^{I}} \ \mathfrak{f}(0_{\mathcal{L}^{I}})\};$$

and

$$(AG.5) \mathfrak{f}^{(-1)}(\mathfrak{f}(x)) = x, \text{ for all } x \in L^{I};$$

is called an additive generator on \mathcal{L}^{I} .

If $\mathfrak{f}(0_{\mathcal{L}^I}) \in \overline{D}_{\infty,+}$, then $\mathcal{R}(\mathfrak{f}) = \operatorname{rng}(\mathfrak{f}) \cup \{x \mid$ $x \in \overline{L}_{\infty,+}^{I}$ and $[x_1,(\mathfrak{f}(0_{\mathcal{L}^{I}}))_2] \in \operatorname{rng}(\mathfrak{f})$ and $x_2 \geq (\mathfrak{f}(0_{\mathcal{L}^I}))_2 \cup \{x \mid x \in \overline{L}^I_{\infty,+} \text{ and } x \geq_{L^I} \}$ $\mathfrak{f}(0_{\mathcal{L}^{I}})\}.$

Theorem 5.1 Let f be an additive generator on $([0,1],\leq)$ and let $\mathfrak{f}: L^I \to \overline{L}^I_{\infty,+}$ the mapping defined by, for all $x \in L^{I}$,

$$\mathfrak{f}(x) = [f(x_2), f(x_1)]. \tag{10}$$

Then, for all $y \in \overline{L}^I_{\infty +}$,

$$\mathfrak{f}^{(-1)}(y) = [f^{(-1)}(y_2), f^{(-1)}(y_1)].$$
(11)

Lemma 5.2 Let $\mathfrak{f} : L^I \to \overline{L}^I_{\infty,+}$ be a continuous mapping satisfying (AG.1), (AG.2), $(AG.3), (AG.5) \text{ and } \mathfrak{f}(D) \subseteq \overline{D}_{\infty,+}.$ Then there exists a continuous additive generator f on $([0,1], \leq)$ such that, for all $x \in L^I$,

$$\mathfrak{f}(x) = [f(x_2), f(x_1)].$$

Lemma 5.3 Let \mathfrak{f} : L^I ightarrow $ar{L}^I_{\infty,+}$ be a continuous mapping satisfying (AG.1), (AG.2), $(AG.3), (AG.5) \text{ and } \mathfrak{f}(D) \subseteq D_{\infty,+}.$ Then $\mathcal{R}(\mathfrak{f}) = \bar{L}^{I}_{\infty,+}$ and \mathfrak{f} satisfies (AG.4).

Theorem 5.4 A mapping $\mathfrak{f}: L^I \to \overline{L}^I_{\infty,+}$ is a continuous additive generator on \mathcal{L}^{I} for which $\mathfrak{f}(D) \subseteq D_{\infty,+}$ if and only if there exists a continuous additive generator f on ([0,1],<)such that, for all $x \in L^I$,

$$f(x) = [f(x_2), f(x_1)].$$
(12)

Theorem 5.4 shows that no matter which operator \oplus satisfying (ADD-1)–(ADD-4) is used in (AG.4), a continuous additive generator f on \mathcal{L}^{I} for which $\mathfrak{f}(D) \subseteq \overline{D}_{\infty,+}$ can be represented using an additive generator on ([0, 1], \leq).

Theorem 5.5 Let f be an additive generator on $([0,1],\leq)$. Then the mapping $\mathfrak{f}: L^I \to$ $\bar{L}^{I}_{\infty,+}$ defined by, for all $x \in L^{I}$,

$$\mathfrak{f}(x) = [f(x_2), f(x_1)],$$

is an additive generator on \mathcal{L}^{I} associated to \oplus if and only if, for all x, y in L^{I} ,

$$\mathfrak{f}(x) \oplus \mathfrak{f}(y) \in (\operatorname{rng}(f) \cup [f(0), +\infty])^2$$

Proceedings of IPMU'08

6 Additive generators and t-norms on \mathcal{L}^{I}

Lemma 6.1 Let \mathfrak{f} be an additive generator on \mathcal{L}^I associated to \oplus . Then the mapping $\mathcal{T}_{\mathfrak{f}}$: $(L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$T_{\mathfrak{f}}(x,y) = \mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus \mathfrak{f}(y)),$$

is commutative, increasing and $\mathcal{T}_{\mathfrak{f}}(1_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.

Theorem 6.2 Let \mathfrak{f} be a continuous additive generator on \mathcal{L}^I associated to \oplus for which $\mathfrak{f}(D) \subseteq \overline{D}_{\infty,+}$. The mapping $\mathcal{T}_{\mathfrak{f}} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\mathcal{T}_{\mathfrak{f}}(x,y) = \mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus \mathfrak{f}(y)),$$

is a t-norm on \mathcal{L}^{I} if and only if \oplus satisfies the following condition:

$$\begin{array}{l} (\forall (x,y,z) \in A^3) \\ (((\inf(\alpha, x \oplus y) \oplus z)_1 < \alpha_1 \ and \ (x \oplus y)_2 > \alpha_1) \\ \Longrightarrow \ (\inf(\alpha, x \oplus y) \oplus z)_1 = (x \oplus \inf(\alpha, y \oplus z))_1), \\ (13) \\ where \ \alpha = \mathfrak{f}(0_{\mathcal{L}^I}) \ and \ A = \{x \mid x \in \bar{L}^I_{\infty,+} \ and \ x \leq_{L^I} \mathfrak{f}(0_{\mathcal{L}^I})\}. \end{array}$$

The condition (13) is very similar to (6). In the following lemma we show that in some cases both conditions are equivalent.

Lemma 6.3 Let for all
$$\alpha \in \overline{D}_{+} \setminus \{0_{\mathcal{L}^{I}}\},\$$

 $P_{\alpha} \iff (\forall (x, y, z) \in A_{\alpha}^{3})$
 $(((\inf(\alpha, x \oplus y) \oplus z)_{1} < \alpha_{1} \text{ and } (x \oplus y)_{2} > \alpha_{1})$
 $\implies (\inf(\alpha, x \oplus y) \oplus z)_{1} = (x \oplus \inf(\alpha, y \oplus z))_{1}),$
 (14)
where $A_{\alpha} = \{x \mid x \in \overline{L}_{+}^{I} \text{ and } x \leq_{L^{I}} \alpha\}.$
Assume that

$$\begin{array}{ll} \text{(ADDMULDISTR)} & [c,c] \otimes (x \oplus y) = ([c,c] \otimes x) \oplus \\ & ([c,c] \otimes y), \ for \ all \ c \in \]0, +\infty[\ and \ x,y \\ & in \ \bar{L}_{+}^{I}. \end{array} \end{array}$$

Then, for any α, β in $\overline{D}_+ \setminus \{0_{\mathcal{L}^I}\}, P_\alpha \iff P_{\beta}$.

Lemma 6.3 shows that if (ADDMULDISTR) holds, then (13) and (6) are equivalent to each other.

The following theorem shows that there is a close relationship between t-norms generated by a continuous additive generator and S_{\oplus} .

Theorem 6.4 Let \mathfrak{f} be a continuous additive generator on \mathcal{L}^I associated to \oplus for which $\mathfrak{f}(D) \subseteq \overline{D}_{\infty,+}$ and $\mathfrak{f}(0_{\mathcal{L}^I}) \in \overline{L}_+^I$. Define the mappings $\mathcal{T}_{\mathfrak{f}}, S_{\oplus} : (L^I)^2 \to L^I$ by, for all x, yin L^I ,

$$\mathcal{T}_{\mathfrak{f}}(x,y) = \mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus \mathfrak{f}(y)),$$

$$\mathcal{S}_{\oplus}(x,y) = \inf(1_{\mathcal{L}^{I}}, x \oplus y).$$

If (ADDMULDISTR) holds, then $\mathcal{T}_{\mathfrak{f}}$ is a t-norm on \mathcal{L}^{I} if and only if \mathcal{S}_{\oplus} is a t-conorm on \mathcal{L}^{I} .

Taking into consideration the above mentioned similarity between the conditions (6) and (13), we consider a condition which is similar to (8) and prove that it is a sufficient condition for \oplus so that a (not necessarily continuous) additive generator associated to \oplus generates a t-norm. First we give a lemma.

Lemma 6.5 Let \mathfrak{f} be an additive generator on \mathcal{L}^{I} associated to \oplus . Assume that \oplus satisfies the following conditions:

$$(\forall (x, y) \in \overline{L}_{+}^{I} \times A)$$

$$((([x_{1}, \alpha_{2}] \oplus y)_{1} < \alpha_{1} \text{ and } x_{2} \in]\alpha_{2}, 2\alpha_{2}])$$
$$\implies ([x_{1}, \alpha_{2}] \oplus y)_{1} = (x \oplus y)_{1}),$$

$$(15)$$

and

$$(\forall (x,y) \in \bar{L}_{+}^{I} \times A)$$

$$((([\alpha_{1}, x_{2}] \oplus y)_{2} < \alpha_{2} \text{ and } x_{1} \in]\alpha_{1}, 2\alpha_{1}])$$

$$\implies ([\alpha_{1}, x_{2}] \oplus y)_{2} = (x \oplus y)_{2}),$$
(16)
here $\alpha = \mathfrak{f}(0_{\mathcal{L}^{I}})$ and $A = \{x \mid x \in \bar{L}_{\infty,+}^{I}\}$

where $\alpha = \mathfrak{f}(0_{\mathcal{L}^{I}})$ and $A = \{x \mid x \in L^{I}_{\infty,+}$ and $x \leq_{L^{I}} \mathfrak{f}(0_{\mathcal{L}^{I}})\}$. Then, for all $x \in L^{I}$ and $y \in \mathcal{R}(\mathfrak{f})$ such that $y \leq_{L^{I}} \mathfrak{f}(0_{\mathcal{L}^{I}}) \oplus \mathfrak{f}(0_{\mathcal{L}^{I}})$,

$$\mathfrak{f}(x) \oplus \mathfrak{f}(\mathfrak{f}^{(-1)}(y)) \in \mathcal{R}(\mathfrak{f})$$

and

$$\mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus \mathfrak{f}(\mathfrak{f}^{(-1)}(y))) = \mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus y).$$
(17)

Using Lemma 6.5, the following theorem can be shown.

Theorem 6.6 Let \mathfrak{f} be an additive generator on \mathcal{L}^I associated to \oplus . If \oplus satisfies (15) and (16), then the mapping $\mathcal{T}_{\mathfrak{f}} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\mathcal{T}_{\mathfrak{f}}(x,y) = \mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus \mathfrak{f}(y)),$$

is a t-norm on \mathcal{L}^{I} .

Theorem 5.4 and Theorem 5.1 show that no matter which operator \oplus is used in (AG.4), a continuous additive generator \mathfrak{f} on \mathcal{L}^I satisfying $\mathfrak{f}(D) \subseteq \overline{D}_{\infty,+}$ is representable and has a representable pseudo-inverse. Therefore it depends on the operator \oplus which classes of t-norms on \mathcal{L}^I can have continuous additive generators that extend additive generators on $([0,1],\leq)$.

We show that in some cases the conditions (15) and (16) are equivalent with (8). Note first that if $\alpha \in \overline{D}_+ \setminus \{0_{\mathcal{L}^I}\}$, then, for any $x \in \overline{L}_{\infty,+}$ and $y \in A$ (where A is defined as in Lemma 6.5), $([\alpha_1, x_2] \oplus y)_2 \ge ([\alpha_1, x_2] \oplus y)_1 \ge \alpha_1 = \alpha_2$, so (16) holds.

Lemma 6.7 Let for all $\alpha \in \overline{D}_+ \setminus \{0_{\mathcal{L}^I}\},\$

$$Q_{\alpha} \iff (\forall (x, y) \in \bar{L}_{+}^{I} \times A_{\alpha})$$

((([x_{1}, \alpha_{1}] \oplus y)_{1} < \alpha_{1} and x_{2} \in]\alpha_{1}, 2\alpha_{1}])
$$\implies ([x_{1}, \alpha_{1}] \oplus y)_{1} = (x \oplus y)_{1}),$$

(18)

where $A_{\alpha} = \{x \mid x \in \overline{L}_{+}^{I} \text{ and } x \leq_{L^{I}} \alpha\}$. If (ADDMULDISTR) holds, then, for any α, β in $\overline{D}_{+} \setminus \{0_{\mathcal{L}^{I}}\}, Q_{\alpha} \iff Q_{\beta}$.

The following theorem shows that if (ADD-MULDISTR) holds, then it is sufficient to prove the property Q_{α} mentioned in Lemma 6.7 for just one $\alpha \in \overline{D}_+ \setminus \{0_{\mathcal{L}^I}\}$ in order to obtain that the mappings \mathcal{T}_{\oplus} , \mathcal{S}_{\oplus} and \mathcal{T}_{f} are t-(co)norms on \mathcal{L}^I .

Corollary 6.8 Assume that (ADDMUL-DISTR) holds, and that for an arbitrary $\alpha \in \overline{D}_+ \setminus \{0_{\mathcal{L}^I}\}, \oplus$ satisfies Q_α , where $A_\alpha = \{x \mid x \in \overline{L}_+^I \text{ and } x \leq_{L^I} \alpha\}$. Then the following properties hold.

• The mappings $\mathcal{T}_{\oplus}, \mathcal{S}_{\oplus} : (L^I)^2 \to L^I$ defined by, for all x, y in L^I ,

$$\begin{split} \mathcal{T}_{\oplus}(x,y) &= \sup(0_{\mathcal{L}^{I}}, x \ominus (1_{\mathcal{L}^{I}} \ominus y)), \\ \mathcal{S}_{\oplus}(x,y) &= \inf(1_{\mathcal{L}^{I}}, x \oplus y), \end{split}$$

are a t-norm and a t-conorm on \mathcal{L}^{I} respectively. Furthermore, \mathcal{T}_{\oplus} and \mathcal{S}_{\oplus} are a natural extension of T_{W} and S_{W} to L^{I} .

For any additive generator f on L^I associated to ⊕ for which f(0_{L^I}) ∈ D_{∞,+}, the mapping T_f : (L^I)² → L^I defined by, for all x, y in L^I,

$$\mathcal{T}_{\mathfrak{f}}(x,y) = \mathfrak{f}^{(-1)}(\mathfrak{f}(x) \oplus \mathfrak{f}(y)),$$

is a t-norm on \mathcal{L}^{I} .

7 Examples of additive generators of specific t-norms on \mathcal{L}^{I}

7.1 The t-norm \mathcal{T}_{\oplus}

The mapping $f_W : [0,1] \to [0,+\infty]$ defined by, for all $x \in [0,1]$, $f_W(x) = 1-x$, is an additive generator of T_W (see [13, 14]). Define the mapping $f_W : L^I \to \overline{L}_{\infty,+}^I$ by $f_W(x) =$ $1_{\mathcal{L}^I} \ominus x = [f_W(x_2), f_W(x_1)]$, for all $x \in L^I$. Then f_W is an additive generator on \mathcal{L}^I of \mathcal{T}_{\oplus} .

7.2 The t-norm \mathcal{T}_{\otimes}

The mapping $f_P : [0,1] \to [0,+\infty]$ defined by, for all $x \in [0,1]$, $f_P(x) = -\ln(x)$, is an additive generator of T_P (see [13, 14]). Define the mapping $\mathfrak{f}_P : L^I \to \overline{L}_{\infty,+}^I$ by $\mathfrak{f}_P(x) =$ $0_{\mathcal{L}^I} \ominus \mathfrak{ln}(x) = [f_P(x_2), f_P(x_1)]$, for all $x \in L^I$. Then \mathfrak{f}_P is an additive generator on \mathcal{L}^I of \mathcal{T}_{\otimes} if and only if for all a, b in $\overline{L}_{\infty,+}^I$,

 $\exp(0_{\mathcal{L}^{I}} \ominus a) \otimes \exp(0_{\mathcal{L}^{I}} \ominus b) = \exp(0_{\mathcal{L}^{I}} \ominus (a \oplus b)).$

8 Conclusion

In this paper we investigated additive generators on \mathcal{L}^{I} based on any arithmetic operators satisfying the axioms proposed in [9]. We showed that independently of the choice of the addition, any continuous additive generator which is a natural extension of an additive generator on the unit interval, can be represented by this generator in a componentwise way. Conversely, we gave a necessary and sufficient condition such that any mapping which is defined componentwisely using an additive generator on the unit interval, is an additive generator on \mathcal{L}^{I} . We gave a necessary and sufficient condition such that an additive generator on \mathcal{L}^{I} generates a t-norm on \mathcal{L}^{I} . When a weakened form of the distributivity of \oplus and \otimes is imposed, the fact that an addition operator \oplus generates a t-conorm on \mathcal{L}^{I} which extends the Lukasiewicz t-conorm is equivalent to the fact that an additive generator based on \oplus generates a t-norm on \mathcal{L}^{I} . Finally, we extended some additive generators of well-known t-norms on the unit interval to additive generators on \mathcal{L}^{I} .

References

- K. T. Atanassov, *Intuitionistic fuzzy sets*, Physica-Verlag, Heidelberg, New York, 1999.
- [2] G. Birkhoff, *Lattice Theory*, volume 25, AMS Colloquium Publications, Providence, Rhode Island, 1973.
- [3] G. Deschrijver, Additive and multiplicative generators in interval-valued fuzzy set theory, *IEEE Transactions on Fuzzy* Systems, 15(2) (2007) 222–237.
- [4] G. Deschrijver, Arithmetic operators in interval-valued fuzzy set theory, *Informa*tion Sciences, 177(14) (2007) 2906–2924.
- [5] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, *IEEE Transactions on Fuzzy Systems*, **12**(1) (2004) 45–61.
- [6] G. Deschrijver and E. E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, **11**(6) (2003) 691–709.
- [7] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, *Fuzzy Sets and Systems*, 133(2) (2003) 227–235.

- [8] G. Deschrijver and E. E. Kerre, Implicators based on binary aggregation operators in interval-valued fuzzy set theory, *Fuzzy Sets and Systems*, **153**(2) (2005) 229–248.
- [9] G. Deschrijver and A. Vroman, Generalized arithmetic operations in intervalvalued fuzzy set theory, *Journal of Intelligent and Fuzzy Systems*, 16(4) (2005) 265–271.
- [10] J. C. Fodor, Fuzzy preference modelling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht, 1994.
- [11] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18(1) (1967) 145–174.
- [12] M. B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, *Fuzzy Sets and Systems*, **21**(1) (1987) 1–17.
- [13] E. P. Klement, R. Mesiar and E. Pap, Quasi- and pseudo-inverses of monotone functions, and the construction of tnorms, *Fuzzy Sets and Systems*, **104**(1) (1999) 3–13.
- [14] E. P. Klement, R. Mesiar and E. Pap, *Triangular norms*, Kluwer Academic Publishers, Dordrecht, 2000.
- [15] C.-H. Ling, Representation of associative functions, *Publ. Math. Debrecen*, **12** (1965) 189–212.
- [16] R. E. Moore, Interval arithmetic, Prentice-Hall, Englewood Cliffs, NJ, USA, 1966.
- [17] P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, *Annals of Mathematics*, 65 (1957) 117–143.
- [18] R. Sambuc, Fonctions Φ-floues. Application à l'aide au diagnostic en pathologie thyroidienne, Ph.D. thesis, Université de Marseille, France, 1975.