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Abstract

In this paper we study generators
of t-norms on the lattice £! of
closed subintervals of the unit inter-
val. Starting from a minimal set of
axioms that any addition and mul-
tiplication operator on £ must ful-
fill, we investigate the properties of
the additive and multiplicative gen-
erators on £! obtained using these
arithmetic operators. We also in-
vestigate under which conditions the
generators on ol generate a t-norm.

Keywords: Triangular norm, addi-
tive generator, interval-valued fuzzy
set.

1 Introduction

Additive generators are very useful in the
construction of t-norms: any generator on
([0,1], <) can be used to generate a t-norm.
Generators play also an important role in the
representation of continuous Archimedean t-
norms on ([0,1], <). Moreover, some proper-
ties of t-norms which have a generator can be
related to properties of their generator. See
e.g. [13, 14, 15, 17] for more information about
generators on the unit interval.

Interval-valued fuzzy set theory [12, 18] is an
extension of fuzzy theory in which to each
element of the universe a closed subinter-
val of the unit interval is assigned which ap-
proximates the unknown membership degree.

Another extension of fuzzy set theory is in-
tuitionistic fuzzy set theory introduced by
Atanassov [1]. In [7] it is shown that in-
tuitionistic fuzzy set theory is equivalent to
interval-valued fuzzy set theory and that both
are equivalent to L-fuzzy set theory in the
sense of Goguen [11] w.r.t. a special lattice
L. In [3] we introduced additive and multi-
plicative generators on £! based on a special
kind of addition introduced in [4]. In [9] an-
other addition was introduced and many more
additions can be introduced. Therefore, in
this paper we will investigate additive gen-
erators on £! independently of the addition.
For some special additions we will investigate
which t-norms can be generated by continu-
ous additive generators which are a natural
extension of an additive generator on the unit
interval.

2 The lattice £

Definition 2.1 We define £ = (L', <;1),
where

LI:{[9517952] | (x1,22) € [0, 1]2 and 1 < x3},
[x1, 2] <prly1,y2] <= (x1 < y1 andxa < y2),
for all [z1, 2], [y1, 2] in L.

Similarly as Lemma 2.1 in [7] it can be shown
that £! is a complete lattice.

Definition 2.2 [12, 18] An interval-valued
fuzzy set on U is a mapping A: U — L1,

Definition 2.3 [1| An intuitionistic fuzzy set
on U is a set

A= {(u, pa(u),va(u)) [uc U},
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where pa(u) € [0,1] denotes the membership
degree and v4(u) € [0,1] the non-membership
degree of u in A and where for all u € U,
pa(u) +va(u) <1.

An intuitionistic fuzzy set A on U can be rep-
resented by the £!-fuzzy set A given by
A:U - L'
u = [pa(u), 1 —va(u)],
In Figure 1 the set L is shown. Note that to

each element = = [z, x2] of L! corresponds a
point (w1, z3) € R2.
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Figure 1: The grey area is L'.

In the sequel, if € L, then we denote its
bounds by z; and z9, i.e. z = [x1,22], or,
equivalently, ([z1,z2])1 = 1 and ([x1,x2])2 =
9. The length o —x1 of the interval x € L!is
called the degree of uncertainty and is denoted
by x;. The smallest and the largest element
of £! are given by 0,7 = [0,0] and 1, = [1,1].
Note that, for ,y in LY, x <1 y is equivalent
to x <;ryand z # y, i.e. either 1 < y; and
T < yo, or 1 <y and z9 < yo. We define
the relation <;r by z <1y <= z1 <1
and z9 < yo, for x,y in L!. We define for
further usage the sets

D = {e,a] |z € [0,1]},
LT = {[z1,29] | (x1,22) € R?
and x1 < x9},
D = {[z,z] | x € R};
Efr = {[z1,x2] | (x1,22) € [0, +oo[2
and z1 < x9},
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Dy = {[z,2] | x € [0, +oc[},
Ei,o = {[.1171,.%'2] | (.%'1,.%’2) € ]07 +OO[2
and z1 < x9},
Ego,+ = {[.1171,.%'2] | (.%'1,.%’2) € [07 +OO]2
and x1 < x9},
DooHr = {[CC,SC] ‘ S [07+OO]}

Note that for any non-empty subset A of L’
it holds that

sup A = [sup{z1 | z1 € [0,1] and
(Fxg € [z1,1])([x1,22] € A)},
sup{zz | z2 € [0,1] and
(31 € [0, z2])([x1, z2] € A)};
inf A = [inf{z; | 21 € [0,1] and
(Fzg € [21,1])([z1,22] € A)},
inf{zs | 22 € [0,1] and
(Fz1 € [0, z2])([x1, z2] € A)}].

Theorem 2.1 (Characterization of
supremum in L) [5] Let A be an arbitrary
non-empty subset of L' and a € LY. Then
a =sup A if and only if

(Vo e A)(x <pr1 a)
and (Ve1 > 0)(Fz € A)(z1 > a1 — 1)
and (Veg > 0)(3z € A)(z2 > ag — e2).

Definition 2.4 A t-norm on L' is a com-
mutative, associative, increasing mapping T :
(L1)? — LT which satisfies T (1,1,7) = x, for
allz e L.

A t-conorm on L' is a commutative, asso-
ciative, increasing mapping S : (L')? — L!
which satisfies S(0,1,x) =, for all z € LY.

Example 2.1 [6, 8] We give some special
classes of t-norms on £!. Let T, T} and T be
t-norms on ([0, 1], <) such that T (z1,y1) <
To(x1,y1) for all zq1,y; in [0,1], and let t €
[0,1]. Then we have the following classes:

e t-representable t-norms: Tr 1,(x,y) =
[Tl(xlvyl)aTQ(x2ay2)]7 for all T,y in LI?

e pseudo-t-representable t-norms: 77 (x,y)

= [T(xlvyl)v ma’X(T(xlvy2)’ T(x2ayl))]7
for all x,y in L;
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o TT,t(xvy) = [T(x17y1)¢ maX(T(th(x%
3/21))7 T($17y2)7 T(x27yl))]7 for all Z,y in
L

o T/(z,y) = min(T(x1,y2), T(x2,91)),
T(x2,y2)], for all z,y in L'

If for a mapping f on [0, 1] and a mapping F
on L' it holds that F(D) C D, and F([a,a]) =
[f(a), f(a)], for all a € [0,1], then we say that
F is a natural extension of f to L. E.g. Ir T,
Ir, 174+ and ’TT’ are all natural extensions of
T to L.

Example 2.2 Let, for all z,y in [0, 1],

TW(CU,y) = max((),x +y— 1)7

Tp(z,y) = xy,

min(z,y), if max(z,y) =1,
Tp(z,y) = (z,y) (z,y)

0, else,

Sw(z,y) = min(1, z + y).

Then Ty, Tp and Tp are t-norms, and Syy is
a t-conorm on ([0, 1], <). Let now, for all z,y
in L1,
TW(xvy) = [max((),:cl +y1 — 1)a

max (0,21 +y2 — 1,22 +y1 — 1)],
Tp(z,y) = [r1y1, max(z1y2, v291)],
Sw(z,y) = [min(1, z1 + y2, 22 + Y1), T2 + Y2l

Then Ty = 77, and Tp = T7, are t-norms,
and Sy is a t-conorm on £!. Furthermore,
Tw, Tp and Sy are natural extensions of Ty,
Tp and Sy respectively.

3 Arithmetic operators on L!

We start from two arithmetic operators & :
(LH)? — L' and ® : (LL)? — L7 satisfying
the following properties,

ADD-1) @ is commutative,

( )

(ADD-2) @ is associative,

(ADD-3) @ is increasing,

(ADD-4) [a,a] @ b = [ + by, + by], for all
a € [0,+oco[ and b € L7,

(MUL-1) ® is commutative,

(MUL-2) ® is associative,

(MUL-3) ® is increasing,

(MUL-4) [a,a] ® b = [aby, aby], for all a €
0,400 and b € LL.

The conditions (ADD-1)—(ADD-3) and (MUL-1)
—(MUL-3) are natural conditions for any addi-
tion and multiplication operators. The condi-
tions (ADD-4) and (MUL-4) ensure that these
operators are natural extensions of the addi-
tion and multiplication of real numbers to L'.

Note that from (ADD-3) and (ADD-4) it follows
that, for all a,bin L, a® b >;1 a, if b >
0pr. Similarly, we find that a ® b >;1 a, if
b>pr 1,1, for all a,b in J:Jfr.

Define the mapping © by, for all =,y in L/,
1,1 @1‘:[1—332,1—1‘1], (1)
and

26y =1p0((1gon)oy). ()
Deﬁne finally the mapping @ by, for all z,y
in L g,
1 1
151@35: |:_a_:| ) (3)
and

roy=1p0((1g0r)2y). (4)

Clearly, (L!,<;:,®) and (L%,<;:,®) are
commutative partially ordered monoids (in
the sense of Birkhoff [2]) with identity element
Oz and 11 respectively. On the other hand,
EI]/I, @®,0,1) and (Li,o’ ®,1,1) are not groups
9].

Example 3.1 We give some examples of
arithmetic operators satisfying the conditions
(ADD-1)—(ADD-4), (MUL-1)—(MUL-4), (1), (2),
(3) and (4).

e In the interval calculus (see e.g. [16]) the
following operators are defined: for all
T,y in L,

r®y =[x+ y1,T2 + Yo,
roy = [331 — Y2, X2 —y1]7
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T @y = [v1y1,2200), if @,y in LY,

e In [4] the following operators are defined:
for all z,y in L!,

z@pry = [min(xy + y2, 22 + y1), 22 + y2|,
TOpr Yy = [Il - yQ,maX(l“l —Y1,T2 — yz)],

T ®pry = [z1y1, max(z1y2, L2y1)],

ifx,yinl_/,
. (T1 T
TQpr Yy = [mm<_1’_2)’_2}’
Y1 Y2/

if z,y in Ei,o-
Other examples can be found in [9].

4 The arithmetic operators and
t-norms and t-conorms on £

Theorem 4.1 [9] The mapping S, : (L1)? —
LT defined by, for all x,y in L',

So(x,y) =inf(1,r,2 D y), (5)

is a t-conorm on L1 if and only if © satisfies
the following condition:

(V(z,y,2) € (L')%)
(inf(1pr,z®y)®2)1 <land(x B y)2 > 1)
= (inf(lyr,x @ y) ® 2);
=(z@inf(lr,y®2))1).
(6)
Furthermore Sg is a natural extension of Sy
to L1,

Theorem 4.2 [9] The mapping Ty, : (L1)? —
LT defined by, for all z,y in L',

To(z,y) =sup(Ozr,z 6 (1 0y), (1)

is a t-norm on L if and only if © satisfies
(6). Furthermore, Tg is a natural extension
of Ty to L'.

Theorem 4.3 [9] The mapping Tg, : (L1)? —
LT defined by, for all z,y in L',

T@(l’,y) =r® Y,

is a t-norm on L'. Furthermore Tg is a nat-
ural extension of Tp to L'.
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Theorem 4.4 [9] Assume that & satisfies the
following condition:

(V(z,y) € I_/fr x LT)
(([x1, 1] ®y)1 < 1 and xz2 € ]1,2])  (8)
= (21, 1] @y = (@D y)).

Then the mappings Tg, Se : (L1)? — LT de-

fined by, for all z,y in LT,

To(z,y) =sup(0zr, 2 © (121 ©9)),
S@(.CE, y) = inf(lﬁlax ) y)>

are a t-norm and a t-conorm on L' respec-
tively. Furthermore Tg is a natural extension
of Tyy to L', and Sg is a natural extension of
Sw to L.

Example 4.1 [9] We give t-norms 7Tg, 7Tg
and t-conorms Sg on L! defined using the
examples for @ and © given in the previous
section.

e Let &, © and ® be the addition, sub-
traction and multiplication used in the
interval calculus, then, for all x,y in
LI, T@ = TTW,va T@ = TTP,TP and
Se = Ssy.5y- Thus the t-norms 7g,
Ts and the t-conorm Sg obtained using
the arithmetic operators from the inter-
val calculus are t-representable.

e Using ® 1, ©pr and ®,r we obtain, for
all z,yin L!, T@El =Tw, ’T®£1 = T7p and
Sg,; = Sw. Thus the t-norm 7g , and
the t-conorm S@L , are the Lukasiewicz t-
norm and t-conorm on £, and 7, is the
product t-norm on £!, which are pseudo-
t-representable.

5 Additive generators on L

Definition 5.1 [10, 13, 14] A mapping f :
[0,1] — [0, +00] satisfying the following con-
ditions:

(ag.1) [ is strictly decreasing;
(ag.2) f(1) =0;
(ag.3) f is right-continuous in 0;

(ag-4) f(x)+ f(y) € mg(f)U[f(0),+oo], for
all z,y € [0,1];
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is called an additive generator on ([0, 1], <).

Definition 5.2 [13, 14| Let f [0,1] —
[0, 400] be a strictly decreasing function. The
pseudo-inverse 1) : [0,400] — [0,1] of f
is defined by, for all y € [0,400], fCV(y) =
sup({0} U{z | z € [0,1] and f(x) > y}).

We extend these definitions to L as follows.

Definition 5.3 Let f : L' — I_/£O7+ be a
strictly decreasing function.  The pseudo-
inverse f(=1) I_J£O7+ — L of § is defined by,
for all y € Ego&,

19 (y)

sup{z | z € LT and §(z) >, y},
if y <pr f(0zr);

sup({0,:} Uz |z € LT and (§(z))1 > 1
and (f(x))2 = (f(0z1))2}),
if y2 > (F(0z1))2;

sup({0,1} U{z |z € LT and (§(z))2 > vo
and (f(w))1 > (F(0z1))1}),
if y1 > (F(0z1))1-

Note that if f(0zr) € Deo 1, then, for all y €
LL, ., f=U(y) = sup ®,, where

{z |z c L' and §(z) >.1 vy},
if y <pr f(0z1);
©y = ¢ {0} U{z |z e LT and (f(z))1 > u
and (f(z))2 = (f(0zr))2},
if yo > (f(0,1))2-

(9)

Definition 5.4 A mapping | : L' — E£O,+
satisfying the following conditions:

(AG.1) § is strictly decreasing;

(AG.2) §(1,1) = Op1;

(AG.3) f is right-continuous in Opr;

(AG.4) f(z) & f(y) € R(f), for all z,y in
L, where R(f) = mg(f) U{z | = €
I’éo,+ and [z1, (f(0,1))2] € rng(f) and
w2 > (1(0gn)2} Uz | @ € Li .
and [(§(0z1))1, 2] € rng(f) and x1 >
(FOe)1}Ufz |z e LL, | and x>
f(oﬁf)};

(AG.5) i~V (§(x)) =z, for all z € L*;
is called an additive generator on L.

If §(0z1) € Doo+, then R(f) = rng(f) U {z |
x € L and [z1,(f(0zr))2] € rng(f) and
xg > (f(0pr)2} Ufa |z € LL, | and = >/

f(Ozr)}-

Theorem 5.1 Let f be an additive generator
on ([0,1],<) and let f : L' — LI, the map-
ping defined by, for all x € L',

fz) = [f(z2), f(z1)]. (10)
Then, for all y € E£O7+,

P00 = [TV (2), STV )] ()

Lemma 5.2 Let f : LI — I_/£O’+ be a con-
tinuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and §(D) C Deo . Then
there exists a continuous additive generator f
on ([0,1],<) such that, for all x € L1,

f(z) = [f(x2), f(x1)]-

Lemma 5.3 Let f : L' — Eéo,Jr be a con-
tinuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and §(D) C Dy . Then
R(f) = LL, | and § satisfies (AG.4).

Theorem 5.4 A mapping §: L' — I_éO,Jr s a
continuous additive generator on L for which
f(D) C Dso+ if and only if there exists a
continuous additive generator f on ([0,1], <)
such that, for all x € L',

f(z) = [f(x2), f(x1)]. (12)

Theorem 5.4 shows that no matter which op-
erator @ satisfying (ADD-1)—(ADD-4) is used
in (AG.4), a continuous additive generator f
on L! for which §f(D) C Do 4 can be repre-
sented using an additive generator on (][0, 1],
Q).

Theorem 5.5 Let f be an additive generator
on ([0,1],<). Then the mapping | : L —
LéoHr defined by, for all x € L',

f(@) = [f(w2), f(21)],

is an additive generator on L' associated to
@ if and only if, for all x,y in L',

i(z) @ f(y) € (emg(f) U[f(0), +00])*.
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6 Additive generators and t-norms
on LT

Lemma 6.1 Let{ be an additive generator on
L1 associated to ®. Then the mapping T -
(L2 — LT defined by, for all x,y in L',

Ti(z,y) = {7V (f(z) @ f(y)),

is commutative, increasing and Ts(1p1,x) =
x, for all x € L.

Theorem 6.2 Let | be a continuous additive
generator on L1 associated to ® for which
f(D) C Doo 4. The mapping T; : (L1)* — L!
defined by, for all x,y in L',

Ti(z,y) = {7V (f(2) @ f(y)),

is a t-norm on L' if and only if ® satisfies
the following condition:

(V(z,y,2) € A%)

((inf(ayz @ y) D 2)1 < a1 and (D y)2 > a1)
= (inf(a,z @ y) @ 2)1 = (z@inf(a,y & 2)h),

(13)

where oo = §(0,1) and A ={z |z € ng and
z <pr f(0zr)}

The condition (13) is very similar to (6). In
the following lemma we show that in some
cases both conditions are equivalent.

Lemma 6.3 Let for all « € Dy \ {01},
P, <= (V(z,y,2) € A7)
((inf(o,z®y) B 2)1 < a1 and (B y)2 > a1)
= (inf(,z ®y) ® 2)1 = (z @ inf(a,y ® 2))1),
(14)
where Aoy = {z | € LI and z <1 a}.
Assume that

(ADDMULDISTR) [¢,c]®(z@y) = ([¢,c]@x) D
([e,e] @ y), for all ¢ € ]0,+00] and =,y
mn E{r.

Then, for any o, B in Dy \ {0,1}, Py —
Ps.

Lemma 6.3 shows that if (ADDMULDISTR)
holds, then (13) and (6) are equivalent to each
other.

The following theorem shows that there is a
close relationship between t-norms generated
by a continuous additive generator and Sg.

Proceedings of IPMU'08

Theorem 6.4 Let | be a continuous additive
generator on L1 associated to @ for which
f(D) C Doo+ and f(0z1) € LL. Define the
mappings Ty, Sg : (L2 — LT by, for all z,y
in L1,

Ti(z,y) = TV (i(z) @ (),
So(x,y) =inf(1lyr,2 D y).

If (ADDMULDISTR) holds, then Tj is a t-norm
on L1 if and only if Sg, is a t-conorm on L.

Taking into consideration the above men-
tioned similarity between the conditions (6)
and (13), we consider a condition which is
similar to (8) and prove that it is a sufficient
condition for & so that a (not necessarily con-
tinuous) additive generator associated to @
generates a t-norm. First we give a lemma.

Lemma 6.5 Letf be an additive generator on
L1 associated to ®. Assume that @ satisfies
the following conditions:

(V(x,y) € I:Jfr x A)
((([z1, 2] ® y)1 < a1 and x € |ag, 2a3])
= ([z1,00] @y = (@S y)h),
(15)
and
(V(z,y) € I_/i x A)
((([o1, 2] D y)2 < a2 and x1 € aq, 2a1])

— (lon,22] ©y)2 = (x D y)2),

(16)
where a = f(0p1) and A = {z | © € LL |
and x <y1 f(0z1)}. Then, for all x € L' and
y € R(f) such that y <pr f(0z1) @ f(0,1),

f(z) & §(f VD (y)) € R(F)

and

V(@) @ 15 V() =

Using Lemma 6.5, the following theorem can
be shown.

Theorem 6.6 Let | be an additive generator
on L1 associated to ®. If © satisfies (15) and
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(16), then the mapping T; : (L')?> — LT de-
fined by, for all z,y in LT,

Ti(z,y) = fV(H(z) @ 1)),
is a t-norm on L.

Theorem 5.4 and Theorem 5.1 show that no
matter which operator @ is used in (AG.4),
a continuous additive generator f on £! sat-
isfying f(D) C Do + is representable and has
a representable pseudo-inverse. Therefore it
depends on the operator @ which classes of
t-norms on £ can have continuous additive
generators that extend additive generators on
(0,1, <).

We show that in some cases the conditions
(15) and (16) are equivalent with (8). Note
first that if o € Dy \ {0,:}, then, for any
% € Loo+ and y € A (where A is defined as in
Lemma 6.5), ([a1,x2] ®y)2 > ([a1, 2] By)1 >
a1 = o, so (16) holds.

Lemma 6.7 Let for all o € D, \ {01},

Qa = (V(z,y) € L} x 4q)
((Jr1, 1] ®y)1 < a1 and 3 € Jay, 201])
= ([z1,01] ®y)1 = (x D y)),

B (18)
where Aq = {x | x € LL and z <;r o}. If
(_ADDMULDISTR) holds, then, for any o, in
D+\{OL1}7 Qo — QB-

The following theorem shows that if (ADD-
MULDISTR) holds, then it is sufficient to prove
the property (), mentioned in Lemma 6.7 for
just one € Dy \{0,s} in order to obtain that
the mappings 7g, Sg and 7; are t-(co)norms
on L.

Corollary 6.8 Assume that (ADDMUL-
DISTR) holds, and that for an arbitrary o €
Dy \{0,1}, @ satisfies Qn, where Ay = {z |
z € LY and x <;r a}. Then the following
properties hold.

e The mappings Tg,Se : (L1)? — LT de-
fined by, for all x,y in L',

T@(xvy) = Sup(oﬁfax S (1£I S y))v
So(z,y) = inf(lpr,z ©y),

are a t-norm and a t-conorm on L re-
spectively. Furthermore, Tg, and Sg are
a natural extension of Ty and Sy to LY.

e For any additive generator f on L' asso-
ciated to @ for which f(0z1) € Do+, the
mapping T; : (L)* — LT defined by, for
all z,y in LT,

Ti(z,y) = {7V (§(z) & f(y)),

is a t-norm on L1.

7 Examples of additive generators
of specific t-norms on L!

7.1 The t-norm 7g

The mapping fi : [0,1] — [0,+o00] defined
by, for all z € [0,1], fw(z) = 1 — =z, is an
additive generator of Ty (see [13, 14]). Define
the mapping fi : L' — f’éo,+ by fw(x) =
lproxr = [fw(xg),fw(wl)], for all z € L'.
Then fy is an additive generator on L£! of
To.

7.2 The t-norm 7g

The mapping fp : [0,1] — [0,+o0] defined
by, for all z € [0,1], fp(z) = —In(z), is an
additive generator of Tp (see [13, 14]). Define
the mapping fp : LI — Ijgo’_,_ by fp(z) =
OLI © [n(x) = [fp(l’g), fp(l’1>], for all z € LL.
Then fp is an additive generator on £ of T,
if and only if for all a,b in Ego,+7

exp(Ogr ©a)®@erp(0,r ©b) = exp(0r & (aBh)).

8 Conclusion

In this paper we investigated additive gener-
ators on £! based on any arithmetic oper-
ators satisfying the axioms proposed in [9].
We showed that independently of the choice
of the addition, any continuous additive gen-
erator which is a natural extension of an ad-
ditive generator on the unit interval, can be
represented by this generator in a componen-
twise way. Conversely, we gave a necessary
and sufficient condition such that any map-
ping which is defined componentwisely using
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an additive generator on the unit interval, is
an additive generator on £/. We gave a nec-
essary and sufficient condition such that an
additive generator on £! generates a t-norm
on £. When a weakened form of the distribu-
tivity of ® and ® is imposed, the fact that an
addition operator & generates a t-conorm on
L' which extends the Lukasiewicz t-conorm
is equivalent to the fact that an additive gen-
erator based on @ generates a t-norm on L.
Finally, we extended some additive generators
of well-known t-norms on the unit interval to
additive generators on L.
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