Additive generation of some classes of finitely-valued t-conorms

J. Martín

Dept. of Math. and C. S. Univ. of the Balearic Islands javier.martin@uib.es **G. Mayor** Dept. of Math. and C. S. Univ. of the Balearic Islands gmayor@uib.es **J. Monreal** Dept. of Math. and C. S. Univ. of the Balearic Islands jaume.monreal@uib.es

Abstract

This paper deals with the problem of the additive generation of triangular conorms defined on a finite totally ordered set. We obtain a generalization of the known result about the existence of an additive generator for any divisible t-conorm by considering ordinal sums of t-conorms belonging to a Łukasiewicz-like class, and after defining a new method to construct t-conorms by a nesting procedure, we study the existence of additive generators for t-conorms obtained from nesting appropriate t-conorms in the basic maximum. drastic and Łukasiewicz t-conorms.

Keywords: additive generator, finitely-valued triangular conorm, ordinal sum, nesting of t-conorms.

1 Introduction

An old problem is whether there exist constructions involving only a one-place real function and the usual addition (or multiplication) which introduce two-place real functions having interesting algebraic properties, in particular, the associativity. More details on this topic can be found in [3], in particular, we point out the following facts:

1) a continuous t-conorm is Archimedean if and only if it has a continuous additive generator;

2) there exist additive generators for the drastic t-conorm (and for other non-continuous t-conorms), but none for the maximum t-conorm.

Fuzzy logic is one of the tools for management of uncertainty; it usually works with a continuous scale, the real interval [0, 1], and the logical connectives are modeled by triangular norms (conjunction) and triangular conorms (disjunction). However, practical applications of fuzzy logic are limited to a finite number of truth values. Thus, technical implementations allow us to work only with a finite (though very large) number of values. On the other hand, when representing vagueness it is usually meaningless to distinguish a high number of truth values; only a small number suffices. In this paper, we deal with triangular conorms defined on a finite ordinal scale.

In full analogy to the representation theorem of continuous t-conorms, there is a characterization of divisible (smooth) finitely-valued t-conorms as ordinal sums of Archimedean finitely-valued t-conorms ([5]). However, some other results concerning discrete tconorms differ substantially from those obtained for t-conorms on [0, 1]. Thus, we know that a t-conorm with nontrivial idempotent elements has not an additive generator; this is not true for finitely-valued t-conorms as we can see in this paper.

Sections 2 and 3 contain the main definitions and results which are the basis of the new ones exposed in sections 4 and 5. The proofs in these sections are only shown for the most important non-trivial results.

2 Preliminaries

Consider $L = \{0, 1, 2, ..., n\}$ equipped with the usual ordering. We begin recalling basic definitions, examples and properties of finitely-valued t-conorms. A complete exposition of this topic can be found in [5, 6].

Definition 1 A triangular conorm (briefly tconorm) on L is a binary operation $S : L \times L \rightarrow L$ such that for all $x, y, z \in L$ the following axioms are satisfied:

1) S(x,y) = S(y,x) (commutativity)

2)
$$S(S(x,y),z) = S(x,S(y,z))$$
 (associativity)

3) $S(x,y) \leq S(x',y')$

whenever $x \le x'$, $y \le y'$ (monotonicity) 4) S(x,0) = x (boundary condition)

A triangular norm (t-norm for short) is a binary operation $T: L \times L \to L$ which, for all $x, y, z \in L$, satisfies 1)-3) and T(x, n) = x.

Example 1 We can consider as basic t-conorms: the drastic

$$S_D(x,y) = \begin{cases} x & \text{if } y = 0\\ y & \text{if } x = 0\\ n & \text{otherwise} \end{cases}$$

the maximum $S_M(x, y) = max(x, y)$ and the bounded sum or Lukasiewicz t-conorm $S_L(x, y) = min(x + y, n).$

Remark 1 The only strong negation N on L(N is an involutive and order-reversing function from L into itself) is N(x) = n - x. For each t-conorm S on L one obtains a tnorm T on L which is the dual to S in the following sense: T(x, y) = N(S(N(x), N(y))) $\forall x, y \in L$. Observe that applying this construction to the t-norm T, we get back the tconorm S we started with. Due to this duality all the results in this paper can be translated to t-norms.

Proposition 1 Let S be a t-conorm on L. Then we have:

- 1. $S \leq S_D$. Thus, S_D is the largest t-conorm.
- 2. $S(x,y) \ge max(x,y) \ \forall x, y \in L$. Thus S_M is the smallest t-conorm
- 3. $S(x,n) = n \ \forall x \in L \ (n \ is \ an \ annihilator)$

4.
$$S(x,x) = x \ \forall x \in L \text{ if and only if } S = S_M.$$

The property of divisibility can be considered for a t-conorm. This condition is the proper equivalent of the continuity of ordinary t-conorms and it plays a crucial role in our approach.

Definition 2 A t-conorm S on L is divisible if the following condition holds:

For all $x, y \in L$ with $x \leq y$ there is $z \in L$ such that y = S(x, z)

Observe that the divisibility condition is equivalent to the smoothness condition ([1, 2]): $0 \leq S(x + 1, y) - S(x, y) \leq 1$ for all $x, y \in L$, x < n.

Given a t-conorm S on L, we say that $x \in L$ is an idempotent element of S if S(x, x) = x. Observe that 0 and n are idempotent elements for any t-conorm. A t-conorm S on L is Archimedean if and only if it has as unique idempotent elements the trivial ones 0 and n.

Proposition 2 S_L is the only divisible Archimedean t-conorm on L.

Now, we recall a method for constructing a new t-conorm from two given t-conorms

Proposition 3 Let S_1 be a t-conorm on $L_m = \{0, 1, \ldots, m\}$ and S_2 a t-conorm on $L_n = \{0, 1, \ldots, n\}$, with $m, n \ge 1$. Consider the binary operation S defined on $L_{m+n} = \{0, 1, \ldots, m+n\}$ as follows

$$S(x,y) = \begin{cases} S_1(x,y) \ if \ (x,y) \in L_m^2 \\ m + S_2(x-m,y-m) \\ if \ (x,y) \in \{m,m+1,\dots,m+n\}^2 \\ \max(x,y) \ otherwise \end{cases}$$

Then, S is a t-conorm on L_{m+n} that we call the ordinal sum of S_1 and S_2 . We will denote $S = \langle S_1, S_2 \rangle$

Next we characterize the class of divisible tconorms as ordinal sums of Łukasiewicz tconorms.

Proposition 4 A t-conorm S on L = $\{0, 1, 2, ..., n\}$ is divisible (smooth) if and only if there exists a set $I = \{0 = a_0 < a_1 < 0\}$

 $\ldots < a_r < a_{r+1} = n$, $0 \le r \le n-1$, of elements of L such that

$$S(x,y) = \begin{cases} \min(a_{i+1}, x+y-a_i) \\ if(x,y) \in (a_i, a_{i+1})^2, \ 0 \le i \le r \\ \max(x,y) \ otherwise \end{cases}$$

Remark 2 In case r = 0, that is $I = \{0, n\}$, we obtain $S = S_{\text{L}}$. In case r = n - 1, that is I = L, we obtain $S = S_M$. On the other hand, we have $S_M \leq S \leq S_{\text{L}}$ for any divisible t-conorm S.

The correspondance

 $\Psi: Div(L) \to \mathcal{P}(L - \{0, n\})$ between the set Div(L) of all divisible t-conorms on L and the power set of $\{1, 2, \dots, n-1\}$ defined by $\Psi(S) = I - \{0, n\}$ (the set of non-trivial idempotent elements of S) is a bijection. Thus, there are exactly 2^{n-1} divisible t-conorms on L.

Example 2 There are 2386 t-conorms on $L = \{0, 1, 2, 3, 4, 5, 6, 7\}$, 471 of them are Archimedean. Between the 1915 non-Archimedean t-conorms there are 1021 ordinal sums. On the other hand, there are 64 t-conorms that are divisible (only one of them is Archimedean and the other 63 are ordinal sums).

3 Additive generators of finitely-valued t-conorms

In this section we consider the pseudoinverse of appropriate monotone functions from $L = \{0, 1, 2, ..., n\}$ to $[0, +\infty)$, and we introduce a construction similar to that given in case of ordinary t-conorms.

Definition 3 An additive generator $f: L \rightarrow [0, +\infty)$ of a t-conorm S on L is a strictly increasing function with f(0) = 0 such that

$$S(x,y) = f^{(-1)}(f(x) + f(y)) \quad \forall x, y \in L, \quad (1)$$

where $f^{(-1)}: [0, +\infty) \to L$ is the pseudoinverse of f, defined by $f^{(-1)}(t) = max\{z \in L; f(z) \le t\}.$

If S is a t-conorm on L of the form (1) for some f, we say that S is additively generated by f. We often indicate $S = \langle (a_0, a_1, \dots, a_n) \rangle$ where $a_x = f(x), x \in L$. Of course $0 = a_0 < a_1 < \ldots < a_{n-1} < a_n$.

Remark 3 If $S = \langle (a_0, a_1, \ldots, a_n) \rangle$ then defining $a_x * a_y = max\{a_z ; a_z \leq a_x + a_y\}$ we can write $S(x, y) = f^{(-1)}(f(x) + f(y)) =$ $f^{(-1)}(a_x + a_y) = f^{-1}(a_x * a_y)$ for all $x, y \in L$.

Example 3 The basic t–conorms quoted above have additive generator:

$$\begin{split} S_{\mathbf{L}} &= \langle (0, 1, \dots, n-1, n) \rangle, \\ S_{M} &= \langle (0, 1, 3, 7, 2^{n-1} - 1, 2^{n} - 1) \rangle, \\ S_{D} &= \langle (0, n-1, n, \dots, 2n-3, 2n-2) \rangle. \end{split}$$

A known result about characterization of those t-conorms having additive generator is the following. For more details and results about additive generation of binary operations see [4].

Proposition 5 A t-conorm S on L has an additive generator if and only if there exists a continuous non-strict Archimedean t-conorm \hat{S} on the real interval [0, n] such that $S(x, y) = \lfloor \hat{S}(x, y) \rfloor$ for all $x, y \in L$, where $\lfloor z \rfloor$ stands for the floor of z (the greatest integer which is less than or equal to z).

On the other hand, we have proved through an exhaustive computation that any tconorm on $L = \{0, 1, ..., n\}$ with $n \leq 7$ can be additively generated.

Next we prove that any t-conorm that is an ordinal sum of additively generated tconorms is also an additively generated tconorm.

Proposition 6 Let $f_1 = (a_0, a_1, \ldots, a_m)$ be an additive generator of a t-conorm S_1 on $L_m = \{0, 1, \ldots, m\}$ and $f_2 = (b_0, b_1, \ldots, b_m)$ be an additive generator of a t-conorm S_2 on $L_n = \{0, 1, \ldots, n\}$. Then $f = (a_0, a_1, \ldots, a_m, (2a_m + 1)b_1, (2a_m + 1)b_2, \ldots, (2a_m + 1)b_n)$ is an additive generator of the ordinal sum $\langle S_1, S_2 \rangle$.

According to previous results we can now establish the following result.

Proposition 7 Any divisible t-conorm on $L = \{0, 1, ..., n\}$ has an additive generator.

4 Ordinal sums of a class of Archimedean t–conorms

We have just proved that any divisible tconorm on $L = \{0, 1, 2, ..., n\}$ is additively generated by using the fact that they are ordinal sums of additively generated t-conorms (Lukasiewicz t-conorms). In this section we generalize this result by introducing a family of Lukasiewicz-like t-conorms.

Given $n \ge 2$, we consider the class of binary operations defined on $L = \{0, 1, 2, ..., n\}$ as follows:

$$S_k(x,y) = \begin{cases} \max(x,y) & if \min(x,y) = 0\\ \min(n,x+y+k) & otherwise \end{cases}$$

where k = 0, 1, ..., n - 2.

Note that S_0 and S_{n-2} are the Łukasiewicz and the drastic t-conorms repectively.

Proposition 8 Each S_k is an Archimedean *t*-conorm on *L*. All of them are smooth on $L^* = L - \{0\}.$

Proposition 9 Let S be a t-conorm on $L = \{0, 1, 2, ..., n\}$ that is Archimedean, smooth on $L^* = L - \{0\}$ and strictly increasing out of the n-region. Then there exists $k \in \{0, 1, ..., n-2\}$ such that $S = S_k$.

Proposition 10 The t-conorms S_k , k = 0, 1, ..., n-2, have an additive generator.

Proof: It is sufficient to consider $(0 = a_0, a_1, \ldots, a_n)$ where a_1, \ldots, a_n is an arithmetical progression with common difference d such that $\lfloor \frac{a_1}{d} \rfloor = k + 1$.

Proposition 11 Any ordinal sum of tconorms described above has an additive generator.

Remark 4 If we denote by S_k^n the t-conorm on $L = \{0, 1, 2, ..., n\}$ corresponding to the value k (k = 0, 1, ..., n - 2) then, fixed $i_0 =$ $0 < i_1 < ... < i_r < i_{r+1} = n$, we can consider t-conorms on $L = \{0, 1, 2, ..., n\}$ which are ordinal sums $S = \langle S_{k_1}^{n_1}, S_{k_2}^{n_2}, ..., S_{k_{r+1}}^{n_{r+1}} \rangle$ where $n_j = i_j - i_{j-1} \ge 2, \ j = 1, ..., r+1$, and $k_j = 0, 1, ..., n_j - 2$. Thus, we can construct as many t-conorms as $N = \prod_{j \in J} (n_j - 1)$ where $J = \{j; n_j \ge 2\}$. Only one of them is smooth. All of these tconorms have an additive generator.

Example: $S = \langle S_0^3, S_1^5 \rangle$ is the t-conorm on $L = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ obtained from S_0^3 and S_1^5 . See figure below

S	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	2	3	3	4	5	6	7	8
2	2	3	3	3	4	5	6	7	8
3	3	3	3	3	4	5	6	7	8
4	4	4	4	4	6	7	8	8	8
5	5	5	5	5	7	8	8	8	8
6	6	6	6	6	8	8	8	8	8
7	7	7	7	7	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8

S is additively generated by (0, 1, 2, 3, 8, 12, 16, 20, 24).

In the next section we introduce and study a new method to construct t–conorms.

5 Nesting of t-conorms

Definition 4 Given a t-conorm S_2 on $L_n = \{0, 1, ..., k, k+1, ..., n\}$ with 0 < k < nand a t-conorm S_1 on $\{0, 1, ..., k\}$ we define a binary operation S on L_n as follows:

$$S(x,y) = \begin{cases} S_1(x,y) & \text{if } 0 \le x, y \le k\\ S_2(x,y) & \text{otherwise} \end{cases}$$
(2)

We say that S is the nesting of S_1 in S_2 (fixed k) and we denote $S = [S_1, S_2]$.

For any t-conorms S_1 and S_2 , $S = [S_1, S_2]$ is commutative, non-decreasing in each place with 0 as neutral element. We are interested in obtaining by this method a new t-conorm.

Proposition 12 Consider a t-conorm S_2 on $L_n = \{0, 1, \ldots, k, k+1, \ldots, n\}$ with 0 < k < n and a t-conorm S_1 on $\{0, 1, \ldots, k\}$. The nesting $S = [S_1, S_2]$ is associative (is a t-conorm) if and only if the following condition holds

$$S_2(S_1(x,y),z) = S_2(S_2(x,y),z)$$

$$\forall x, y \le k, \forall z > k$$
(3)

A remarkable particular case is when $S_2(k, x) = \max(k, x)$ for all x. Under this hypothesis the condition (3) is trivially satisfied and $S = [S_1, S_2]$ is just the ordinal sum $\langle S_1, S'_2 \rangle$, where S'_2 is the t-conorm on $\{0, 1, \ldots, n-k\}$ defined by $S'_2(x, y) = S_2(x + k, y + k) - k$.

It is also worth observing that if $S = [S_1, S_2]$ is a t-conorm then it is non-Archimedean (kis a non trivial idempotent of S). Reciprocally, if S is a non-Archimedean t-conorm on $\{0, 1, \ldots, n\}$ with k as non-trivial idempotent, then S is the nesting $[S_1, S]$ where S_1 is the restriction of S to $\{0, 1, \ldots, k\}$. Thus the class of non-Archimedean t-conorms on $\{0, 1, \ldots, n\}$ is equal to the class of nestings on the same domain $\{0, 1, \ldots, n\}$ that satisfy condition (3).

Next subsections show how we obtain new tconorms by nesting in the basic t-conorms: maximum, drastic and Luckasiewicz.

5.1 Nesting in the maximum t-conorm

First we note that making nestings in the maximum t–conorm we obtain an ordinal sum of t–conorms.

Proposition 13 Let S_1 be a t-conorm on $\{0, 1, \ldots, k\}$, and let S_M the maximum tconorm on $\{0, 1, \ldots, k, \ldots, n\}$ (k < n), and consider S'_M the maximum t-conorm on $\{0, 1, \ldots, n-k\}$. Then $[S_1, S_M]$ is a t-conorm satisfying $[S_1, S_M] = \langle S_1, S'_M \rangle$.

Thus, nesting a t-conorm S_1 in the maximum t-conorm we obtain a new additively generated t-conorm whenever S_1 also is.

5.2 Nesting in the drastic t-conorm

Using the drastic t-conorm, we can state:

Proposition 14 The nesting $[S_1, S_D]$ of a tconorm S_1 in the drastic t-conorm S_D is a t-conorm. Moreover, if $(0 = a_0, a_1, \ldots, a_k)$ is an additive generator of S_1 then $(0 = b_0, b_1, \ldots, b_n)$ is an additive generator of $[S_1, S_D]$, where $b_i = (n - k)a_i$ $i = 1, \ldots, k$, $b_{k+1} = 2b_k + 1$, $b_j = b_{j-1} + 1$ $j = k + 2, \ldots, n$. Observe that, except in trivial cases, $[S_1, S_D]$ is a non-Archimedean t-conorm that is not an ordinal sum. We can also observe that this construction can be iterated. Thus, we can consider $[[S_1, S_D], S_D], \ldots, [\ldots, [[S_1, S_D], S_D], \ldots, S_D]$, obtaining new t-conorms additively generated (if S_1 also is).

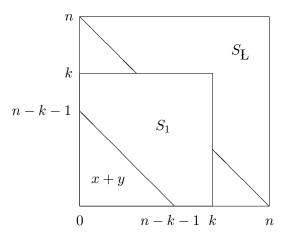
5.3 Nesting in the Łuckasiewicz t-conorm

This is a different case from the two previous ones. Now S_1 needs to satisfy some conditions in order to get a new t-conorm.

Proposition 15 The nesting $[S_1, S_L]$ of a tconorm S_1 in the Luckasiewicz t-conorm S_L is a t-conorm if and only if

i)
$$k > \frac{n-2}{2}$$

ii) $S_1(x,y) = x + y$ if $x + y < n - k - 1$
iii) $S_1(x,y) \ge n - k - 1$ if $x + y \ge n - k - 1$.



Proof: First we observe that condition (3) can be written in the form

$$\min(S_1(x,y)+z,n) = \min(x+y+z,n)$$

$$\forall x,y \le k \quad \forall z > k$$
(4)

Suppose that this condition is satisfied. Taking x = k, y = 1 and z = k + 1 then $\min(S_1(k,1) + k + 1, n) = \min(2k + 2, n)$. Suppose first $k < \frac{n-2}{2}$, then $S_1(k,1) + k + 1 = 2k + 2$ which is a contradiction because $S_1(k,1) = k$. Suppose now $k = \frac{n-2}{2}$, then $S_1(k,1) + k + 1 \ge n$. Thus $S_1(k,1) \ge n-k-1 = k+1$ which is a contradiction too. Hence $k > \frac{n-2}{2}$ Now we proof *ii*). Taking z = k+1, if x+y+k+1 < n then from (4) we have $S_1(x,y) + k+1 = x+y+k+1$ and so $S_1(x,y) = x+y$ for all x, y such that x+y < n-k-1.

Let us prove now *iii*). Taking z = k + 1 and x, y such that x + y + k + 1 = n condition (4) implies $S_1(x, y) + k + 1 \ge n$, hence $S_1(x, y) \ge n - k - 1$ for all x, y with x + y = n - k - 1 and finally from monotonicity *iii*) follows.

Reciprocally suppose that i), ii) and iii) hold. Consider $x, y \le k$ and z > k. If x + y + z < nthen x + y + k + 1 < n and x + y < n - k - 1, hence from ii) $S_1(x, y) = x + y$ and condition (4) is satisfied.

In case $x + y + z \ge n$, we need to prove $S_1(x,y) + z \ge n$. If x + y < n - k - 1 then $S_1(x,y) + z = x + y + z \ge n$, and if $x + y \ge n - k - 1$ then $S_1(x,y) + z \ge n - k - 1 + k + 1 = n$ and condition (4) holds.

The next proposition illustrates how we can get an additive generator for $[S_1, S_L]$ from one of S_1 .

Proposition 16 Let S_1 be a t-conorm on $L = \{0, 1, \ldots, k\}$ having $(0 = a_0, a_1, \ldots, a_k)$ as an additive generator. Then $(0 = b_0, b_1, \ldots, b_k, b_{k+1}, \ldots, b_n)$ is an additive generator of $[S_1, S_L]$, where $b_i = a_i$ $i = 0, \ldots, k$ and $b_{k+1} = 2a_k + 1$, $b_{k+2} = 2a_k + 2 + a_0$, $b_{k+3} = 2a_k + 2 + a_1, \ldots, b_n = 2a_k + 2 + a_{n-k-2}$.

Proof: Since $b_i = a_i$ i = 0, ..., k we only need to show that

$$b_i * b_r = b_{\min(i+r,n)}$$

$$\forall \ i,r: \ 0 \le i \le k < r \le n$$
(5)

where * is the binary operation considered in Remark 3.

Observe also that $b_i * b_j = b_{i+j}$ for all $0 \le i, j \le n-k-2$, because S_1 satisfies conditions described above. This means $b_{i+j} \le b_i + b_j < b_{i+j+1} \quad \forall i, j \le n-k-2$.

We have to study the following three cases:

1) Let's see that $b_i * b_{k+1} = b_{i+k+1}$ whenever $1 \le i \le n-k-2$. We can clearly see that $b_1 * b_{k+1} = b_{k+2}$ because $b_1 + b_{k+1} = b_{k+2}$. And if we suppose $i \ge 2$ then $b_i * b_{k+1} = b_{k+i+1}$ if and only if $b_{k+i+1} \le b_i * b_{k+1} < b_{k+i+2}$. Since $1 - b_{i-1} \le b_1 + b_{i-1} \le b_i$ then $1 + b_{i-1} \le b_i < b_i + 1$ and the condition (5) holds.

2) In order to see that $b_i * b_{k+p} = b_{\min(k+i+p,n)}$ $p \ge 2$, we only need to observe that $b_{i+p-2} \le b_i + b_{p-2} < b_{i+p-1}$ (last inequality will be only considered when $i + p - 1 \le n$). From this we obtain $b_{k+i+p} \le b_i + b_{k+p} < b_{i+k+p+1}$ and condition (5) is satisfied.

3) Finally, we have to see $b_{n-k-1} * b_{k+p} = b_n$ $\forall p \ge 1$. This is true because $b_{n-k-1} + b_{k+p} \ge b_{n-k-1} + b_{k+1} = b_{n-k-1} + 2b_k + 1 \ge b_{n-k-2} + 2b_k + 2 = b_n$ and condition (5) holds.

Acknowledgements

The authors acknowledge the support of the Govern Balear grant PCTIB2005GC1-07 and the Spanish DGI grant MTM2006-08322.

References

- L. Godo, C. Sierra. A new approach to connective generation in the framework of expert systems using fuzzy logic. In Proc. 18th IEEE Int. Symposium on Multiple-Valued Logic, pp. 157-162. 1988.
- [2] J. Fodor. Smooth associative operations on finite ordinal scales. *IEEE Transactions on Fuzzy Systems*, vol 8 pp 791-795. 2000.
- [3] E.P. Klement, R. Mesiar, E. Pap. Triangular Norms. Kluwer. 2000.
- [4] G. Mayor, J. Monreal. Additive Generators of Discrete Conjunctive Aggregation Operations. *IEEE Transactions on Fuzzy Systems*, vol 15, no. 6, pp 1046-1052. 2007.
- [5] G. Mayor, J. Torrens. On a class of operators for expert systems. Int. J. Intell. Syst. 8, pp 771-778. 1993.
- [6] G. Mayor, J. Torrens. Triangular norms on discrete settings. In *Logical, Algebraic, Analytic, and Probabilistic Aspects* of *Triangular Norms*. Edited by E.P. Klement and R. Mesiar. Elsevier. 2005.