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Abstract

This paper deals with the problem of
the additive generation of triangular
conorms defined on a finite totally
ordered set. We obtain a generaliza-
tion of the known result about the
existence of an additive generator for
any divisible t-conorm by consider-
ing ordinal sums of t-conorms be-
longing to a Lukasiewicz-like class,
and after defining a new method
to construct t-conorms by a nesting
procedure, we study the existence
of additive generators for t-conorms
obtained from nesting appropriate
t-conorms in the basic maximum,
drastic and Lukasiewicz t-conorms.

Keywords: additive generator,
finitely-valued triangular conorm,
ordinal sum, nesting of t-conorms.

1 Introduction

An old problem is whether there exist con-
structions involving only a one-place real
function and the usual addition (or multipli-
cation) which introduce two-place real func-
tions having interesting algebraic properties,
in particular, the associativity. More details
on this topic can be found in [3], in particular,
we point out the following facts:

1) a continuous t-conorm is Archimedean if
and only if it has a continuous additive gen-
erator;

2) there exist additive generators for the dras-
tic t-conorm (and for other non-continuous
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t-conorms), but none for the maximum t-
conorm.

Fuzzy logic is one of the tools for management
of uncertainty; it usually works with a con-
tinuous scale, the real interval [0,1], and the
logical connectives are modeled by triangular
norms (conjunction) and triangular conorms
(disjunction). However, practical applications
of fuzzy logic are limited to a finite number
of truth values. Thus, technical implemen-
tations allow us to work only with a finite
(though very large) number of values. On the
other hand, when representing vagueness it
is usually meaningless to distinguish a high
number of truth values; only a small number
suffices. In this paper, we deal with triangular
conorms defined on a finite ordinal scale.

In full analogy to the representation theorem
of continuous t-conorms, there is a charac-
terization of divisible (smooth) finitely-valued
t-conorms as ordinal sums of Archimedean
finitely-valued t-conorms ([5]).  However,
some other results concerning discrete t-
conorms differ substantially from those ob-
tained for t-conorms on [0, 1]. Thus, we know
that a t-conorm with nontrivial idempotent
elements has not an additive generator; this
is not true for finitely-valued t-conorms as we
can see in this paper.

Sections 2 and 3 contain the main definitions
and results which are the basis of the new
ones exposed in sections 4 and 5. The proofs
in these sections are only shown for the most
important non-trivial results.
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2 Preliminaries

Consider L = {0,1,2,...,n} equipped with
the usual ordering. We begin recalling ba-
sic definitions, examples and properties of
finitely—valued t—conorms. A complete expo-
sition of this topic can be found in [5, 6].

Definition 1 A triangular conorm (briefly t—
conorm) on L is a binary operation S : L X
L — L such that for all x,y,z € L the follow-
g axioms are satisfied:

1) S(z,y) = S(y,x) (commutativity)
2) S(S(x,y),2) = S(z,S(y, 2)) (associativity)
3) S(x,y) < S(@',y)
whenever x <z’ |y <y
4) S(z,0) == (boundary condition)

(monotonicity)

A triangular norm (t—norm for short) is a bi-
nary operation T : L x L — L which, for all
x,y,z € L, satisfies 1)-3) and T'(z,n) = x.

Example 1 We can consider as basic t—
conorms: the drastic

xz ify=0
Sp(z,y)=q y ifx=0
n  otherwise
the maximum Spy/(z,y) = maz(x,y) and

the bounded sum or Lukasiewicz t—conorm
St,(z,y) = min(xz +y,n).

Remark 1 The only strong negation N on L
(N is an involutive and order-reversing func-
tion from L into itself) is N(z) = n — x.
For each t—conorm S on L one obtains a t—
norm 7' on L which is the dual to S in the
following sense: T'(z,y) = N(S(N(z),N(y))
Vz,y € L. Observe that applying this con-
struction to the t—norm 7', we get back the t—
conorm S we started with. Due to this duality
all the results in this paper can be translated
to t-norms.

Proposition 1 Let S be a t-conorm on L.
Then we have:

1. 5§ < Sp.
conorm.

2. S(x,y) > max(x,y) Yo,y € L. Thus Sy
1s the smallest t—-conorm

3. S(z,n) =nVx e L (nis an annihilator)

Thus, Sp is the largest t—
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4. S(x,x) = x Yo € L if and only if S =
S

The property of divisibility can be consid-
ered for a t—conorm. This condition is the
proper equivalent of the continuity of ordi-
nary t—conorms and it plays a crucial role in
our approach.

Definition 2 A t—conorm S on L is divisible
if the following condition holds:

For all x,y € L with x < y there is z € L
such that y = S(z, 2)

Observe that the divisibility condition is
equivalent to the smoothness condition ([1,
2]): 0 < S(z+1,y) — S(z,y) < 1 for all
r,y €L, x<n.

Given a t—conorm S on L, we say that x € L
is an idempotent element of S if S(x,z) = x.
Observe that 0 and n are idempotent elements
for any t—conorm. A t-conorm S on L is
Archimedean if and only if it has as unique
idempotent elements the trivial ones 0 and n.

Proposition 2 Sy is the
Archimedean t—conorm on L.

only divisible

Now, we recall a method for constructing a
new t—conorm from two given t—conorms

Proposition 3 Let S1 be a t-conorm on
L,, = {0,1,...,m} and Sy a t-conorm on
L, ={0,1,...,n}, with m,n > 1. Consider

the binary operation S defined on Lpyi, =

{0,1,...,m+n} as follows
Sl(xay) Zf (‘Tvy) € L72n
S(z,y) = m+ Sa(z —m,y —m)

if (x,y) € {Imym+1,...,m+n}?
max(x,y) otherwise

Then, S is a t—conorm on Ly,1, that we call
the ordinal sum of S1 and Sa. We will denote
S = (51, 59)

Next we characterize the class of divisible t-
conorms as ordinal sums of Lukasiewicz t-
conorms.

Proposition 4 A t-conorm S on L =
{0,1,2,...,n} is divisible (smooth) if and
only if there exists a set I = {0 =ag < a1 <
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< ap < a1 =n}, 0<r <n-1, of
elements of L such that
min(a;+1,z +y — a;)
Zf (wvy) € (aiaai+1)27 0 S 1 S r
max(x,y) otherwise

S(:E,y) -

Remark 2 In case r = 0, that is I = {0,n},
we obtain S = Sy,. In case r = n — 1, that
is I = L, we obtain S = Sp;. On the other
hand, we have Sy; < S < Sy, for any divisible
t—conorm S.

The correspondance

U : Div(L) — P(L —{0,n}) between the set
Div(L) of all divisible t—conorms on L and
the power set of {1,2,...,n — 1} defined by
U(S) =I—{0,n} (the set of non-trivial idem-
potent elements of S) is a bijection. Thus,
there are exactly 2"~! divisible t—conorms on
L.

Example 2 There are 2386 t—conorms on
L = {0,1,2,3,4,5,6,7}, 471 of them are
Archimedean. Between the 1915 non—
Archimedean t—conorms there are 1021 ordi-
nal sums. On the other hand, there are 64 t—
conorms that are divisible (only one of them
is Archimedean and the other 63 are ordinal
sums).

3 Additive generators of
finitely—valued t—conorms

In this section we consider the pseudoinverse
of appropriate monotone functions from L =
{0,1,2,...,n} to [0,400), and we introduce
a construction similar to that given in case of
ordinary t—conorms.

Definition 3 An additive generator f : L —
[0,400) of a t-conorm S on L is a strictly
increasing function with f(0) = 0 such that

S(z,y) = fOV(f(2)+ f(y) Yo,ye L, (1)

where f=V 1 [0,400) — L is the pseudoin-
verse of f, defined by fCV(t) = maz{z €
Li f(2) <'t}.

If S is a t—conorm on L of the form (1) for

some f, we say that S is additively generated
by f. We often indicate S = ((ag,a1,...,an))

where a; = f(x), x € L. Of course 0 = ag <
a; < ... < ap—1 < ap.

Remark 3 If S = ((ag,ai,...,a)) then
defining a, * ay = maz{a, ; a, < ay + ay}
we can write S(z,y) = FCU(f(x) + f()) =
FEV(ag 4 ay) = fHagx * ay) for all z,y € L.

Example 3 The basic t—conorms quoted
above have additive generator:

Sy, =((0,1,...,n—1,n)),

Sy ={(0,1,3,7,2n"1 —1,2" — 1)),

Sp =((0,n—1,n,...,2n —3,2n — 2)).

A known result about characterization of
those t—conorms having additive generator is
the following. For more details and results
about additive generation of binary opera-
tions see [4].

Proposition 5 A t-conorm S on L has an
additive generator if and only if there exists a
continuous non—strict Archimedean t—conorm
S on the real interval [0, n] such that S(x,y) =
|S(z,y)| for allz,y € L, where | z| stands for
the floor of z (the greatest integer which is less
than or equal to z).

On the other hand, we have proved through
an exhaustive computation that any t—
conorm on L = {0,1,...,n} with n < 7 can
be additively generated.

Next we prove that any t—conorm that is
an ordinal sum of additively generated t—
conorms is also an additively generated t—
conorm.

Proposition 6 Let fi = (ag,a1,...,am)
be an additive generator of a t—conorm
S1 on L, = {0,1,...,m} and fo =
(bo,b1,...,bm) be an additive generator of a
t—-conorm Sy on L, = {0,1,...,n}. Then
f = (ag,a1,...,am,2am + 1)b1,(2am, +
1)ba, ..., (2am+1)by,) is an additive generator
of the ordinal sum (S1,S2).

According to previous results we can now es-
tablish the following result.

Proposition 7 Any divisible t-conorm on
L={0,1,...,n} has an additive generator.
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4 Ordinal sums of a class of
Archimedean t—conorms

We have just proved that any divisible t—
conorm on L = {0,1,2,...,n} is additively
generated by using the fact that they are or-
dinal sums of additively generated t—conorms
(Lukasiewicz t—conorms). In this section we
generalize this result by introducing a family
of Lukasiewicz-like t—conorms.

Given n > 2, we consider the class of binary
operations defined on L = {0,1,2,...,n} as
follows:

max(z,y) if min(z,y) =0
min(n,z +y + k) otherwise

Sk(l’,]/) = {

where k =0,1,...,n— 2.

Note that Sy and S,,_s are the Lukasiewicz
and the drastic t—conorms repectively.

Proposition 8 Fach Sy is an Archimedean

t—conorm on L. All of them are smooth on
L* =L —{0}.

Proposition 9 Let S be a t—conorm on L =
{0,1,2,...,n} that is Archimedean, smooth
on L* = L — {0} and strictly increasing
out of the n-region. Then there exists k €

{0,1,...,n — 2} such that S = S.

Proposition 10 The t-conorms S , k =
0,1,...,n — 2, have an additive generator.

Proof:
ap, at, - -

It is sufficient to consider (0 =
.,an) where ay,...,a, is an arith-
metical progression with common diference d
such that %] =k + 1.

Proposition 11 Any ordinal sum of t-
conorms described above has an additive gen-
erator.

Remark 4 If we denote by S}’ the t—conorm
on L = {0,1,2,...,n} corresponding to the
value k (k = 0,1,...,n — 2) then, fixed iy =
0<i <...<ip <ipy1 =n, we can consider
t—conorms on L = {0,1,2,...,n} which are
ordinal sums S = (S¢', S;7, ... ,SZ::) where
n; = ij - ij_l >2 7 =1...,7r4+ 1, and
]Cj :0,1,...,nj—2.
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Thus, we can construct as many t—conorms
as N = [[;c;(n; — 1) where J = {j;n; > 2}.
Only one of them is smooth. All of these t—
conorms have an additive generator.

Example: S = (S3,57) is the t-conorm on
L = {0,1,2,3,4,5,6,7,8} obtained from S
and S7. See figure below

0~ O U W~ Ol
O N O Ui W~ OO
0 O U W W
0 ~J O U i W W W NN
0O J O U i W W W WwWwlw
CO 00 00 1 O = = = ik
O OO OO OO0 = UU Ut Ut Ot Ot
CO OO GO 0O 0O O O Oy O O
00 00 00 00 00 =~J =1 =I =I| =3
Co OO OGO 0O OGO OO GO OO Cof Co

S is additively generated by (0,1,2,3,8,
12,16,20,24).

In the next section we introduce and study a
new method to construct t—conorms.

5 Nesting of t—conorms

Definition 4 Given a t-conorm Sy on
L,={0,1,....k,k+1,....,n} with0 <k <mn
and a t—conorm Sy on {0,1,...,k} we define
a binary operation S on L, as follows:

s ={ 500

We say that S is the nesting of S7 in So (fixed
k) and we denote S = [S7, Sa].

if0<z,y<k
otherwise

(2)

For any t—conorms S; and S, S = [S], 59
is commutative, non—decreasing in each place
with 0 as neutral element. We are interested
in obtaining by this method a new t—conorm.

Proposition 12 Consider a t—conorm Sa on
L,={0,1,....kk+1,...,n} with0 <k <n
and a t-conorm Si on {0,1,...,k}. The
nesting S = [S1,S2] is associative (is a t-
conorm) if and only if the following condition

holds

So(S1(z,y),z) = S2(S2(z,y), 2) 3)
Ve,y <k,Vz>k
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A remarkable particular case is when
So(k,x) = max(k,z) for all z. Under this
hypothesis the condition (3) is trivially sat-
isfied and S = [S1,S2] is just the ordinal
sum (S1,S%), where S} is the t—conorm on
{0,1,...,n — k} defined by S5(z,y) = Sa(x +
k,y+k)—k.

It is also worth observing that if S =[S, S5
is a t—conorm then it is non—Archimedean (k
is a non trivial idempotent of S). Recipro-
cally, if S is a non—Archimedean t—conorm
on {0,1,...,n} with k as non—trivial idem-
potent, then S is the nesting [S7, S] where S}
is the restriction of S to {0,1,...,k}. Thus
the class of non—Archimedean t—conorms on
{0,1,...,n} is equal to the class of nestings
on the same domain {0, 1,...,n} that satisfy
condition (3).

Next subsections show how we obtain new t—
conorms by nesting in the basic t—conorms:
maximum, drastic and Luckasiewicz.

5.1 Nesting in the maximum
t—conorm

First we note that making nestings in the
maximum t—conorm we obtain an ordinal sum
of t—conorms.

Proposition 13 Let S be a t-conorm on
{0,1,...,k}, and let Sy the mazimum t-
conorm on {0,1,....k,....,n} (kK < mn),
and consider S}, the mazimum t—conorm on
{0,1,...,n—k}. Then [Si,Snm] is a t-conorm
satisfying [S1, Sn] = (S1, )

Thus, nesting a t—conorm S; in the maximum
t—conorm we obtain a new additively gener-
ated t—conorm whenever S also is.

5.2 Nesting in the drastic t—conorm
Using the drastic t—conorm, we can state:

Proposition 14 The nesting [S1,Sp| of a t—
conorm S1 in the drastic t—conorm Sp is a
t—conorm. Moreover, if (0 = ag,a1,...,ax)
is an additive generator of Sy then (0 =
bo,b1,...,by) is an additive generator of
[S1,Sp], where b = (n — k)a; i = 1,...,k,
bk+1 :2bk+1, bj :bj_1+1j:k+2,...,n.

Observe that, except in trivial cases, [S1, Sp]
is a non—Archimedean t—conorm that is
not an ordinal sum. We can also ob-
serve that this construction can be iterated.
Thus, we can consider [[Si,Sp],Spl, ... ,
[...[[S1,SDp],Sp],...,Sp], obtaining new t—
conorms additively generated (if Sy also is).

5.3 Nesting in the Luckasiewicz
t—conorm

This is a different case from the two previous
ones. Now 57 needs to satisfy some conditions
in order to get a new t-conorm.

Proposition 15 The nesting [S1,Sg] of a t-
conorm Sy in the Luckasiewicz t-conorm Sy,
18 a t—conorm if and only if

i) k> 12

i) Si(z,y) =x+yife+y<n—k—1

iii) Si(z,y) >n—k—1lifr+y>n—k—1.

n
Sy,
k
n—k—1
Si
r+y
0 n—k—1%k n

Proof: First we observe that condition (3)
can be written in the form

min(Sq(z,y) + z,n) = min(x + y + z,n)
Ve, y <k Vz>k
(4)

Suppose that this condition is satisfied. Tak-
ingx =k, y = 1and 2z = k + 1 then
min(Si(k,1) + k + 1,n) = min(2k + 2,n).
Suppose first k < ”52, then S1(k,1) + k +
1 = 2k + 2 which is a contradiction be-
cause Si(k,1) = k. Suppose now k = ”T_Q,
then Si(k,1) +k+1 > n. Thus Si(k,1) >
n—k—1=k+1 which is a contradiction too.
Hence k > "772
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Now we proof ii). Taking z = k+1,if z+y+
k 4+ 1 < n then from (4) we have Si(z,y) +
k+1=z+y+k+1andsoSi(z,y)=x+y
for all ,y such that x +y <n —k — 1.

Let us prove now iii). Taking z = k + 1 and
x,y such that x +y + k + 1 = n condition (4)
implies Sy(z,y) + k+1 > n, hence Sy(z,y) >
n—k—1forall z,ywithe+y=n—~k—1
and finally from monotonicity i) follows.

Reciprocally suppose that i), 4) and 44i) hold.
Consider z,y < kand z > k. fx+y+2<n
thenz4+y+k+1l<nandax+y<n—k—1,
hence from i) Si(x,y) = x + y and condition
(4) is satisfied.

In case x + y + z > n, we need to prove
Si(x,y)+z>n. fx+y <n—Fk—1 then
Si(z,y) +z=z+y+z>n,andif z +y >
n—k—1then Sy (z,y)+z > n—k—1+k+1=n
and condition (4) holds.

The next proposition illustrates how we can
get an additive generator for [S1, Sy | from one
of Sl.

Proposition 16 Let S be a t-conorm on

L ={0,1,...,k} having (0 = ag,a,...,ax)
as an additive generator. Then (0 =
bo, b1, ..., bk, b1 ..., bn) is an additive gen-

erator of [S1,Sf], where b; = a; i = 0,...,k
and bpy1 = 2ar + 1, bgro = 2ar + 2 + ao,
bprs = 2a+2+a1, ..., by = 2ap+2+ap_g_o.

Proof: Since b; = a; ¢ = 0,...,k we only
need to show that

bi * by = bmin(iJrr,n) (5)
Vir: 0<i<k<r<n

where * is the binary operation considered in
Remark 3.

Observe also that b; * b; = b;;; for all 0 <
1,7 <n—k—2, because S satisfies conditions
described above. This means b;; < b; +b; <
bi+j+1 Vl,] S n—k—2.

We have to study the following three cases:

1) Let’s see that b; % by11 = b;yr+1 whenever
1 <i<n-—k-—2 We can clearly see that
b1*bp+1 = brro because by +bg1 = br1o. And
if we suppose ¢ > 2 then b; * b1 = bptiy1 if
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and only if bx1 ;11 < b; * b1 < bgiia0. Since
1—0b;1<by+bi_1 <bjthenl+b_1<b; <
b; + 1 and the condition (5) holds.

2) In order to see that b;*bgip = brin(ktitpn)
p > 2, we only need to observe that b;;, o <
bi+bp—2 < biyp—1 (last inequality will be only
considered when i +p — 1 < n). From this
we obtain bk+i+p < b; + bk+p < bi+k+p+1 and
condition (5) is satisfied.

3) Finally, we have to see b,_g_1 * bytp = by
Vp > 1. This is true because b,_j_1 + bpyp >
bnk—1+bpr1 =bpp-1+2bp+1>by p o+
2by, + 2 = b, and condition (5) holds.
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