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Abstract

Recently, many works have appeared
dealing with the distributivity of
fuzzy implications over t-norms, t-
conorms and uninorms (see [2, 3,
4, 5, 12, 13, 14]). These equations
have a very important role to play in
efficient inferencing in approximate
reasoning, especially fuzzy control
systems (see [6]). In this work we
present some results connected with
two functional equations describing
the distributivity of fuzzy implica-
tions over representable uninorms.
Toward this end, some new solu-
tions of the additive Cauchy func-
tional equation on the set [−∞,∞]
has been obtained.

Keywords: fuzzy implication, fun-
ctional equations, uninorm.

1 Introduction

Distributivity of fuzzy implications over dif-
ferent fuzzy logic connectives has been stud-
ied in the recent past by many authors. This
interest, perhaps, was kick started by Combs
and Andrews in [6] wherein they exploit the
following classical tautology

(p ∧ q)→ r ≡ (p→ r) ∨ (q → r)

in their inference mechanism towards reduc-
tion in the complexity of fuzzy “If-Then”
rules. Subsequently, there were many discus-
sions in [7, 11], most of them pointing out the

need for a theoretical investigation required
for employing such equations in practice.

It was Trillas and Alsina [14], who were the
first to investigate the generalized version of
the above law for any x, y, z ∈ [0, 1],

I(T (x, y), z) = S(I(x, z), I(y, z)), (1)

where T, S are a t-norm and a t-conorm, re-
spectively, and I is a fuzzy implication. Us-
ing similar techniques as above, Balasubra-
maniam and Rao [5] considered the following
dual equations of (1):

I(S(x, y), z) = T (I(x, z), I(y, z)), (2)
I(x, T1(y, z)) = T2(I(x, y), I(x, z)), (3)
I(x, S1(y, z)) = S2(I(x, y), I(x, z)), (4)

where again T, T1, T2 and S, S1, S2 are t-
norms and t-conorms, respectively and I is
a fuzzy implication. In both papers it was
shown that when I is either an R-implication
obtained from a left-continuous t-norm or an
S-implication, in almost all the cases the dis-
tributivity equations (1)–(4) hold if and only
if T1 = T2 = T = min and S1 = S2 = S =
max. In fact, the equation (4) for the case
when I is an R-implication obtained from a
strict t-norm was left unsolved in [5], but this
situation was considered by the authors in [4],
where we characterized functions I, which sat-
isfy the functional equation (4), when S1, S2

are either both strict or nilpotent t-conorms.

Meanwhile, Baczyński in [2, 3] considered the
functional equation (3), both independently
and along with other equations, and charac-
terized fuzzy implications I in the case when
T1 = T2 is a strict t-norm.
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In this paper we investigate the other possi-
ble generalizations, i.e., we concentrate on the
following two distributive equations

I(x, U1(y, z)) = U2(I(x, y), I(x, z)), (5)
I(U1(x, y), z) = U2(I(x, z), I(y, z)), (6)

by characterizing fuzzy implications I, which
satisfy the above equations, when U1 and U2

are given representable uninorms.

It should be noted that the equation (6) was
studied by Ruiz and Torrens in [12] for the
major part of known classes of uninorms with
continuous underlying t-norm and t-conorm
and for strong implications derived from uni-
norms, while in [13], they also studied (6),
but with the assumption, that I is a residual
implication derived from uninorms.

Finally, we would like to underline, that the
general solutions of the distributive equation

F (x, G(y, z)) = G(F (x, z), F (y, z)),

where F is continuous and G is assumed to be
continuous, strictly increasing and associative
were presented by Aczél (see [1], Theorem 6,
p. 319). Our results can be seen as a general-
ization of the above mentioned result without
any assumptions on the function F and less
assumptions on the function G.

2 Fuzzy logic connectives

We assume that the reader is familiar with
the classical results concerning uninorms, so
we only recall basic definitions and facts which
will be useful in the sequel.
Definition 1 (Fodor et al., [9]). An associa-
tive, commutative and increasing operation
U : [0, 1]2 → [0, 1] is called a uninorm if it has
the neutral element e ∈ [0, 1].

If e = 0 then U is a t-conorm and if e = 1
then U is a t-norm. One can easily observe,
that U(0, 1) = U(1, 0) ∈ {0, 1} for any uni-
norm U . A uninorm U such that U(0, 1) = 0
is called conjunctive and if U(0, 1) = 1 it is
called disjunctive.

Analogously to the representation theorems
for continuous Archimedean t-norms and t-
conorms, we have the following result.

Theorem 2 (Fodor et al. [9], Theorem 3).
For a function U : [0, 1]2 → [0, 1] the following
statements are equivalent:

(i) U is continuous on (0, 1)2 and a strictly
increasing uninorm with the neutral ele-
ment e ∈ (0, 1) such that U is self-dual
with respect to a strong negation N with
the fixed point e.

(ii) There exists a continuous and strictly in-
creasing function h : [0, 1] → [−∞,∞]
with h(0) = −∞, h(e) = 0 and h(1) =∞
such that

U(x, y) = h−1(h(x) + h(y)), (7)

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and
either U(0, 1) = U(1, 0) = 0 or U(0, 1) =
U(1, 0) = 1.

Moreover, the generator h of the uninorm U
is uniquely determined up to a positive multi-
plicative constant.

Uninorms that can be characterized as above
are called representable uninorms.

Example 3. For h(x) = ln
(

x
1−x

)
we get the

following conjunctive and representable uni-
norm with e = 1

2 :

U(x, y) =

0, if (x, y) ∈ {(0, 1), (1, 0)},
xy

(1− x)(1− y) + xy
, otherwise.

Remark 4. One can easily observe, that if a
representable uninorm U is conjunctive, then
the representation (7) is true for all x, y ∈
[0, 1] with the assumption, that

(−∞) +∞ =∞+ (−∞) = −∞. (8)

Similarly, if a representable uninorm U is dis-
junctive, then the representation (7) is true
for all x, y ∈ [0, 1] with the assumption, that

(−∞) +∞ =∞+ (−∞) =∞. (9)

In the literature we can find several diverse
definitions of fuzzy implications. In this ar-
ticle we will use the following one, which is
equivalent to the well accepted definition in-
troduced by Fodor and Roubens (see [8], Def-
inition 1.15).
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Definition 5. A function I : [0, 1]2 → [0, 1]
is called a fuzzy implication if it satisfies the
following conditions:

I is decreasing in the first variable, (I1)
I is increasing in the second variable, (I2)
I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

3 Preliminary results

Our main goal in this paper is to present the
representations of some classes of fuzzy impli-
cations that satisfy equation (5) when U1, U2

are representable uninorms. Within this con-
text, we firstly show, that only some cases are
needed to be investigated.

Lemma 6. Let a function I : [0, 1]2 → [0, 1]
satisfy (I3) and also (5) for some uninorms
U1, U2. Then U1 is conjunctive if and only if
U2 is conjunctive.

Proof. Firstly, substituting x = y = 1 and
z = 0 into (5), we get

I(1, U1(1, 0)) = U2(I(1, 1), I(1, 0)). (10)

Now, if U1 is conjunctive, then U1(1, 0) =
0 and by (I3) we get from (10), I(1, 0) =
U2(1, 0) = 0, i.e., U2 is also a conjunctive uni-
norm.

Instead, if U1 is disjunctive, then U1(1, 0) = 1
and we get from (10), I(1, 1) = U2(1, 0) = 1,
i.e., U2 is a disjunctive uninorm.

On the other side, quite contrastingly, we have
the following fact which is again easier to
prove as above.

Lemma 7. Let a function I : [0, 1]2 → [0, 1]
satisfy (I3) and also (6) for some uninorms
U1, U2. Then U1 is conjunctive if and only if
U2 is disjunctive.

By the above results it is enough, in our con-
text, to consider the functional equation (5)
only when both uninorms U1, U2 are either
representable conjunctive uninorms or repre-
sentable disjunctive uninorms and the func-
tional equation (6) only when either U1 is con-
junctive and U2 is disjunctive, or U1 is dis-
junctive and U2 is conjunctive.

4 Some new results pertaining to
functional equations

Here we show some new results related to the
additive Cauchy functional equation:

f(x + y) = f(x) + f(y). (11)

The presented facts, which are new and cru-
cial in the proofs of the main theorems, can
be seen as the generalizations of the classical
theorems from the theory of functional equa-
tions (see [1], [10]).
Proposition 8. For a function
f : [−∞,∞] → [−∞,∞] the following
statements are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (8).

(ii) Either f = −∞, or f = 0, or f =∞, or

f(x) =

{
0, if x ∈ (−∞,∞],
−∞, if x = −∞,

(12)

or

f(x) =

{
0, if x ∈ (−∞,∞],
∞, if x = −∞,

(13)

or

f(x) =

{
∞, if x ∈ (−∞,∞],
−∞, if x = −∞,

(14)

or

f(x) =

{
∞, if x ∈ R,

−∞, if x ∈ {−∞,∞}, (15)

or there exists a unique additive function
g : R→ R such that

f(x) =

{
−∞, if x ∈ {−∞,∞},
g(x), if x ∈ R,

(16)

or

f(x) =

{
∞, if x ∈ {−∞,∞},
g(x), if x ∈ R,

(17)

or

f(x) =


−∞, if x = −∞,

g(x), if x ∈ R,

∞, if x =∞.

(18)
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Proof. (ii) =⇒ (i) It is a direct calculation
that all the above functions satisfy the equa-
tion (11) with the assumption (8).

(i) =⇒ (ii) Let f : [−∞,∞] → [−∞,∞] sat-
isfy (11) for all x, y ∈ [−∞,∞] with the as-
sumption (8). Firstly, observe that the situ-
ation when f(−∞) = ∞ and f(∞) = −∞ is
not possible now. Indeed, if we assume the
above, we get

∞ = f(−∞) = f((−∞) +∞)
= f(−∞) + f(∞) =∞+ (−∞) = −∞,

a contradiction.

Setting x = y = −∞ in (11) we get f(−∞) =
f(−∞) + f(−∞). Therefore f(−∞) = −∞,
or f(−∞) = 0, or f(−∞) = ∞. If f(−∞) =
0, then for any x ∈ [−∞,∞] we have

0 = f(−∞) = f((−∞) + x)
= f(−∞) + f(x) = 0 + f(x) = f(x),

thus we obtain the solution f = 0.

Setting x = y = ∞ in (11) we get f(∞) =
f(∞) + f(∞). Therefore f(∞) = −∞, or
f(∞) = 0, or f(∞) = ∞. If f(∞) = 0, then
for any x ∈ (−∞,∞] we have

0 = f(∞) = f(∞+ x)
= f(∞) + f(x) = 0 + f(x) = f(x),

thus considering the other possible values for
−∞ we get two possible solutions (12) or (13).

Setting x = y = 0 in (11) we get f(0) =
f(0) + f(0), so f(0) = −∞, or f(0) = 0, or
f(0) = ∞. If f(0) = −∞, then for any x ∈
[−∞,∞] we get

f(x) = f(x + 0) = f(x) + f(0)
= f(x) + (−∞) = −∞,

thus we obtain the solution f = −∞. If
f(0) =∞, then for any x ∈ [−∞,∞] we get

f(x) = f(x + 0) = f(x) + f(0)
= f(x) +∞,

so for every fixed x ∈ [−∞,∞] we get that
either f(x) = −∞ or f(x) = ∞. On the
other side, for all x ∈ R we have

∞ = f(0) = f(x + (−x)) = f(x) + f(−x),

hence, by our assumption (8) we obtain, that
f(x) = ∞ for all x ∈ R. By the first step
of our proof we get the next three possible
solutions: f =∞, or (15), or (14).

Let us assume now that f(0) = 0. See that
for x ∈ R we have

0 = f(0) = f(x + (−x)) = f(x) + f(−x),

so f(x) ∈ R for every x ∈ R. Therefore there
exists a unique additive function g : R → R
such that f(x) = g(x) for x ∈ R. Taking again
into account the previous steps of our proof we
obtain the last three possible solutions, i.e., f
has the form either (16), or (17), or (18).

By the well known solutions of the additive
Cauchy functional equation for real numbers
(see [1] or [10], Theorem 5.2.1) we get
Corollary 9. For a continuous function
f : [−∞,∞] → [−∞,∞] the following state-
ments are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (8).

(ii) Either f = −∞, or f = 0, or f =∞, or
there exists a unique constant c ∈ (0,∞)
such that

f(x) = cx, (19)

for all x ∈ [−∞,∞].

Using similar techniques as above we can
prove the next results.
Proposition 10. For a function
f : [−∞,∞] → [−∞,∞] the following
statements are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (9).

(ii) Either f = −∞, or f = 0, or f =∞, or

f(x) =

{
0, if x ∈ [−∞,∞),
−∞, if x =∞,

(20)

or

f(x) =

{
0, if x ∈ [−∞,∞),
∞, if x =∞,

(21)
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or

f(x) =

{
−∞, if x ∈ [−∞,∞),
∞, if x =∞,

(22)

or

f(x) =

{
−∞, if x ∈ R,

∞, if x ∈ {−∞,∞}, (23)

or there exists a unique additive function
g : R→ R such that f has the form (16),
or (17), or (18).

Corollary 11. For a continuous function
f : [−∞,∞] → [−∞,∞] the following state-
ments are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (9).

(ii) Either f = −∞, or f = 0, or f =∞, or
there exists a unique constant c ∈ (0,∞)
such that f has the representation (19)
for all x ∈ [−∞,∞].

Proposition 12. Let X = Y = [−∞,∞].
For a function f : X → Y the following state-
ments are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (8) in the set X and
the assumption (9) in the set Y .

(ii) Either f = −∞, or f = 0, or f =∞, or
f has the form (12), or (13), or

f(x) =

{
−∞, if x ∈ (−∞,∞],
∞, if x = −∞,

(24)

or

f(x) =

{
−∞, if x ∈ R,

∞, if x ∈ {−∞,∞}, (25)

or there exists a unique additive function
g : R→ R such that f has the form (16),
or (17), or

f(x) =


∞, if x = −∞,

g(x), if x ∈ R,

−∞, if x =∞.

(26)

Corollary 13. Let X = Y = [−∞,∞]. For a
continuous function f : X → Y the following
statements are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (8) in the set X and
the assumption (9) in the set Y .

(ii) Either f = −∞, or f = 0, or f = ∞,
or there exists a unique constant c ∈
(−∞, 0) such that f has the representa-
tion (19) for all x ∈ [−∞,∞].

Proposition 14. Let X = Y = [−∞,∞].
For a function f : X → Y the following state-
ments are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (9) in the set X and
the assumption (8) in the set Y .

(ii) Either f = −∞, or f = 0, or f = ∞,
or f has the form (20) or (21), or there
exists a unique additive function g : R→
R such that f has the form (16), or (17),
or (26).

Corollary 15. Let X = Y = [−∞,∞]. For a
continuous function f : X → Y the following
statements are equivalent:

(i) f satisfies the additive Cauchy functional
equation (11) for all x, y ∈ [−∞,∞],
with the assumption (9) in the set X and
the assumption (8) in the set Y .

(ii) Either f = −∞, or f = 0, or f = ∞,
or there exists a unique constant c ∈
(−∞, 0) such that f has the representa-
tion (19) for all x ∈ [−∞,∞].

5 On the Equation (5) when U1, U2

are representable conjunctive
uninorms

Due to the page limit, we only show some
main results for the first equation (5) when
U1, U2 are both representable conjunctive uni-
norms. It should be noted, that using the re-
sults from the previous section, we are able

1322 Proceedings of IPMU’08



to obtain description of the solutions I of the
equations (5) and (6) for all the cases pre-
sented in Section 3.

Theorem 16. For representable, conjunctive
uninorms U1, U2 with the neutral elements
e1, e2 ∈ (0, 1) and a function I : [0, 1]2 → [0, 1]
the following statements are equivalent:

(i) The triple of functions U1, U2, I satis-
fies the functional equation (5) for all
x, y, z ∈ [0, 1].

(ii) There exist continuous, strictly increas-
ing functions h1, h2 : [0, 1] → [−∞,∞]
with h1(0) = h2(0) = −∞, h1(e1) =
h2(e2) = 0 and h1(1) = h2(1) = ∞,
which are uniquely determined up to pos-
itive multiplicative constants, such that
U1, U2 admit the representation (7) for
all x, y ∈ [0, 1] with the assumption (8)
and h1, h2, respectively, and for every
fixed x ∈ [0, 1], the vertical section I(x, ·)
has, for all y ∈ [0, 1], one of the following
forms:

I(x, y) = 0,

I(x, y) = e2,

I(x, y) = 1,

I(x, y) =

{
0, if y = 0,

e2, if y ∈ (0, 1],

I(x, y) =

{
1, if y = 0,

e2, if y ∈ (0, 1],

I(x, y) =

{
0, if y = 0,

1, if y ∈ (0, 1],

I(x, y) =

{
0, if y = 0 or y = 1,

1, if y ∈ (0, 1),

I(x, y) =

{
0, if y ∈ {0, 1},
h−1

2 (gx(h1(y))) , if y ∈ (0, 1),

I(x, y) =

{
1, if y ∈ {0, 1},
h−1

2 (gx(h1(y))) , if y ∈ (0, 1),

I(x, y) =


0, if y = 0,

h−1
2 (gx(h1(y))) , if y ∈ (0, 1),

1, if y = 1,

with an additive function gx : R → R,

which depends on constants for h1 and
h2.

Proof. (ii) =⇒ (i) The proof in this direction
can be easily checked.

(i) =⇒ (ii) Let us assume that uninorms
U1, U2 and a function I are the solutions of
the functional equation (5) satisfying the re-
quired properties. By the definition of a rep-
resentable uninorm and Remark 4 the uni-
norms U1 and U2 admit the representation (7)
for some continuous, strictly increasing func-
tions h1, h2 : [0, 1] → [−∞,∞] with h1(0) =
h2(0) = −∞, h1(e1) = h2(e2) = 0 and
h1(1) = h2(1) = ∞. Moreover, both gen-
erators are uniquely determined up to posi-
tive multiplicative constants. Now the equa-
tion (4) becomes,

I(x,h−1
1 (h1(y) + h1(z)))

= h−1
2 (h2(I(x, y)) + h2(I(x, z))),

for all x, y, z ∈ [0, 1] . Let x ∈ [0, 1] be arbi-
trary but fixed. Define a function Ix : [0, 1]→
[0, 1] by the formula

Ix(y) = I(x, y), y ∈ [0, 1].

By routine substitutions, hx = h2 ◦ Ix ◦ h−1
1 ,

u = h1(y), v = h1(z), for y, z ∈ [0, 1], we ob-
tain the additive Cauchy functional equation

hx(u + v) = hx(u) + hx(v), u, v ∈ [−∞,∞],

where hx : [−∞,∞] → [−∞,∞], with the as-
sumption (8). Proposition 8 describes all so-
lutions hx. Because of the definition of the
function hx we get all our formulas.

We show that in the last three cases the ad-
ditive function g depends on constants for h1

and h2. Let h′1(y) = a · h1(y) and h′2(y) = b ·
h2(y) for all y ∈ (0, 1) and some a, b ∈ (0,∞).
If we assume that

h−1
2 (gx(h1(y))) = h′−1

2

(
g′x(h′1(y))

)
,

for all y ∈ (0, 1) and with some additive func-
tions gx and g′x, then we get

h−1
2 (gx(h1(y))) = h−1

2

(
g′x(h′1(y))

b

)
,
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so

gx(h1(y)) =
g′x(a · h1(y))

b
,

thus, for every u ∈ R we obtain

g′x(u) = b · gx

(u

a

)
.

Example 17. If U1 and U2 are representable
conjunctive uninorms, then the greatest solu-
tion which is a fuzzy implication is the great-
est fuzzy implication:

I1(x, y) =

{
0, if x = 1 and y = 0,

1, otherwise.

The vertical sections are the following: for x ∈
[0, 1) this is the third solution and for x = 1
this is the sixth solution in Theorem 16.

From the previous results we are in a position
to describe the continuous solutions I of (5).

Theorem 18. Let U1, U2 be representable
conjunctive uninorms with the neutral ele-
ments e1, e2 ∈ (0, 1). For a continuous func-
tion I : [0, 1]2 → [0, 1] the following state-
ments are equivalent:

(i) The triple of functions U1, U2, I satis-
fies the functional equation (5) for all
x, y, z ∈ [0, 1].

(ii) There exist continuous, strictly increas-
ing functions h1, h2 : [0, 1] → [−∞,∞]
with h1(0) = h2(0) = −∞, h1(e1) =
h2(e2) = 0 and h1(1) = h2(1) = ∞,
which are uniquely determined up to pos-
itive multiplicative constants, such that
U1, U2 admit the representation (7) for
all x, y ∈ [0, 1] with the assumption (8)
and h1, h2, respectively, and either I =
0, or I = e2, or I = 1, or there ex-
ists a continuous function c : [0, 1] →
(0,∞), uniquely determined up to a posi-
tive multiplicative constant depending on
constants for h1 and h2, such that I has
the following form

I(x, y) = h−1
2 (c(x) · h1(y)) , (27)

for all x, y ∈ [0, 1].

Since the equation (5) is the generalization of
a tautology from the classical logic involving
boolean implication, it is reasonable to expect
that the solution I of (5) is also a fuzzy im-
plication. But from Theorem 18 we get

Corollary 19. If U1, U2 are representable
conjunctive uninorms, then there are no con-
tinuous solutions I of (5) which satisfy (I3).

Proof. Let a continuous function I satisfy (I3)
and (5) with some representable conjunctive
t-conorms U1, U2 with continuous additive
generators h1, h2, respectively. Then I has to
have the form (27) with a continuous function
c : [0, 1]→ (0,∞), but in this case we get

I(0, 0) = h−1
2 (c(0) · h1(0))

= h−1
2 (c(0) · (−∞))

= h−1
2 (−∞) = 0,

so I does not satisfy the first condition in (I3).

From Corollary 19 it is obvious that in our
situation we need to look for solutions which
are not continuous at the point (0, 0). This
case has also been investigated by us and the
function I has the following form:

I(x, y) =

{
1, if x = y = 0,

h−1
2 (c(x) · h1(y)) , otherwise,

where c : [0, 1] → (0,∞] is a continuous de-
creasing function, with c(x) <∞ for x ∈ (0, 1]
and c(0) =∞.

Example 20. One specific example is the
function c(x) = 1

x defined for all x ∈ [0, 1],
with the assumption that 1

0 = ∞. For ex-
ample, when we consider the conjunctive rep-
resentable uninorm given in Example 3, then
one fuzzy implication which satisfies (5) with
this U has the following form:

I(x, y) =


1, if x, y ∈ {(0, 0), (0, 1), (1, 1)},

( y
1−y

)
1
x

1+( y
1−y

)
1
x
, otherwise.
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6 Summary

In this paper we have investigated the dis-
tributivity of fuzzy implications over repre-
sentable uninorms. To obtain all solutions,
we have firstly shown, in Section 3, that some
cases are not possible in our context. Next,
in Section 4, we have obtained new results
dealing with the additive Cauchy functional
equation (11), when the domain and range of
the function f is equal to [−∞,∞]. Finally,
in Section 5, we have presented some solutions
of the equation (5), when U1 and U2 are both
representable conjunctive uninorms.

From our proof of Theorem 16, one can ob-
serve that for the equation (5) and the situa-
tion when U1 and U2 are both representable
disjunctive uninorms we will be using Propo-
sition 10. Further, for the equation (6) when
U1 is a representable conjunctive uninorm and
U2 is a representable disjunctive uninorm we
will use Proposition 12, while for the equation
(6) when U1 is a representable disjunctive uni-
norm and U2 is a representable conjunctive
uninorm we shall use Proposition 14.
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