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Abstract

The law of importation for fuzzy im-
plications is studied and it is solved
for S, R, QL and D-implications
derived from uninorms. Along
this study many new solutions of
this property appears different from
those already known for implications
derived from t-norms and t-conorms.
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1 Introduction

It is well known that fuzzy implication func-
tions play an essential role in fuzzy logic and
approximate reasoning, as well as in most of
fields where this theory is applied (see the re-
cent survey [15]). Many properties of these
implications have been extensively studied by
several authors along the time. One of them
is the so-called law of importation,

(p ∧ q)→ r ≡ p→ (q → r),

or equivalently in the context of fuzzy logic

I(T (x, y), z) = I(x, I(y, z)) (1)

for all x, y ∈ [0, 1], with T a t-norm and I a
fuzzy implication.

Due to the commutativity of T , the law of
importation directly implies that the corre-
sponding implication must satisfy also the ex-
change principle that is a crucial property for
fuzzy implications. Moreover, some possible

applications of the law of importation were
also pointed out in [2].

Although their interest only few results about
it are known in the literature. Specifically, a
particular case (taking T as the product) was
initially studied in [19] where it was proposed
as an axiom for the definition of implication.
In [1], it was studied jointly with the distribu-
tive law

I(x, T (y, z)) ≡ T (I(x, y), I(x, z))

and those implications satisfying both prop-
erties were characterized. Recently, in [2] the
law of importation was studied in detail for
some kinds of implications including S, R and
QL-implications derived from t-norms and t-
conorms.

In this paper we want to extend such a study
to implications derived from uninorms and we
will prove that new solutions appear in this
context. In fact, we want to solve the equation

I(Uc(x, y), z) = I(x, I(y, z)) (2)

for all x, y, z ∈ [0, 1] where Uc is a conjunctive
uninorm and I is an implication function de-
rived from a uninorm U by one of the methods
stated in the preliminaries.

2 Preliminaries

We will suppose the reader to be familiar
with the theory of t-norms and t-conorms (see
[11]). We also assume that some basic facts
about uninorms and their different classes are
known (see for instance [6]). We recall here
only some facts on their derived implications.
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Definition 1 A binary operator I : [0, 1] ×
[0, 1] → [0, 1] is said to be an implication op-
erator, or an implication, if it satisfies:

I1) I is decreasing in the first variable and
increasing in the second one.

I2) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that
I(0, x) = 1 and I(x, 1) = 1 for all x ∈ [0, 1]
whereas the symmetrical values I(x, 0) and
I(1, x) are not derived from the definition.

Let U,Ud, Uc, and N denote an arbitrary uni-
norm, a disjunctive uninorm, a conjunctive
uninorm and a strong negation, respectively.
The four most usual ways to define implica-
tion functions from uninorms are:

i) S-implications defined by

IUd,N (x, y) = Ud(N(x), y) (3)

for all x, y ∈ [0, 1].

ii) R-implications defined by

IU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y}
(4)

for all x, y ∈ [0, 1].

iii) QL-implications defined by

IQL(x, y) = Ud(N(x), Uc(x, y)) (5)

for all x, y ∈ [0, 1].

iv) D-implications, that are the contraposi-
tion with respect to the strong negation
N of QL-implications, and are given by

ID(x, y) = Ud(Uc(N(x), N(y)), y) (6)

for all x, y ∈ [0, 1].

It is clear that S-implications IUd,N are always
implications, whereas R-implications IU are
implications if and only if U(0, x) = 0 for all
x < 1 (see [4]). With respect to IQL and ID
the results are more complicated and they can
be found for instance in [14]. We will recall
along the text the necessary details on these
kinds of implications.

Obviously, S, R, QL and D-implications
can be obtained also from t-norms and t-
conorms. With respect to S-implications and
R-implications derived from t-norms the fol-
lowing results on the law of importation are
known (see [2]).

Theorem 1 An S-implication derived from a
strong negation N and a t-conorm S satisfies
the law of importation with a t-norm T if and
only if T is the N-dual t-norm of S.

Theorem 2 An R-implication derived from a
left-continuous t-norm T satisfies the law of
importation with a t-norm T1 if and only if
T = T1.

For the case of QL-implications only some
partial results on the law of importation are
known (see [2]). Before we give them we
need some notations. Recall that any strong
negation is isomorphic to the standard one
x → 1 − x (see [18]) and thus, it must be
given by

Nϕ(x) = ϕ−1(1− ϕ(x)) for all x ∈ [0, 1]

where ϕ : [0, 1]→ [0, 1] is an increasing bijec-
tion.

Given a binary operation S : [0, 1]2 → [0, 1],
we will denote also by Sϕ the ϕ-conjugate of
S, that is,

Sϕ(x, y) = ϕ−1(S(ϕ(x), ϕ(y)))

for all x, y ∈ [0, 1]. With these notations,
when S is a continuous t-conorm, a necessary
condition for the operation IQL to be an im-
plication is that there must exist an increasing
bijection ϕ such that S = W ∗ϕ, where W ∗ is
the  Lukasiewicz t-conorm, and N ≥ Nϕ (see
[13]). In the special case when N = Nϕ the
following results on the law of importation are
known (see [2]).

Theorem 3 Let ϕ : [0, 1] → [0, 1] be an in-
creasing bijection, S = W ∗ϕ, N = Nϕ and
T a t-norm. If T is the minimum or the ϕ-
conjugate of the product or of the  Lukasiewicz
t-norm, the corresponding IQL is always a
QL-implication and,
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i) If T is the ϕ-conjugate of the  Lukasiewicz
t-norm, then IQL satisfies the law of im-
portation with a t-norm T ′ if and only if
T ′ is the minimum t-norm.

ii) If T is the ϕ-conjugate of the product t-
norm, then IQL satisfies the law of im-
portation with a t-norm T ′ if and only if
T ′ = T .

iii) If T is the minimum t-norm, then IQL

satisfies the law of importation with a
t-norm T ′ if and only if T ′ is the ϕ-
conjugate of the  Lukasiewicz t-norm.

The law of importation for D-implications de-
rived from t-norms and t-conorms has not
been studied yet, but it is similar to the case
of QL-implications and it will be included in
this paper in the corresponding section before
studying the general case of D-implications
derived from uninorms.

3 Main results

Our main goal in this paper is to solve the
law of importation (equation (2)) where I is
an implication derived from some uninorms
and Uc is a conjunctive uninorm. We divide
our study in several subsections one for each
kind of implication that we want to deal with.
That is, S-implications, R-implications, QL-
implications and D-implications derived from
uninorms.

3.1 S-implications

In this section we deal with equation (2)
where I = IU,N is an S-implication derived
from a strong negation N and a disjunctive
uninorm U . This case has a trivial solution
identical to the case of S-implications derived
from t-conorms (see Theorem 1).

Before we state the result, let us recall that
given any strong negation N , the N -dual of a
uninorm U is also a uninorm UN , given by

UN (x, y) = N(U(N(x), N(y)))

for all x, y ∈ [0, 1]. It is well known and clear
from the equation above that the N -dual of a

conjunctive uninorm is a disjunctive one and
vice versa. Then we have the following result.

Theorem 4 Let Ud be a disjunctive uninorm,
N a strong negation and IUd,N its associated
S-implication. Then IUd,N satisfies (2) for a
conjunctive uninorm Uc if and only if Uc is
the N -dual of Ud.

3.2 R-implications

In this section we deal with equation (2)
where I = IU is an R-implication derived from
a uninorm U with neutral element e ∈]0, 1[.
Recall that in this case the uninorm U must
satisfy U(x, 0) = 0 for all x < 1. In the case
that U is left-continuous, the situation is sim-
ilar to the case of R-implications derived from
t-norms and we have the following result.

Theorem 5 Let U be a left-continuous con-
junctive uninorm1 and IU its associated R-
implication. Then IU satisfies (2) with a con-
junctive uninorm Uc if and only if Uc = U .

Note that IU satisfies the residuation prop-
erty:

U(x, y) ≤ z ⇐⇒ y ≤ IU (x, z)

if and only if U is precisely left-continuous
and conjunctive (see [8]). However, among
the known classes of uninorms from which
R-implications can be derived, there are a
lot of non-left-continuous uninorms. In the
case when U is not left-continuous we will see
that the corresponding IU can satisfy (2) with
the same U or not. Specifically, we will see
that there are non-left-continuous uninorms
U such that IU satisfies (2) with the same
uninorm U , and others such that IU satisfies
it with another conjunctive uninorm. We do
this by discussing the situation depending on
the class of the uninorm U .

3.2.1 U is a representable uninorm

Any representable uninorm U with neutral el-
ement e and additive generator h will be rep-
resented by U = 〈h, e〉rep. But with the same

1If U is left continuous and U(x, 0) = 0 for all x < 1
then necessarily U(1, 0) = 0 and U is conjunctive.
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e and h there are two different representable
uninorms, one conjunctive and the other dis-
junctive. To distinguish between them we will
denote by 〈h, e,∧〉rep the conjunctive version
and by 〈h, e,∨〉rep the disjunctive one.

Now, it is easy to prove the following result
using Theorem 5.

Theorem 6 Let Uc be a conjunctive uni-
norm, U = 〈h, e〉rep a representable uninorm
and IU its R-implication. Then IU satisfies
the law of importation with Uc if and only if
Uc coincides with 〈h, e,∧〉rep (the conjunctive
version of U).

Note that from the previous theorem we have
examples of not left-continuous uninorms for
which the corresponding IU satisfies (2) with
a uninorm Uc different from the same U (just
take any disjunctive representable uninorm).
However, given U = 〈h, e〉rep, there is only a
uninorm Uc for which IU satisfies (2) with Uc.

3.2.2 U is an idempotent uninorm

Let e ∈]0, 1[ and let g : [0, 1] → [0, 1] be a
decreasing function with g(e) = e such that
g(x) = 0 for all x > g(0), g(x) = 1 for all
x < g(1) and

inf{y | g(y) = g(x)} ≤ g2(x) ≤

sup{y | g(y) = g(x)}
for all x ∈ [0, 1]. An idempotent uninorm with
neutral element e and associated function g
will be denoted by U = 〈g, e〉ide and it is given
by U(x, y) =

min(x, y) if y < g(x) or(
y = g(x) and x < g2(x)

)
max(x, y) if y > g(x) or(

y = g(x) and x > g2(x)
)

min(x, y)
or if y = g(x) and x = g2(x)
max(x, y)

being commutative in the points (x, g(x))
with g2(x) = x (see [12]). For details on this
kind of uninorms see [3] and [12], and see also
[4] and [16] for details on their R-implications.

Note however that there can be a lot of dif-
ferent idempotent uninorms with the same e
and g, because the values on points (x, g(x))
with g2(x) = x can vary. Recall also that
R-implications can be obtained from idempo-
tent uninorms if and only if g(0) = 1 and thus,
along this section, we will suppose that U sat-
isfies this condition.

Let us begin studying equation (2) in the par-
ticular case when Uc = U .

Proposition 1 Let U = 〈g, e〉ide be an con-
junctive idempotent uninorm and IU its resid-
ual implication. Then IU satisfies the law of
importation with the same U if and only if U
satisfies the following condition:

U(x, g(x)) = min(x, g(x)) when g2(x) = x.

That is, U must be given by U(x, y) =
max(x, y) if y > g(x) or(

y = g(x) and x > g2(x)
)

min(x, y) otherwise.

(7)

In particular, all left-continuous idempotent
uninorms satisfy the condition in the propo-
sition above since for them U(x, g(x)) =
min(x, g(x)) for all x ∈ [0, 1]. However, note
again that there are non-left-continuous con-
junctive uninorms satisfying the condition in
the proposition above. It suffices to take an
idempotent uninorm in Umin for which the as-
sociated function g is given by

g(x) =

{
1 if x < e

e if x ≥ e.

With respect to the general case we have the
following results.

Proposition 2 Let U = 〈g, e〉ide be an idem-
potent uninorm and IU its residual implica-
tion. If IU satisfies the law of importation
with a conjunctive uninorm Uc then Uc must
be idempotent, say Uc = 〈gc, ec〉ide and ec = e
and gc = g.

Theorem 7 Let U = 〈g, e〉ide be an idempo-
tent uninorm and IU its residual implication.
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Then IU satisfies (2) with a conjunctive uni-
norm Uc if and only if Uc is also idempotent,
say Uc = 〈gc, ec〉ide with ec = e, gc = g, and
Uc is given by equation (7).

Note that from the theorem above, given
a conjunctive idempotent uninorm Uc =
〈gc, ec〉ide with g(0) = 1, all idempotent uni-
norms U with the same neutral element ec
and the same associated function gc have the
same residual implication IU , and this impli-
cation satisfies the law of importation with
Uc. Note that when U is left-continuous, nec-
essarily g2(x) ≥ x for all x ∈ [0, 1] (see [3])
and consequently the only Uc such that IU
satisfies the law of importation with Uc is the
left-continuous one, that is, the proper uni-
norm U .

3.2.3 U is a uninorm in Umin

It is well known that a uninorm U in Umin

is totally determined by its underlying t-
norm and t-conorm. In fact, it is given by
U(x, y) = min(x, y) for all x, y ∈ [0, 1] such
that min(x, y) < e < max(x, y) (see [7] for
details on this kind of uninorms). We will de-
note a uninorm U in Umin by U = 〈T, e, S〉min.
Note that in this case all considered uninorms
are in fact non-left-continuous but we will ob-
tain again solutions of the law of importation.

In what follows we will suppose that the un-
derlying t-norm T and t-conorm S of the uni-
norm U in Umin are left-continuous.

Proposition 3 Let U be a uninorm in Umin

and IU its residual implication. Then IU al-
ways satisfies the law of importation with the
same U .

In fact there are no other solutions when U is
in Umin but the proof of this fact is not trivial
and it needs a previous result.

Proposition 4 Let U be a uninorm in Umin

and IU its residual implication. If IU satis-
fies the law of importation with a conjunctive
uninorm Uc then Uc must be also in Umin, say
Uc = 〈Tc, ec, Sc〉min, and moreover, ec = e.

Now, it can be proved that, when IU satisfies
the law of importation with Uc, not only Uc

must be in Umin with ec = e, but also the un-
derlying t-norm and t-conorm of Uc must co-
incide with those of U . From these results the
final characterization can be easily derived.

Theorem 8 Let U be a uninorm in Umin with
continuous underlying t-conorm and IU its
residual implication. Then IU satisfies the law
of importation with a conjunctive uninorm Uc

if and only if Uc = U .

3.2.4 U is a uninorm continuous at
]0, 1[2

This kind of uninorms can be divided in
two groups that we will denote by Ucos,min

and Ucos,max and whose structures can be
viewed in figures 1 and 2, respectively
(more details on these uninorms can be
found in [9]). From these structures, uni-
norms U in Ucos,min will be denoted by
U = 〈T1, α, T2, β, (R, e)〉cos,min and those in
Ucos,max by U = 〈(R, e), γ, S1, δ, S2〉cos,max.

min

min

T1

T2

UR

0

e

β

α

1

0 eβ 1

1

1

α

t

t

Figure 1: A uninorm U =
〈T1, α, T2, β, (R, e)〉cos,min in Ucos,min

An R-implication can be derived from any
uninorm in Ucos,min and with techniques sim-
ilar to those used for representable uninorms
and uninorms in Umin the following result can
be obtained.

Theorem 9 Let U =
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max

max

S1

S2

UR

0

e

γ

δ

1

0 e γ δ 1

0

0

t

t

Figure 2: A uninorm U =
〈(R, e), γ, S1, δ, S2〉cos,max in Ucos,max

〈T1, α, T2, β, (R, e)〉cos,min be a uninorm
in Ucos,min and IU its residual implication.
Then IU satisfies the law of importation
with a conjunctive uninorm Uc if and only if
Uc(α, 1) = Uc(1, α) = α and Uc = U except
maybe in these points.

With respect to uninorms in Ucos,max, R-
implications can be derived from them if
and only if δ = 1 (see [17]). We will de-
note a uninorm in this subclass by U =
〈(R, e), γ, S, 1〉cos,max. In this case there are
no new solutions of the law of importation as
it follows from the following theorem.

Theorem 10 Let U be a uninorm in Ucos,max

with δ = 1, say U = 〈(R, e), γ, S, 1〉cos,max.
Let IU be its residual implication, then IU
satisfies the law of importation with a con-
junctive uninorm Uc if and only if γ = 1
(that is, U is representable, say 〈h, e〉rep) and
Uc = 〈h, e,∧〉rep.

3.3 QL-implications

In this section we deal with those binary op-
erations obtained by

IQL(x, y) = Ud(N(x), Uc(x, y)) (8)

for all x, y ∈ [0, 1], where Ud is a disjunctive
uninorm, N is a strong negation and Uc is a
conjunctive uninorm, that will be called QL-
operators (from uninorms). It is proved in
[14] the following necessary condition for IQL

to be an implication: Ud must be a t-conorm,
say S, such that

S(x,N(x)) = 1 for all x ∈ [0, 1]. (9)

Although this condition is not sufficient (see
[14]), it is enough to easily derive the following
result with respect to the law of importation.

Proposition 5 Let S be a t-conorm satis-
fying (9), U a conjunctive uninorm and N
a strong negation. If the corresponding QL-
operator satisfies the law of importation with
a conjunctive uninorm Uc, then Uc and U are
both t-norms.

Thus, from the proposition above we obtain
that in this case there are no new solutions of
the law of importation different from those
already known for QL-implications derived
from t-norms and t-conorms (see [2] or also
Theorem 3).

3.4 D-implications

In this section we want to study the case of
D-implications, that is, those given by equa-
tion (6). We do this in two steps, one de-
voted to D-implications derived from t-norms
and t-conorms, and the other devoted to D-
implications derived from uninorms. Before
we recall some general results.

Operations obtained by

ID(x, y) = Ud(U(N(x), N(y)), y) (10)

for all x, y ∈ [0, 1], where Ud is a disjunc-
tive uninorm, N is a strong negation and U
is a conjunctive uninorm, will be called D-
operators (from uninorms). In order for ID
to be an implication, it is proved in [14] that
necessarily Ud must be a t-conorm S satis-
fying (9). In the case that S is continu-
ous then it must exist an increasing bijection
ϕ : [0, 1] → [0, 1] such that S = W ∗ϕ and
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N ≥ Nϕ. Again this condition is not suf-
ficient and the situation is different depend-
ing on the fact that U is a t-norm or a con-
junctive uninorm. However, as it is done for
QL-implications, note that for D-implications
we will deal only with the special case when
N = Nϕ, as much for t-norms as for uninorms.

3.4.1 D-implications from t-norms

In this case we have operations of the form

ID(x, y) = W ∗ϕ(T (Nϕ(x), Nϕ(y)), y)

for all x, y ∈ [0, 1], where T is a t-norm. This
is equivalent to say (see [13]) that

Iϕ,T (x, y) = ϕ−1(ϕ(T (Nϕ(x), Nϕ(y)))+ϕ(y)).
(11)

Now some partial results can be derived as
in the case of QL-implications. In fact, when
T is the minimum or the ϕ-conjugate of the
product or of the  Lukasiewicz t-norm, it is
easy to see, from equation (11), that D-
implications derived from T coincide with the
corresponding QL-implications derived from
T . Consequently the same Theorem 3 applies
for D-implications.

3.4.2 D-implications from uninorms

We can begin with a general result for D-
operators.

Proposition 6 Let S be a t-conorm satis-
fying (9), U a conjunctive uninorm and N
a strong negation. If the corresponding D-
operator satisfies the law of importation with
a conjunctive uninorm Uc, then Uc must be a
t-norm.

Now, we will study the case when Ud = W ∗ϕ
and N = Nϕ for an an increasing bijection
ϕ : [0, 1] → [0, 1]. That is, D-operators given
by Iϕ,U (x, y) =

ϕ−1(min(ϕ(U(Nϕ(x), Nϕ(y))) + ϕ(y)), 1).
(12)

where U is a conjunctive uninorm. It is proved
in [14] that, among the known classes of uni-
norms, only a special kind of uninorms in Umin

satisfy that the corresponding Uϕ,U is a D-
implication. Moreover, in this case these D-
implications are given by Iϕ,U (x, y) =

1 if x ≤ Nϕ(e)
ϕ−1(1− ϕ(x) + ϕ(y)) if y ≤ Nϕ(e) < x

B(x, y) if x, y ≥ Nϕ(e)
(13)

where B(x, y) =

ϕ−1

(
ϕ

(
eTU

(
Nϕ(x)
e

,
Nϕ(y)
e

))
+ ϕ(y)

)
where TU is the underlying t-norm of U .

For this kind of operations we have the fol-
lowing result.

Proposition 7 Let ϕ : [0, 1] → [0, 1] be an
increasing bijection and U a uninorm in Umin

such that the corresponding D-operator Iϕ,U

given by (13) is a D-implication. If Iϕ,U satis-
fies the law of importation with a conjunctive
uninorm Uc then both Uc and U are t-norms.

That is, for the case of D-implications de-
rived from uninorms, no new solutions ap-
pear different from those already known for
D-implications derived from t-norms.
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