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Abstract 

This paper presents a type-2 genetic 
fuzzy inference system based on fuzzy 
c-regression method clustering 
algorithm, to identify uncertainties in 
hyperplane shaped fuzzy clusters. The 
uncertainty in learning parameters of 
the new system is identified by type-2 
fuzzy sets. Genetic algorithm is used to 
optimize the secondary membership 
grades of the type-2 fuzzy sets. 
Transductive reasoning, instead of 
inductive reasoning, is used to develop 
a local model for every new vector, 
based on some closest vectors from the 
given database. This study is novel 
because it presents a new methodology 
to identify type-2 fuzzy sets. The 
results of comparative experiments on 
financial forecasting problem domain 
are encouraging.  

Keywords: type-2 fuzzy sets, fuzzy c-
regression. 

1     Genetic Type-2 Fuzzy Regression 
Method based on Transductive Reasoning 

The concept of type-2 fuzzy set (T2FS) was 
introduced by Zadeh [1] as an extension of type-
1 fuzzy set (ordinary fuzzy sets) to identify the 
uncertainties present in fuzzy systems. With 
fuzzy sets of higher type (e.g. type-2), the 
fuzziness of the relations is increased to handle 
inexact information. 

A T2FS is identified by a fuzzy membership 
function (MF) – secondary MF, i.e., 
membership value. Each data point of this set is 
a fuzzy set between [0,1] unlike type-1 fuzzy 
sets, where the membership values are crisp 
numbers. T2FSs are useful in situations, where it 

is difficult or uncertain to determine the exact 
MF of a fuzzy set, primary MFs, viz., they are 
useful for incorporating uncertainties [2], [3], 
[4]. Interval T2FS are simplified forms of T2FS, 
where the secondary MFs are unified, e.g., equal 
to 1. Interval T2FS identify footprint-of-
uncertainty (FOU) as depicted in Figure 1.  

 

Figure 1: MFs where base-end-points have 
uncertainty intervals. The insert represents 

secondary MF of x′. 

 

FOU of a T2FS A% is the uncertainty region (2D-
region) specified by lower and upper MFs, 
LMF( A% ), UMF( A% ). For each data point, x′, 
there can be nm=2,..,∞ different MFs within this 
interval. Hence, T2FSs have secondary grades, 
which sit on top of FOU to form the 3D region.  

In different studies, e.g., [6], [7], uncertainties of 
parameters from imperfect information are 
investigated using Fuzzy C-means (FCM) 
clustering algorithm [8]. In particular, the FOU 
of the interval T2FS are formed based on the 
level of fuzziness parameter of FCM clustering.  

In fuzzy clustering methods, fuzziness is 
measured by the level of fuzziness parameter, m, 
which determines the degree of overlap between 
the clusters, viz. structures, granules, etc., 
identified in the given dataset. In many research, 
identification of the FOU of MFs of FCM 

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1290–1295

Torremolinos (Málaga), June 22–27, 2008



clustering algorithm, e.g., [5], [6], or hybrid 
clustering algorithms [7] is based on the level of 
fuzziness parameter. In [6], one fuzziness value 
is found for each data vector and FOU of the 
MFs are identified based on resulting fuzziness 
values of the overall dataset.  In [7], FOU is 
identified dynamically from the dataset based on 
parameters of a new improved fuzzy clustering 
method and local fuzzy function structures using 
genetic algorithms. Interval T2FS are used in 
these research. 

In this paper, we investigate the level of 
fuzziness, m, of particularly fuzzy c-regression 
model (FCRM) clustering methods [9], instead 
of conventional clustering algorithms.  In 
building fuzzy inference systems, separate 
functions are identified for each local input-
output relation, which are defined with 
hyperplanes. Therefore, a better way is to 
construct hyperplane-shaped clusters. 

This paper presents a new type-2 fuzzy 
inference method, which can identify the 
optimum secondary MF grades, i.e., weights, of  
the primary MF grades using genetic algorithms. 
New data vectors adopt the secondary MF 
grades obtained from the training samples in 
their neighborhood. During genetic learning 
process, each individual in the population 
encodes these weights for each training vector 
for each cluster, separately. This is quite 
cumbersome process when the number of 
training vectors are large therefore it is 
simplified in this paper by implementing 
transductive learning method. Instead of 
learning the secondary MF grades of the entire 
training dataset, for each new data point a new 
set of weights are learnt from fairly less training 
vectors, which are close to this new vector in 
distance. Experimental analysis demonstrates 
the performance of the new approach. 

2     Genetic Type-2 Fuzzy Inference 
(GT2FI) Learning Algorithm 

GT2FI, presented here, is a dynamic genetic 
type-2 fuzzy inference (FI) system akin to 
Takagi-Sugeno type FI, yet identifies one 
membership function for the entire antecedent 
part. We assume that the membership functions 
of each input variable are not independent, and 
their interactive affect should be analyzed 
instead of their individual effect. The first step 
of GT2FI system is to fuzzy partition the entire 
dataset into overlapping hyperplanes using 

FCRM clustering algorithm [9], to be 
summarized as follows.  

Let fi be a function with nv dimensional inputs, 
xk(xk,1 …xk,nv)∈X, k=1,..,n data points and a 
single output. The representative of ith cluster 
can be expressed as:   
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Step 1: Assume c* hyperplanes as initial cluster 
representatives,
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iteration t: 
Step 2: Calculate the c×n membership matrix 
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Step 3: If  ||U(t)-U(t-1)||≤ε, then stop; otherwise go 
to step 4. 

Step 4: Calculate the new cluster representatives 
at the (t+1)th iteration, using weighted least 
squares method as βi

(t+1)=[xTDix] xTDiy, and Di 
denote the diagonal matrix in ℜn×n  having 
uk,i

(t)∈Ui
(t) as its kth diagonal element. To 

estimate one crisp output value, each fuzzy 
model output values are weighted with MF 
grades by: 
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The MF in (2) depends on the level of fuzziness 
parameter, m∈(1,∞), which determines the 
fuzziness of the resulting clusters. The GT2FS 
performs the following learning algorithm:  

1)  Execute FCRM Method. To identify FOU of 
T2FS, the FCRM is executed for different levels 
of fuzziness, mr={m1… mr}, r=1…nm, given the 
number of clusters, c*. For each discrete mr 
value FCRM models are represented with local 
functions  fi

r(x,βi
r) of each cluster, i=1…c* and 

corresponding  MFs, MFi
r(x)=ui

r(x).  

2) Initilize Secondary T2FSs. Each possible 
discrete MFs, ( )r

i
Aµ % , are randomly assigned 

initial weights, viz., secondary MF grades 
, ( ; )r

i k k
A xµ % ∈[0,1],r=1..nm, k=1…n.(see Figure 2) 
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These MF grades denote possibilities associated 
with each mr at each value of x, xk=x′. 
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Figure 2: Secondary MF of x′ in cluster i formed 
for each discrete primary MF based on level of 

fuzziness of FCRM clustering method.  
 

3)  Genetic Learning Process (GLP). Optimum 
values of the secondary MF grades of T2FSs at 
each xk is identified based on genetic learning 
process. At this point, transductive learning 
algorithm is implemented to estimate the 
secondary membership values of data vectors. 
As a new vector, x′  is introduced, a new model 
is build to estimate its output. The secondary 
MFs of x′  in each cluster is estimated using nk 
nearest neighbors from training dataset, which 
form a sample dataset xj∈Xj={x1…xnk}, from the 
existing dataset X. Each chromosome of x′  is 
encoded using initial weights of each nk training 
vector, one for each discrete mr value for each 
cluster, as shown in Figure 3. 
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Figure 3: Chromosome structure of x′k using nk 

nearest neighbors.  

xj, j=1..nk, represents each nearest vector to this 
x′  vector and T2FSi 

j
  represents T2FS of jth 

nearest train-vector in cluster i=1..c*.  Each 
T2FSi 

j
 is identified by set of ui,j

r(xj)’s calculated 
by each mr. Each chromosome encodes T2FSs 
of FCRM models for nearest nk vectors. Herein, 
genetic algorithms is used to optimize the 
secondary MF grades of nearest nk vectors 
instead of the entire training dataset. A separate 
genetic learning method is executed for each 
new x′  vector as follows:  

Step-1: Initialize each chromosome in the 
population, chr=1… max#chromosomes. 

Step-2: Iterate until max-number of iterations is 
reached.  

2.(i). Update T2FS secondary MF weights in 
each individual of the population using mutation 
and crossover operations.  

2.(ii) For each chromosome, chr, calculate 
weighted crisp output values for each nearest 
train vector, xk,j as follows: 
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2.(iii). Calculate average performance index of 
each nearest training vectors, xj, j=1..nk, of each 
individual: 
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2.(iv). Choose surviving individuals based on  
argmax

chr

chr

PI  (6) 

and go to step 2.(i) if termination condition is 
not satisfied. 

Genetic learning process identifies the optimum 
mr different secondary MF grades, µi,j

(*)r, for 
each discrete primary MF grade, ui,j

r(xj), 
r=1…nm, of each nearest training vector xj of 
this x′  . In (4) each output-value from each local 
function f r is weighted with their secondary MF 
grades.  

3     GT2FI Reasoning 
To estimate the output value of a particular 
vector x′  using GT2FI system, we use the 
weighing formula of equation (4). Firstly, the 
primary MF grades, ui

r(x′) for each mr value is 
calculated using equation (2). Since we do not 
know the actual output value of this new vector, 
we use actual output values of nearest training 
vectors, yj. Secondly, as for its secondary MF 
grades, the weights of these nearest training 
vectors obtained from the GLP step are used.  

To calculate ui
r(x′ ) grade, the error of x′  in each 

local model using mr is measured with:  

( ) ( ){ }2, - ( ; )r r r

i j j iE x m m y f x !" "= =%  (6) 

Next, a separate MF grade, ui,j
r(x′) using each 

nearest training vector, xj,  is calculated using 
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equation (2). The secondary MF grades of 
nearest train vectors obtained from GLP are 
used to calculate one output value, ˆ

j
y! , for this x′ 

using each nearest training vector j, as follows:  
(*)

, ,1

, (*)

,1

( ; ) ( )
ˆ 

nm r r r

i i j i jr

i j nm r

i jr

f x u x
y

! µ

µ

=

=

" "
" =

#

#
 (7) 

In (7), the type of the MF is reduced down to 
type-1 by using model weights captured in GLP 
step. The type of the fuzzy output, ŷi,j , i=1…c*, 
is further reduced down to type-0 as follows : 
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To calculate a single crisp output value for x′ , 
the output values based on nearest j training 
points, ŷj, from (8) are weighed based on the 
distance between x′   and xj, j=1..nk, training 
points, denoted with d(x′  ,xj)as: 
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3     Experiments 
In this section, we first demonstrate the 
distribution of secondary MF grades using an 
artificial dataset. Next, experiments conducted 
on a financial forecasting problem domain using 
real datasets is presented using the proposed 
GT2FI system.  

3.1. Distribution of the Secondary MF 
Grades Using Artificial Dataset 
The artificial dataset as shown in Figure 4 
contains single input and single output with two 
local structures; therefore, the number of 
clusters is set to two. The primary MF grades, 
u(x) values, are obtained from FCRM model 
using list of levels of fuzziness parameter 
m={1.1,1.25,..,2.6} as shown in Figure 4 top-
right graph, also the base of the 3D graph , the 
bottom graph in Figure 4.  

The bottom 3-D graph in Figure 4 displays the 
secondary MF of a single point xk=0.5. The 
secondary MF values of nearest data points are 
optimized with genetic algorithms. For the 
genetic learning process, the initial population 
size and number of iterations are set to 100 each, 
and the number of clusters is set to 2. The 
crossover rate is set at 0.8 and the mutation rate 

is set at 0.01. Tournament selection with eliticist 
strategy is employed.  

 

 
Figure 4: (Top-left) Artificial Dataset, (Top-
right) FOU by m∈[1.1, 2.6], (Bottom) secondary 
MF of data point x′=0.5. 

3.2. Stock Price Estimation Model 
Five different Canadian stock prices, e.g., 
Toronto Dominion (TD), Bank of Montreal 
(BMO), Enbridge (ENB), Sunlife (SUN), 
Loblaws (LWS), collected between the years of  
2005 and 2007 are used. The datasets are 
converted into multi-input single-output data 
mining problem, where the input variables are 
just the summary values of the stock prices. 
Among 100 different financial indicators 
[www.stockcharts.com], we used variables (see 
Table 1) that model market fluctuations, and 
focus on when to make buy or sell decisions.  

 

Table 1: Variables of Stock Price Analysis. 

Name Description 

EMA Exponential Moving Average  

BB Bollinger Band 

RSI Relative Strength Index 

MACD_t_k Moving Average Convergence 
Divergence bwtn t and t+k 
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periods 

CMF Chaikin Money Flow 

SMA Simple Moving Average 

PCMA Present Change of Moving 
Average  - SMA(t)-SMA(t-1) 

SR Separation Ratio (SMA-Close 
Value) 

 

There is a continuum between each data vector 
of the stock prices dataset; therefore, we divided 
each dataset into two periods. The first period is 
used for constructing five different training and 
validation datasets.  The last periods are used for 
testing purposes. A sampling method using an 
artificial stock price is shown in Figure 5. 
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Figure 5: Sampling method used in experiments.  

Stock prices collected around 20-22 months are 
divided into two parts. Approximately data from 
the first 15-17 months are used to train models 
and to optimize model parameters. The last 5 
months are hold-out for testing model 
performances. We randomly separated 200 
samples for training from the first part, 140 
samples for validation of the optimum model 
parameters again from the first part and 100 
samples to test the performance of models from 
the hold-out part, which has not been used for 
training or validation purposes. Experiments 
were repeated with 5 random subsets of above 
sizes.  
The system model performance is measured 
with Mean Absolute Percentage Error (MAPE), 

1
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n k k

kn

k

y y
MAPE

y
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!
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MAPE is a commonly used statistical measure 
of Goodness of Fit in quantitative forecasting 
methods. It produces a measure of relative 
overall fit. To analyze the performance of the 
new system, the MAPE results of GT2FI models 
are compared to well-known Adaptive Network 
Based Fuzzy Inference System (ANFIS) [10], 
Dynamic Evolving Neuro-Fuzzy Inference 

System (DENFIS) [11] models and a Type-2 
Fuzzy Logic System, which identifies 
uncertainties based on FCM clustering method 
level of fuzziness parameter [6]. For the 
benchmark methods, default parameters are 
used. 

For FCRM clustering method, we set the 
number of clusters to 3 and the boundaries of the 
level of fuzziness parameter between mlower=1.4 
and mupper=2.6. The m interval is discretisized 
into 10 values. For the genetic learning process, 
the initial population size and number of 
iterations are set to 100 each, and the number of 
clusters is set to 3. The crossover rate is set at 
0.8 and the mutation rate is set at 0.01. 
Tournament selection with eliticist strategy is 
employed.  

The average MAPE values of the presented 
system and the benchmark methods and their 
cross validation standard deviations are 
displayed in Table 2.  

To determine the level of significance of 
performance of the proposed approach 
compared to other system modeling tools 
applied in this paper, a significance test is 
applied. The results at 95% confidence level 
indicate that the proposed approach is 
significantly better that the rest of approaches in 
4 out of 5 datasets 

 

Table 2: MAPE results of Stock Price Datasets. 
Standard deviation of cross validation simples 

are shown after ± sign. 

NAME ANFIS DENFIS T2FLS GT2FI 

TD 1.82 
±1.69 

1.42 
±0.29 

0.45 
±0.26 

0.38 
±0.04 

BMO 2.51 
±0.85 

0.94 
±0.15 

0.87 
±0.03 

0.91 
±0.02 

ENB 2.24 
±0.64 

1.19 
±0.05 

1.21 
±0.08 

0.95 
±0.03 

SUN 3.59 
±0.77 

0.95 
±0.07 

0.86 
±0.06 

0.83 
±0.01 

LWS 3.86 
±1.62 

1.23 
±0.27 

1.09 
±0.23 

0.90 
±0.05 

4     Conclusions 
In this paper, a new genetic type-2 fuzzy 
inference system is introduced. Unlike 
counterparts, hyperplane shaped local structures 
are identified. The uncertainty interval of 
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primary membership functions (MF) are defined 
based on upper and lower limits of  the level of 
fuzziness parameter of fuzzy c-regression 
clustering method. The secondary MF grades are 
optimized with genetic algorithms. With the 
implementation of transductive learning method, 
a new model is constructed with only the 
training vectors in the vicinity of each new test 
vector. The algorithm implements a simple type-
reduction and does not require defuzzification. 
The experimental results demonstrate significant 
performance improvement.  

The presented genetic type-2 fuzzy inference 
identifies secondary MF grades, which are 
essentially the weights of primary membership 
grades. Implementing genetic algorithm, the 
weights are optimized automatically based on 
the performance improvement strategy. Hence, 
the optimum model selected by the genetic 
algorithm, assigns appropriate weights to 
membership values. During reasoning each local 
model’s affect on the overall outcome is 
determined by the secondary membership 
grades.     
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