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Abstract

Type-2 defuzzification is a two-stage
process. Type-reduction, the first stage,
gives rise to a type-1 fuzzy set known as
the type-reduced set (TRS), which for
the second stage is defuzzified to give a
crisp number. This paper focusses on
the TRS itself, which reveals a fasci-
nating internal structure. We provide a
description of and explanation for this
structure, then go on to suggest how it
may be exploited to enable the applica-
tion of the Karnik-Mendel Iterative Pro-
cedure to generalised type-2 fuzzy sets.

Keywords: Type-Reduced Set, Strati-
fication, Type-2, Type-Reduction, De-
fuzzification.

1 Background

The research presented here emerged as we were
investigating why the sampling method of type-
reduction (section 2.4) worked so efficiently with
tiny sample sizes. During this piece of research
(which is still ongoing), we focussed on the type-
reduced set (TRS), which we came to realise was
worthy of study in its own right, and furthermore
had properties which could be exploited in a gen-
eralisation of the Karnik-Mendel Iterative Proce-
dure [3].

The sampling method itself (subsection 2.4) was
put forward as a strategy for making gener-
alised type-2 fuzzy inferencing less computation-
ally complex by alleviating the defuzzification
bottleneck (subsection 2.4) in order to open the

way for the practical development of generalised
type-2 applications. Type-1 and interval type-2
fuzzy sets have dominated the field of fuzzy in-
ferencing, but we contend that speedy generalised
type-2 fuzzy inferencing is achievable and highly
desirable.

For continuous generalised type-2 fuzzy sets,
Coupland and John [1] have proposed a geomet-
ric approach to fuzzy inferencing. However this
article concerns the discretised type-2 fuzzy set
(T2FS). We first (section 2) look at the formation
of the type-reduced set, moving on to consider its
structure and properties (sections 3 and 4). Lastly
(sections 5 and 6) we exploit the TRS structure
in order to generalise the Karnik-Mendel Iterative
Procedure.

2 Formation of the Type-Reduced Set

2.1 Fuzzy Inferencing Systems

Inference

Fuzzifier

Rules

Fuzzy

input sets

Defuzzifier

Type-reducer

Fuzzy

output sets

inputs

Crisp

Crisp

output

Output Processing

 Type-reduced
Set (Type-1)

Type-2 FLS

y

x

Figure 1: Type-2 FIS (from Mendel [5], page
288).

The type-reduced set is normally created as part
of the processing of a type-2 fuzzy inferenc-
ing system (FIS). An FIS is a computerised aid
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to decision making, which uses fuzzy sets, and
operates by applying fuzzy logic operators to
common-sense linguistic rules. An FIS can be
of any type; its type is determined by the high-
est type of the fuzzy sets it employs. Here we
are concerned with a type-2 FIS in the Mamdani
style. An FIS (of any type) usually starts with a
crisp number, and works through the five stages
of fuzzification, antecedent computation, impli-
cation, aggregation/combination of consequents,
and defuzzification. In a type-2 FIS, the defuzzi-
fication stage consists of two parts, type-reduction
and defuzzification proper, as shown in figure 1:

Type-Reduction The T2FS is reduced to a type-
1 set, the type-reduced set by exploiting the
embedded type-2 fuzzy sets (section 2.2).

Type-1 Defuzzification To arrive at a single
number to represent the T2FS, this TRS is
defuzzified using one of the many type-1 de-
fuzzification approaches.

The TRS as the Centroid of the T2FS The
TRS is the result of the type-reduction process.
Mathematically, we interpret it as the centroid of
a type-2 set as it represents, in a sense, the centre
of the T2FS ([5], page 10).

2.2 Embedded Sets

Type-2 type-reduction is dependent on the con-
cept of an embedded set. The concept of a type-2
embedded set follows directly from Mendel and
John’s representation theorem [7]. Figure 2 shows
two embedded sets of a T2FS discretised into
slices with a separation of 0.1 units. The number
of sets in a T2FS is dependent upon the discreti-
sation technique, the spacing of the discretising
slices, and the shape of the FOU1.

2.3 Algorithm for Type-Reduction

Algorithm 1 is the type-reduction algorithm orig-
inally described by Mendel [5]. The TRS pro-
duced by this algorithm, as it is a type-1 set, may
be easily defuzzified by calculating its centroid.

1FOU stands for Footprint Of Uncertainty, the projection
of the T2FS on the x− y plane
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Figure 2: Two embedded sets, indicated by dif-
ferent flag styles. The flag height reflects the
secondary membership grade. Both the domain
and co-domain are discretised into 11 slices. The
shaded region is the FOU.

2.4 The Sampling Method of Defuzzification

The type-reduction algorithm as presented in sec-
tion 2.3 involves the processing of all the embed-
ded sets within the original discretised type-2 set.
These sets are very numerous. For instance, when
a prototype type-2 FIS performed an inference us-
ing sets which had been discretised into 51 slices
across both the x and y-axes, the number of em-
bedded sets in the aggregated set was calculated
to be in the order of 2.9× 1063. Though individ-
ually easily processed, embedded sets in their to-
tality give rise to a processing bottleneck simply
by virtue of their high cardinality.

The sampling method of defuzzification [2] is an
efficient, cut-down alternative to dealing with all
the embedded sets. In this technique, only a rel-
atively small random sample of the totality of
embedded sets is processed. The resultant de-
fuzzified value, though surprisingly accurate, is
nonetheless an approximation.

Proceedings of IPMU’08 1283



Algorithm 1 Type-Reduction of a T2FS to a
Type-1 Fuzzy Set

1: for all embedded sets do
2: find the minimum secondary membership

grade
3: calculate the domain value of the type-1

centroid of the type-2 embedded set
4: pair the secondary grade with the domain

value to produce a set of ordered pairs (x,z)
{some values of x may correspond to more
than 1 value of z}

5: end for
6: for all domain values do
7: select the maximum secondary grade

{each x corresponds to a unique co-domain
value}

8: end for

3 Structure of the TRS

This section describes the structure and proper-
ties of the TRS. The membership function of the
TRS of a discretised T2FS may be thought of as
a set of tuples. Figures 3 to 5 show typical TRSs
derived from different sized samples of randomly
generated embedded sets (section 2.4), originat-
ing from the same discretised T2FS.
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Figure 3: The TRS strata. Sample size = 50.

After producing numerous TRS graphs (all from
T2FSs with triangular secondary membership
functions) one observation stood out: The TRS is
stratified. The explanation for the appearance of
strata is that they derive directly from the original
T2FS, and are artifacts produced by the combina-
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Figure 4: The TRS strata. Sample size = 500.
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Figure 5: The TRS strata. Sample size = 5000.

tion of the processes of discretisation and fuzzy
inferencing. Since during type-reduction the min-
imum secondary grade of each embedded set is
selected, unsurprisingly the same minimum val-
ues appear repeatedly, for different domain val-
ues.

Further characteristics of the stratified structure
are:

• Its general shape is trapezoidal i.e. progress-
ing upwards the strata tend to narrow. How-
ever it cannot be assumed that any given stra-
tum is narrower than the one directly below
it.

• It is non-symmetrical (though it often ap-
pears almost symmetrical).

• The widest stratum is low in height, though
it is not necessarily the lowest stratum.

1284 Proceedings of IPMU’08



• The heights of the lowest strata tend to be
very small; how small depends on the fine-
ness of the discretisation.

• On the whole the lower strata are denser.

Future research will ascertain whether these ob-
servations are invariably true. The impact, if any,
of using secondary membership functions other
than triangular is to be explored. The rest of this
paper does not rely on these comments.

4 Mendel’s Probability Analysis of the
Stratified Structure

In relation to the sampling method of defuzzifica-
tion (section 2.4), Mendel [6] has observed that
as the domain discretisation becomes finer, the
probability of a randomly selected embedded set
containing at least one of the minimum secondary
grades (from one of the secondary membership
functions) approaches 1. We reproduce Mendel’s
argument:

Assumptions:
1. Primary variable x is discretized

into N values x1,x2, . . . ,xN .
2. We are free to choose N, e.g. make

it as small as we choose.
3. All primary memberships are dis-

cretized into the same number of
levels, M. (Even if you do not
do this, the analysis below is inter-
esting, and can be modified to the
case of non-equal discretization.)

4. The smallest secondary grade for
each of the N secondary MFs oc-
curs exactly one time in each of
the secondary MFs (this is con-
troversial, but it could be changed
with a more complicated analysis).

My first goal is to compute the proba-
bility of choosing an embedded T2 FS
that contains at least one of the mini-
mum secondary grades.

1. The total number of embedded T2
FSs is MN .

2. The total number of embedded T2
FSs that do not contain at least one

of the minimum secondary values
is (M−1)N .

3. The total number of embedded T2
FSs that contain at least one of
the minimum secondary values is
MN − (M−1)N .

4. The probability of choosing
an embedded T2 FS that
contains at least one of the
minimum secondary values is
p(1 or more|M,N), where

p(1 or more|M,N) =
MN − (M−1)N

MN .

(1)
Next, I want to study
p(1 or more|M,N), especially as
N increases. Note from (1) that

p(1 or more|M,N) = 1−
(

M−1
M

)N

.

(2)
Because (M−1)/M < 1, it is true that:

Fact: As N increases

p(1 or more|M,N)→ 1 ¥ (3)

Mendel’s argument shows convincingly that as
the number of vertical slices increases, the proba-
bility of a randomly selected embedded set con-
taining at least one of the minimum secondary
grades of a secondary membership function tends
to 1.

Table 1 shows the relationship between M and N
and p(1 or more|M,N). It is readily apparent that
with increasing N, p(1 or more|M,N) increases,
tending towards 1. Even with an N of only 50,
the probability is within 1% of 1. It is also evi-
dent that as M increases, p(1 or more|M,N) de-
creases. The effect of increasing M is opposed
to that of increasing N. However their effects are
not equally balanced; the higher N becomes, the
lower the impact of M.

5 Mathematical Formulation of the
Stratified Structure

5.1 Assumptions and Definitions

The TRS as a Crisp Set Any non-continuous
type-1 fuzzy set A may be thought of as a
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Table 1: Table showing how p(1 or more|M,N)
varies with M and N.

MMM�NNN 10 20 50 100 200

10 0.6513 0.8784 0.9948 0.9999 0.9999

20 0.4013 0.6415 0.9231 0.9941 0.9999

50 0.1829 0.3324 0.6358 0.8674 0.9824

100 0.0956 0.1821 0.3950 0.6340 0.8660

200 0.0489 0.0954 0.2217 0.3942 0.6330

crisp, finite, set of co-ordinate points, i.e. A ≡
{(x,µA(x))}. The TRS of a discretised T2FS may
therefore be regarded as a crisp set of tuples.
Definition 1 (Cardinality). For type-1 fuzzy set A,
| A |, the cardinality of A, is the number of tuples
in A.

Scalar Cardinality The concept of scalar car-
dinality is frequently encountered in the following
analysis. The following definition of scalar cardi-
nality for type-1 fuzzy sets is adapted from Klir
and Folger ([4], p17):
Definition 2 (Scalar Cardinality). “The scalar
cardinality of a fuzzy set A defined on a finite uni-
versal set X is the summation of the membership
grades of all the elements of X in A. Thus,

|| A ||= ∑
x∈X

µA(x). ”

We note that the symbol ‘∑’ as used here repre-
sents ‘sum’.

We now formally define a stratum.
Definition 3 (Stratum). A stratum is a subset2 of
TRS T for which every element has the same µ
co-ordinate. Let Sω be a stratum. Then

Sω = {{x,µT (x)} ∈ T | µT (x) = ω}
for some ω ∈ [0,1].

It follows that a type-1 fuzzy set is the union of
all its strata, i.e.

T =
j[

i=1

Sωi .

2In the commonly accepted ‘crisp’ sense of the word.
Klir and Folger [4], p19, give a different definition of ’sub-
set’ in the type-1 context.

Moreover the strata partition the type-1 fuzzy set.

The concept of a stratum is related to that of an
α-cut. Klir and Folger ([4], p16) define an α-cut
as follows:

Definition 4 (ααα-Cut). “An α-cut of a fuzzy set A
is a crisp set Aα that contains all the elements of
the universal set X that have a membership grade
in A greater than or equal to the specified value
of α. This definition can be written as

Aα = {x ∈ X | µA(x)≥ α}. ”

Thus an α-cut is a set of domain values. On simi-
lar lines we propose the following definition of an
α-support:

Definition 5 (ααα-Support). An α-support of a type-
1 fuzzy set T is a crisp set T α that contains all the
elements of the universal set X that have a mem-
bership grade in T equal to the specified value of
α. This definition can be written as

T α = {x ∈ X | µT (x) = α}.

Each stratum corresponds to an α-support, and
vice versa. The difference between the two con-
cepts is that the stratum is a set of co-ordinates,
but the α-support is a set of domain values, the
associated co-domain value being specified by the
subscript of the α-support, e.g. T 0.2.

5.2 Strata Representation Theorem

Theorem 1 (Strata Representation Theorem). A
type-1 fuzzy set may be represented as the union
of its strata.

Proof. This is a consequence of the fact that any
type-1 fuzzy set can be partitioned into its strata.
A finite type-1 fuzzy set T is specified if and only
if all ordered pairs (x,µT (x)) are specified. Con-
sider the level set of T , ΛT = {α1,α2, . . . ,αh},
where α1 is the lowest α-support and αh the high-
est. Tαi = {x ∈ X | µT (x) = αi}, ∀i = 1 . . .h.
By listing all the co-ordinates (x1,α1) to (xn,α1),
then (x1,α2) to (xn,α2), and ultimately (x1,αh) to
(xn,αh) all points (x,µT (x)) are specified stratum
by stratum.
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5.3 Centroid Formula Exhibiting Strata

The TRS, like any type-1 fuzzy set, is often de-
fuzzified by finding the x co-ordinate of its cen-
troid (section 2.3), using the formula:

x = ∑µixi

∑µi
,

where µi is the height of the ith TRS point,
xi is its x co-ordinate, and x the defuzzified
value. Let T be a TRS which has h strata of
heights α1,α2, . . . ,αh in ascending order. Then
re-ordering the products in the numerator accord-
ing to the stratum upon which they lie, we obtain

x =
∑n1

1 α1x1i + · · ·+∑nh
1 αhxhi

‖T‖ ,

which may be rewritten

x =
α1 ∑n1

1 x1i + · · ·+αh ∑nh
1 xhi

‖T‖ .

6 The Generalised Karnik-Mendel
Iterative Procedure

The most widely adopted method for type-
reducing an interval type-2 fuzzy set is the
Karnik-Mendel Iterative Procedure (KMIP) [3].
The result of type-reduction of an interval type-2
fuzzy set is an interval type-1 set where the cen-
troid lies between the two endpoints. The iterative
procedure is an efficient method for finding these
endpoints. The centroid of the type-1 set (i.e. the
defuzzified value of the T2FS) is taken to be the
centre of this interval.

In section 5.3 we showed how the defuzzified
value may be calculated using a stratum by stra-
tum approach. We now take the idea of defuzzi-
fication by strata a stage further with the simple
observation that each stratum is like an interval
set, the only difference being the stratum height
(figure ??). So why not defuzzify each stratum as
if it were an interval set, and combine the results
appropriately to give the defuzzified value of the
T2FS?

6.1 Assumptions and Definitions

Lowest and Highest Domain Values

Definition 6 (Lowest Domain Value). We define
the lowest domain value of a stratum to be the
least domain value of all the points in the stratum.
Symbolically,

LDV = minAα = min{x ∈ X | µA(x) = α}.
where Aα is the α-support of type-1 fuzzy set A.
Definition 7 (Highest Domain Value). We define
the highest domain value of a stratum to be the
greatest domain value of all the points in the stra-
tum. Symbolically,

HDV = maxAα = max{x ∈ X | µA(x) = α}.
where Aα is the α-support of type-1 fuzzy set A.

6.2 No Secondary Grade Appearing in More
Than One Secondary Membership
Function

We begin (algorithms 2 and 3) by considering the
simplest case of a T2FS whereby there are no in-
stances of the same secondary membership grade
appearing in more than one secondary member-
ship function of the T2FS. Let S1, . . . ,Sk be the
strata, ordered by height, with S1 being the low-
est, and Sk the highest. Let α1, . . . ,αk respectively
be the heights of strata S1, . . . ,Sk, and let Nm be
the number of TRS points on stratum Sm. Let Mm

be the mean of the LDV (Lm) and HDV (Hm)of
stratum Sm. (Mm is equivalent to the centre of the
interval in the standard KMIP, and may be thought
of as the defuzzified value of stratum Sm consid-
ered in isolation.)

The values c1, . . . ,ck are constructs representing
the contribution of each stratum to the final de-
fuzzified value of the T2FS. Cm, the contribution
of Sm is the product of the mean Mm, the num-
ber of points on the stratum Nm, and the stra-
tum height αm. Symbolically, Cm = MmNmαm.
Let L1, . . . ,Lk respectively be the LDVs of strata
S1, . . . ,Sk, and H1, . . . ,Hk respectively be their
HDVs.

Algorithm 2, in conjunction with algorithm 3, ex-
tends the KMIP to generalised T2FSs in the case
where no secondary membership grade is found
in more than one secondary membership function.
We now consider the situation whereby the T2FS
has instances of a secondary membership grade
appearing in more than one secondary member-
ship function.
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Algorithm 2 KMIP Generalisation with No Sec-
ondary Grade Appearing in More Than One Sec-
ondary Membership Function

1: for all strata Sm of TRS T do
2: calculate Lm and Hm {see Algorithm 3}
3: calculate Nm

4: calculate Mm

5: calculate Cm = MmNmαm

6: end for
7: calculate ||T || {scalar cardinality of T}
8: calculate d = ∑Ci

||T || {defuzzified value}

Algorithm 3 Calculating the LDV and HDV of a
Stratum Sm (line 2 of Algorithm 2)

1: change all secondary grades < αm to 0 {no
grades lower than < αm}

2: change all secondary grades of the sec-
ondary membership function which includes
αm other than αm to 0 {αm always selected as
minimum secondary grade}

3: change all non-zero secondary grades to 1
{transform to an interval set}

4: apply the KMIP to find Lm and Hm

6.3 Repetitions of Secondary Grades in
Different Secondary Membership
Functions of the T2FS

If the same secondary membership grade g ap-
pears in more than one secondary membership
function, then all the defuzzified embedded sets
of which g is the minimum grade will appear in
the same stratum. To distinguish between points
on the same stratum that derive from different in-
stances of a secondary membership grade, we in-
troduce the notion of a substratum. It is possible
for a stratum to have only one substratum.

We define a substratum:

Definition 8 (Substratum). A substratum is a
subset of a stratum consisting of those points
which derive from (the same instance of) the same
secondary membership grade of the originating
T2FS.

The idea behind algorithm 4 is that every sub-
stratum within a stratum has to be processed. If
an embedded set includes more than one instance
of the same secondary grade, its associated TRS
point will lie on more than one substratum. So

that the same point is not considered more than
once, we have to allow for repetitions. Let Rm be
the number of repetitions of points on stratum Sm.

Algorithm 4 KMIP Generalisation with Repeti-
tions of Secondary Grades in Different Secondary
Membership Functions

1: for all strata Sm of TRS T do
2: for all substrata Smk of Sm do
3: apply KMIP to find Lmk and Hmk {LDV

and HDV of substratum Smk}
4: note Lm, the least of the Lmk so far

{lowest LDV}
5: note Hm, the least of the Hmk so far

{greatest HDV}
6: calculate Mm {mean of Lm and Hm}
7: for all substrata Smk of Sm do
8: calculate Nmk {no. of points on sub-

stratum Smk}
9: end for

10: calculate Rm {no. of repetitions}
11: calculate Nm = ΣNmk−Rm {no. of points

on stratum Sm}
12: calculate Cm = MmNmαm {contribution

of stratum Sm}
13: end for
14: end for
15: calculate ||T || {scalar cardinality of T}
16: calculate d = ∑Ci

||T || {defuzzified value}

7 Conclusion and Further Work

Type-reduction is an important part of the de-
fuzzification process in type-2 fuzzy inferencing
systems but presents many challenges. In this pa-
per we have, for the first time, explored the strat-
ified structure of the type-reduced set. The struc-
ture of the type-reduced set is both interesting and
useful and we have exploited this structure in de-
veloping a new generalised version of the Karnik
Mendel Iterative Procedure. The algorithm is pre-
sented in detail.

Further work will include:

The Tiered Type-2 Fuzzy Set We propose a
new variant of the T2FS — the tiered type-
2 fuzzy set. This hybrid of the interval and
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generalised sets has pre-discretised secondary
grades, i.e. the secondary grades take values
from a pre-determined set of numbers such as
0,0.1,0.2,0.3, . . . ,0.9,1. The obvious advantage
of the tiered set is that it would readily lend itself
to defuzzification using the Generalised KMIP
presented here.

Continuous Generalised T2FSs It is hoped
that greater understanding of how the TRS struc-
ture varies as the discretisation becomes finer
might shed some light on continuous generalised
T2FSs.

Overall TRS Shape Whether the secondary
membership function has any bearing on the over-
all shape of the TRS has yet to be explored. All
the TRSs we have looked at so far come from
T2FSs with a triangular secondary membership
function.

Efficiency of the Sampling Method We hope
that the properties of the TRS will shed light on
the reason for the extraordinary efficiency of the
sampling method of defuzzification [2] when used
with small sample sizes.

Structure of an Individual Stratum We would
like to investigate the pattern formed by the TRS
points as they are laid out on an individual stra-
tum.
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