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Abstract 

We consider the Fuzzy Vehicle 
Routing Problem with Time Windows 
(FVRPTW) where the travel times are 
triangular fuzzy numbers. The Chance-
Constrained Programming (CCP) 
methodology is used to handle 
uncertainty and specify a confidence 
level at which it is desired that the 
travel times to reach the customers fall 
into their time windows. We propose 
and analyze the application of GRASP 
metaheuristic to minimize the total 
distance traversed by the vehicles while 
the capacity constraints are satisfied 
and the service times fall within time 
windows at given confidence level. 

Keywords: VRPTW, Fuzzy sets, GRASP. 

1     Introduction 

The efficient design of distribution strategies 
plays an important role in the success of logistic 
management because it improves service quality 
and reduces transportation costs. A standard 
objective in a distribution system for customers 
geographically dispersed customers is to 
determine the set of routes for the available 
vehicles which satisfies some constraints and 
minimize the total fleet operating cost.  

Vehicle Routing Problems (VRP) are concerned 
with finding the best set of routes, beginning and 
ending at a depot, for a fleet of vehicles to serve 
customers with demands for some commodity 
[3] [28]. The Vehicle Routing Problem with 
Time Windows (VRPTW) considers time 
windows for each customer and the customers 
have to be served by a vehicle within their time 
windows [8] [19]. 

In many practical problems in transport and 
logistics it is necessary to take into account that 
the available knowledge about some data and 
parameters of the problem model is imprecise or 

uncertain. Therefore it is necessary to model the 
problems and to evaluate their solutions, bearing 
in mind parameters and variables that are 
characterized by their uncertainty. 

There several possible sources of uncertainty in 
Vehicle Routing Problems; usually demands and 
travel times [2], [23], [24], [26], [27], [29]. 
Recent researches use hybrid algorithms that 
integrate stochastic simulation, fuzzy theory and 
an optimization procedure for solving these 
problems [10], [11], [16], [21], [33]. 

Chance-constrained Programming (CCP) is a 
methodology proposed by Charnes and Cooper 
[1] to specify levels of confidence for stochastic 
constraints within optimization problems. This 
approach can be used to determine if the 
obtained solutions of the problem with fuzzy 
information on the parameters are feasible, 
incorporating the required level of confidence 
for the model restrictions [12], [13], [14], [15], 
[17], [18]. 

Next section describes the use of triangular 
fuzzy numbers to model the uncertainty in travel 
times and the use of possibility and credibility 
measures associated with fuzzy variables to 
handle the uncertainty in the inequality 
constraints with these variables. Section 3 
introduces the Fuzzy Vehicle Routing Problem 
with Time Windows (FVRPTW) obtained from 
the crisp VRPTW by considering that the travel 
times in the underlying communication network 
are fuzzy triangular variables. The travel times 
are usually fuzzy variables, for instance, since 
these times are very influenced by road and 
traffic conditions.  

Bearing in mind these concepts we propose a 
Greedy Randomized Adaptive Search Procedure 
(GRASP) for solving the Fuzzy Vehicle Routing 
Problem with Time Windows. Finally, we 
describe the experiments with a small instance 
given in [33].where we apply the proposed 
procedure and we compare it with their results. 
Brief conclusions are also included to end the 
paper. 
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2     Fuzzy travel time 

An ordinary set can be described, among other 
ways, by using the characteristic function on an 
universe, in which 1 indicates membership and 0 
nonmembership. However, in many cases, the 
membership is not clear when the sets are 
imprecisely described. In order to deal with 
them, Zadeh [30] introduced the concept of a 
fuzzy set given by a membership function from 
the universe to the real interval [0,1]. Fuzzy sets 
have been well developed and applied in a wide 
variety of real problems. As a fuzzy set of real 
numbers, the fuzzy variable was first introduced 
by Kaufmann [9]. For each α∈[0,1], the α-cut 
of a fuzzy set is the ordinary set of values where 
the membership is equal or greater than α. The 
support of a fuzzy set is the set of values whose 
membership is positive and its mode is the value 
with maximum membership. A fuzzy number is 
usually defined as a fuzzy set of real numbers 
whose α-cuts are closed intervals, with compact 
support and unique mode. 

In real-life applications of routing problems, it is 
often the case that the exact travel time between 
two locations cannot be known in advance. 
However, based on previous experience, a user 
may have some knowledge about the travel 
time. In a model on a graph, the length of each 
edge or link can be represented by a fuzzy 
variable representing the time used to traverse it.  

A little knowledge can be used to assign fuzzy 
intervals to represent the travel times, since 
precise distributions, would require a deeper 
knowledge of the instance and usually yield a 
complex calculus. If the knowledge can be used 
to specify values that appear to be more 
plausible than others, a natural extension is to 
use fuzzy numbers. The simplest models for 
these fuzzy variables are the triangular fuzzy 
numbers [5]. A triangular fuzzy variable is given 
by its support [a1,a3] (the set of possible values) 
and its mode a2 ∈ [a1,a3] (the most plausible 
value). This triangular fuzzy number is denoted 
by Tr(a1,a2,a3) and has the following 
membership function. 
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The usual arithmetic operators for real numbers 
are extended to fuzzy numbers by the Extension 
Principle through the α-cuts [31]. However, the 
resulting numerical computations to operate 
with simple fuzzy numbers easily become 
intractable [4]. Therefore, for shake of 
simplicity and tractability of operations the 
results of the algebraic operations with 
triangular fuzzy numbers are approximated by 
triangular fuzzy numbers. So we only need to 
work with the three values defining the 
membership functions of triangular fuzzy 
numbers. 

The sum of two triangular fuzzy numbers by the 
Extension Principle is also a triangular fuzzy 
number. This is not always true for maximum 
(∨) and minimum (∧) of two fuzzy numbers. 
Then we use the following approximations: 
T(a1,a2,a3) + T(b1,b2,b3) = T(a1+b1,a1+b2,a1+b3) 
T(a1,a2,a3) ∨ T(b1,b2,b3) = T(a1∨b1,a1∨b2,a1∨b3) 
T(a1,a2,a3) ∧ T(b1,b2,b3) = T(a1∧b1,a1∧b2,a1∧b3) 

For every α∈[0,1], if [xα,xα] is the α-cut of the 
maximum of two fuzzy numbers and [zα,zα] is 
the α-cut of its triangular approximation then 
xα ≤ zα, and zα ≤ xα. Therefore the real maximum 
and its triangular approximations have the same 
mode and the same support. 

Possibility theory was proposed by Zadeh [32], 
and developed by many researchers such as 
Dubois and Prade [6] to manage the uncertainty 
in fuzzy variables. Following Nahmias [20] we 
have the following definitions. 

A possibility measure Pos on a nonempty 
universe Θ is a nonnegative function on its 
subsets such that Pos(∅) = 0, Pos(Θ) = 1 and 
Pos(∪k Ak) = supk Pos(Ak) for arbitrary subsets 
Ak ⊆ Θ. A fuzzy variable ξ is defined as a 
function from the universe Θ to the real numbers 
whose membership function is related to the 
possibility Pos by µ(x) = Pos{ θ∈Θ: ξ(θ)=x }. 
From the possibility measure we get the 
necessity measure of every subset A defined by 
Nec(A) = 1 − Pos(Ac) and the credibility 
measure defined by Cr(A) = (Pos(A)+Nec(A))/2. 

If µ is the membership function of a fuzzy 
variable ξ then Pos(ξ ≤ x) = supu≤x µ(u) and 
Nec(ξ ≤ x) = 1 − supu>x µ(u). For a triangular 
fuzzy variable ξ = Tr(a1,a2,a3) we have the 
following equations.  
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These formulas will be used to know the 
credibility that a solution satisfies the 
constraints. 

3     Fuzzy VRP with Time Windows 

We consider the Vehicle Routing Problem with 
Time Windows (VRPTW) and extend the usual 
model to include triangular fuzzy travel times.  

The VRPTW is given by a set of k identical 
vehicles to serve a set of n customers within 
given time windows departing form a depot. 
Each vehicle goes by a route visiting a number 
of nodes satisfying their own demand. 

We assume that:  

• Each vehicle has a container with a capacity 
limitation and the total loading of each 
vehicle cannot exceed its capacity.  

• Each vehicle is assigned to only one route 
on which there may be more than one 
customer.  

• Each customer will be visited by one and 
only one vehicle.  

• Each route begins and ends at the depot.  

• Each customer has its time window within 
which the delivery is permitted to start.  

• The travel times between customers are 
assumed to be triangular fuzzy variables. 

We consider the following indices and model 
parameters: 

i = 0: is the depot index; 

i = 1, 2, ..., n: are the customers indexes; 

k = 1, 2, ..., m: are the vehicles; 

q[i]: is the amount of demand of customer 
i; i = 1, 2, ..., n; 

C[k]: is the capacity of vehicle k; k = 1, 2, 
..., m; 

d[i,j]: is the distance from customers (or 
depot) i to j; i,j = 0, 1, ..., n; 

T[i,j]: is the triangular fuzzy travel time 
from customer i to j; i,j = 0, 1, ..., n; 

U[i,j]: is the unloading time at customer i; 
i = 1, 2, ..., n; 

[a[i],b[i]]: is the time window of 
customers i; a[i] and b[i] are the 
respective beginning and end of the 
time window; i = 1, 2, ..., n. 

We describe the operational plan consisting of 
the routes for the k vehicles to serve the n 
customers by a single decision vectors x of size 
n+m+1 denoted by x = (x0, x1, x2, ..., xn+m) that is 
a rearrangement of (0, 1, 2, ..., n+m) such that 
x0 = 0 and xn+m > n. Each element of the solution 
greater than n represent a vehicle at depot in 
such a way that xr = n+k represents the vehicle k 
at depot. The customers visited for this vehicle 
are those of the indexes that appeared in the 
solution from the previous vehicle (x0 if this is 
the first vehicle). For instance, a solution of a 
problem with 9 customers and 3 vehicles can be: 

x = [ 0, 5, 3, 4, 7, 12, 8, 2, 10, 1, 9, 6, 11 ] 

That represents the three routes: 

• 0 → 5 → 3 → 4 → 7 → 0-(12): vehicle 3 

• (12)-0 → 8 → 2 → 0-(10): vehicle 1 

• (10)-0 → 1 → 9 → 6 → 0-(11): vehicle 2 

In this way, the vector arrangement x ensure that 
that  

• each vehicle will be used at most one time;  

• all tours begin and end at the depot;  

• each customer will be visited by one and 
only one vehicle; and  

• there is no sub-tour.  
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The objective of the optimization problem to be 
minimized is the total traveled distance of the 
solution x that is computed by: 
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where for every i > n, d[i,j] = d[j,i] = d[0,j], for 
all j = 1,2, …, n. 

The amount of demand served by each vehicle is 
computed by recurrent formula on the vector x. 
Take Q[0] = 0, and, for r = 1, 2, …, m+n, apply: 
If xr−1 > n then Q[xr] = q[xr], otherwise  

Q[xr] = Q[xr−1] + q[xr]. 

For the first indexes xr > n, the value computed 
for Q[xr] represents the load of the vehicle 
xr − n. Therefore its capacity constraint is 
verified by  

Q[xr] ≤ C[xr − n]. 

The service time for each customer, denoted by 
S[.] is obtained by similar recurrent formula on 
the vector x. We use the recursive formula: 

S[xr] = a[xr] ∨ (S[xr−1] + U[xr−1] + T[xr−1, xr]) 

with the following conventions. The initial 
values at the depot are S[x0] = 0 and U[x0] = 0. If 
xr corresponds to a vehicle (xr > n) the service 
time is set to 0 to compute the service time for 
the next customer xr+1 by the above recurrent 
formula. For these cases, the values of U[xr] = 
U[j] for j > n are also null, so that the service 
time for the next customer xr+1 (that is the first 
customer of the next vehicle) is: 

S[xr+1] = a[xr+1] ∨ T[0,xr+1]. 

A positive value for U[j] for these cases (j > n) 
would correspond to some time-consuming 
preprocessing operation at the depot like the 
load of the vehicles. The time windows for these 
indexes ([a[j],b[j]] for j > n) do not exist unless 
the vehicle have to return to the depot within 
given time interval. 

Note that since the times between customers 
T[i,j] are triangular fuzzy numbers then also 
each the service time S[xr] is also triangular 
fuzzy number. The load times U[xr] and 
beginning of the time windows a[xr] are crisp 
number that are special case of triangular fuzzy 
numbers where the three defining numbers are 
equal. Then the credibility that, with the solution 
x, the customer xr is served within its time 
windows is: Cr(S[xr] ≤ br). 

Therefore, at confidence value α, the solution x 
verifies the fuzzy constraint of service times 
within the corresponding time window if:  

maxr Cr(S[xr] ≤ br).≥ α. 

4.     GRASP 

We propose a solution algorithm based on 
GRASP (Greedy Randomized Adaptive Search 
Procedure) for the FVRPTW. GRASP is a 
multi-start two-phase metaheuristic for 
combinatorial optimisation proposed by Feo and 
Resende [7] basically consisting of a 
construction phase and a local search 
improvement phase. It is a recently exploited 
method that combines the power of greedy 
heuristics, randomisation, and local search in an 
adaptive schema. The solution construction 
mechanism builds a solution step-by-step by 
adding a random new element from a candidate 
list (the restricted candidate list RCL) to the 
current partial solution. Subsequently, a local 
search phase is applied to try to improve the 
current solution. This two-phase process is 
iterative, continuing until the user termination 
condition such as the maximum allowed CPU 
time or the maximum number of iterations is 
reached.  

In the construction phase of GRASP, the greedy 
criterion for updating the RCL can be value-
based or size-based restricted candidate list is 
used [22]. The value-based RCL involves 
placing in the list only the candidate items 
having a greedy value not greater than a 
specified threshold, whose values should vary 
dynamically during the search process. In the 
other side, the size-based RCL involves placing 
in the list a specified number of candidate items, 
those having the greatest greedy values, the size 
of the RCL should also vary dynamically during 
the search process. The size or value of the 
threshold of the RCL needs to be tuned to get a 
good balance between intensification and 
diversification. Indeed, a small RCL results in a 
large intensification capability and a small 
diversification capability. This means that the 
resulting algorithm is very fast, but it can easily 
become trapped at a local optimum. Conversely, 
a large list size produces an algorithm with a 
large diversification capability, but a short 
intensification capability, because its behaviour 
approaches a completely random construction 
mechanism. 

Proceedings of IPMU’08 1269



 
Constructive phase of GRASP for FVRPTW 
1.  Initialization. 
1.1.  x ← [0, 1, …, n, …, n+m]. 
1.2.  F ← 0 ; 
1.3  r ← 0 ;  
1.4  s ← n ; 
1.5  M ← 1 ; /* Minimum credibility 

2.  Iterations. 
2.0  Repeat  
2.1   s ← s+1 ;  
2.2   Select j∈[s..n+m]  
2.3   Interchange x[s] and x[j] ; 
2.4   Q ← 0 ; S ← 0 ;  
2.5   Repeat 
2.6    z ← x[r] ;  
2.7    S ← S + U[z] ;  
2.8    r ← r+1 ; 
2.9    Select i∈LCR[r..s-1]  
2.10    If Q + q[x[i]] < Cap[s] AND Cr(S+T[z,x[i]] > b[x[i]]) > ALPHA 
2.11    Then 
2.12     Interchange x[r] and x[i] ; 
2.13     S[x[r]] ← S + T[z,x[r]] ;  
2.14     [x[r]] ← a[x[r]]∨S[x[r]]; 
2.15     Q ← Q + q[x[r]] ; 
2.16     F ← F + D[z,x[r]] ; 
2.17    Else     /* Complete vehicle 
2.18     F ← F + D[z,0] ; 
2.19     r ← r+1 ;  
2.20     Interchange x[r] and x[s] ; 
2.21     Goto 2.1. 
2.22   Until r = s 
2.23  Until s = n+m 

Figure 1: Constructive phase of GRASP 
 

The construction phase of our GRASP for the 
FVRPTW problem is specified in Figure 1. It 
starts with the original sequence from 0 to n+m 
that is rearranged by choosing the components 
xr, r = 1, 2, …, n+m, one by one. After the 
initialization (1.1-1.5) the algorithm chooses 
the first vehicle and then starts to choose 
customers.  

Once each vehicle is chosen (2.2), its partial 
load and used time are initialized (2.4), before 
to start the selection of its customers. The 
customers are randomly selected from the 
Restricted Candidate List LCR (2.9) until the 
capacity of the vehicle or the credibility limits 
do not allow choosing new customers (2.10). 
With the selected customer, the service time 
(2.13-14), the partial load (2.15), and the total 
distance (2.16) are updated.  

When there is not new customer to add (2.17) 
the distance to the depot is added to the 
objective (2.18) and the vehicle is stored in x 
(2.19-20). The algorithm continues to select a 
new vehicle (2.21) if there are customers 
(2.22) and vehicles to choose. 

For the improvement phase of GRASP, we can 
use the well known local searches for VRPTW 
based on swap moves, Or-Opt moves and r-opt 
moves (2-opt or 3-opt) [19]. For the sake of 
simplicity, we use in our first experiments the 
single swap moves consisting of interchanging 
two items in x. Note that, for each move, the 
objective value is easily computed in O(1) time 
but feasibility must be tested by the sequential 
applications of recurrent formula 2.13-2.14 
with the resetting of Q and S each time a 
vehicle is encountered while condition 2.10 is 
tested. 
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Table 1: Demands (q) and distances (d) between customers 
d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 q 
1 19.0                  200
2 17.5 6.0                 100
3 28.0 11.0 10.5                140
4 24.0 21.0 15.0 20.0               160
5 24.5 32.0 26.0 34.0 15.5              200
6 31.2 44.5 39.5 49.0 31.0 16.0             60 
7 31.0 48.5 45.0 55.5 41.5 28.5 16.0            200
8 21.0 37.5 33.5 44.0 30.0 18.5 13.0 11.5           135
9 18.0 36.0 33.0 44.0 38.0 24.0 20.0 13.5 7.0          120
10 21.5 40.0 39.0 49.5 43.0 36.5 32.5 21.0 20.0 13.0         140
11 36.5 55.0 54.0 65.0 56.0 46.0 37.0 21.0 28.0 23.0 15.5        100
12 31.5 46.5 48.0 57.0 55.5 51.0 48.5 36.0 36.0 29.0 16.0 21.5       200
13 23.0 38.5 39.0 48.5 47.0 44.0 43.0 32.5 30.0 23.0 12.0 23.0 9.0      80 
14 28.0 38.5 41.5 49.0 52.0 51.0 52.5 43.5 40.0 33.0 22.5 33.0 13.0 11.0     60 
15 34.5 40.0 44.0 50.0 56.5 58.5 62.0 54.0 50.0 43.0 34.0 44.5 24.0 22.0 11.5    200
16 30.0 29.5 34.5 38.0 48.5 54.0 60.5 56.0 49.0 43.5 38.0 51.5 33.0 28.0 20.5 14.0   90 
17 18.5 16.5 21.3 26.5 35.0 41.0 50.0 48.0 39.0 35.0 33.0 48.0 34.0 27.0 24.0 23.5 13.5  200
18 24.0 14.0 20.0 22.0 35.0 44.0 54.5 55.0 45.0 41.5 41.0 56.5 43.0 35.0 32.0 36.0 17.0 8.5 100

 

6.     Experiments 

For the experiments we use the example of 
Zheng and Liu [33]. It has 18 customers, 
labelled “1”, “2”, …, “18”, and a depot, 
labelled ‘0’. The amount of demand at each 
customer and the distances between customers 
(and the depot) are given in Table 1.  

The travel times are triangular fuzzy numbers 
shown in Tables 2 and 3, with the time 
windows of each customer. The unloading 
time at each location is 15 minutes and the 
capacity of each of the four available vehicles 
is 1000. The considered confidence level α is 
0.90. 

Table 2. Time windows and fuzzy travel times between customers (part I) 
T Window 0 1 2 3 4 5 6 7 8 
1 [09:00,15:50] (25,50,75)         
2 [09:20,15:30] (5,10,15) (20,40,60)        
3 [09:40,14:40] (25,50,75) (5,10,15) (20,40,60)       
4 [09:20,14:30] (7,15,23) (25,50,75) (7,15,23) (22,45,68)      
5 [09:00,15:20] (25,50,75) (17,35,53) (17,35,53) (15,30,45) (17,35,53)     
6 [09:00,14:20] (25,50,75) (7,15,23) (20,40,60) (2,5,8) (22,45,68) (15,30,45)    
7 [09:30,14:10] (12,25,38) (20,40,60) (15,30,45) (17,35,53) (7,15,23) (12,25,38) (17,35,53)   
8 [09:00,15:30] (7,15,23) (20,40,60) (5,10,15) (22,45,68) (10,20,30) (17,35,53) (20,40,60) (17,35,53)  
9 [09:10,15:50] (25,50,75) (7,15,23) (22,45,68) (5,10,15) (22,45,68) (15,30,45) (5,10,15) (20,40,60) (20,40,60)
10 [09:40,13:20] (10,20,30) (22,45,68) (12,25,38) (22,45,68) (7,15,23) (15,30,45) (20,40,60) (5,10,15) (12,25,38)
11 [09:10,14:20] (25,50,75) (5,10,15) (17,35,53) (15,30,45) (17,35,53) (5,10,15) (15,30,45) (5,10,15) (17,35,53)
12 [09:00,15:20] (27,55,83) (17,35,53) (17,35,53) (15,30,45) (17,35,53) (2,5,8) (15,30,45) (7,15,23) (17,35,53)
13 [09:20,16:30] (5,10,15) (20,40,60) (5,10,15) (20,40,60) (7,15,23) (15,30,45) (17,35,53) (17,35,53) (5,10,15) 
14 [09:20,16:00] (25,50,75) (5,10,15) (20,40,60) (2,5,8) (22,45,68) (15,30,45) (2,5,8) (17,35,53) (17,35,53)
15 [09:20,14:30] (22,45,68) (5,10,15) (20,40,60) (5,10,15) (22,45,68) (15,30,45) (5,10,15) (17,35,53) (17,35,53)
16 [09:00,15:10] (7,15,23) (22,45,68) (7,15,23) (22,45,68) (10,20,30) (15,30,45) (22,45,68) (17,35,53) (10,20,30)
17 [09:00,16:20] (15,30,45) (20,40,60) (12,25,38) (20,40,60) (10,20,30) (12,25,38) (17,35,53) (2,5,8) (12,25,38)
18 [09:00,16:20] (25,50,75) (5,10,15) (22,45,68) (5,10,15) (25,50,75) (15,30,45) (7,15,23) (17,35,53) (20,40,60)

 
The best solution obtained by Zheng and Liu 
[33] with a hybrid algorithm that combines a 
GA with fuzzy simulations (with 10,000 cycles 
in simulation, 5000 generations in GA) in 10 
hours with a PC with 4 processors at 2 Ghz 
consists in the following four routes: 

   R1: 0→16→17→18→5→0 
   R2: 0→10→12→13→14→15→8→0 
   R3: 0→1→2→3→0 
   R4: 0→9→6→7→11→4→0 

The total distance is F = 457.5 and the loads of 
the vehicles are 590, 815, 440 and 640.  

Proceedings of IPMU’08 1271



We obtain with our GRASP a solution with 
only three routes that have loads 795, 930, and 
760 and total distance travelled F = 365.5 in 
only 1 minute in a PC at 4.30 Ghz. The three 
routes are: 

   R1: 0→17→18→16→15→14→12→13→0 

   R2: 0→2→1→3→4→6→8→0 

   R3: 0→10→9→11→7→5→0 
 

Table 3. Time windows and fuzzy travel times between customers (part II) 
T 9 10 11 12 13 14 15 16 17 
10 (22,45,68)         
11 (17,35,53) (15,30,45)        
12 (17,35,53) (12,25,38) (7,15,23)       
13 (20,40,60) (20,40,60) (17,35,53) (17,35,53)      
14 (5,10,15) (20,40,60) (15,30,45) (15,30,45) (20,40,60)     
15 (2,5,8) (20,40,60) (15,30,45) (20,40,60) (20,40,60) (2,5,8)    
16 (22,45,68) (15,30,45) (17,35,53) (7,15,23) (7,15,23) (22,45,68) (22,45,68)   
17 (20,40,60) (5,10,15) (12,25,38) (12,25,38) (12,25,38) (17,35,53) (17,35,53) (12,25,38)  
18 (7,15,23) (20,40,60) (15,30,45) (20,40,60) (20,40,60) (7,15,23) (7,15,23) (20,40,60) (20,40,60) 
 

Conclusions 

Fuzzy Logic systems have been used for 
manage the uncertainty in real logistic and 
transportation systems [25]. We consider the 
Fuzzy VRPTW considering uncertainty in the 
travel times that are modelled by triangular 
fuzzy numbers. The uncertainty in the 
constraints is managed with the Chance-
Constrained Programming approach. A single 
experiment shows that our GRASP algorithm 
gets in very short time better solutions than the 
costly fuzzy simulation process proposed by 
Zheng and Liu [33].  
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