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Abstract 

This paper presents two methods to 
obtain the weights in multiattribute 
decision making, when the only relation 
between the attributes is the order. The 
first one is the SMARTER method. The 
second is the OWA operator and finally 
the relation between them. The same 
operation and examples are also given. 
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1     Introduction 
The decision analysis field has often 
encountered difficulties in transforming 
theoretical ideas into practical decision support 
tools.  

Multicriteria decision-making (MCDM) is an 
important part of decision science, deals with 
the problem of helping the decision-maker to 
choose the best option into a set of alternatives, 
and according to several criteria. In classical 
MCDM methods, the ratings and the weights of 
the criteria are known precisely.  

In the real world, the uncertainty, constraints, 
and even the vague knowledge of the experts 
imply that decision-makers cannot provide 
exact numbers to express their opinions. In a lot 
of cases, the only knowledge is an order 
relation. 

In the process of decision-making, the decision-
maker generally needs to provide his/her 
preferences over a set of decision alternatives. n

Different ways of admitting approximate 
preferences have attracted much attention in the 
decision analysis literature Pöyhönen and 
Hämäläinen (2001). 

In the TRADEOFF procedure (Keeney and 
Raiffa, 1976) the decision-maker compares two 
hypothetical alternatives that differ in two 
attributes only.  

In PRIME (Preference Ratios In Multiattribute 
Evaluation) the decision maker evaluates ratios 
of value differences (Salo and Hämäläinen, 
2001). The decision maker enters these ratios as 
intervals of numbers. 

In AHP (Analytic Hierarchy Process) a decision 
maker can use verbal expressions to facilitate the 
preference elicitation. Verbal expressions are 
converted into numbers according to the nine 
point integer scale {1,….,9} of Saaty (1980) or 
their reciprocal {1/9,…,1}.  

According to Edwards and Barron (1994) and 
Valiris el al (2005), the Simple Multi-Attribute 
Rating Technique (SMART), is “by far the most 
common method actually used in real, decision-
guiding multi-attribute utility measurements”. 
For the SMART technique, ratings of 
alternatives are assigned directly, in a natural 
scale of the criteria where available. The 
advantage of the SMART model is that it is 
independent of the alternatives.  

In SMARTER (von Winterfeldt and Edwards, 
1986), where one judges the performance of an 
alternative by choosing an appropriate value 
between a predetermined lower limit for the 
worst (real or imaginary) alternative and a 
predetermined upper limit for the best (real or 
ideal) alternative.  
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The OWA operator provides examples of 
aggregation operators in which the ordering of 
the arguments play a central role in the 
operation. The OWA operator provides a 
parameterized family of averaging operators, 
having as its arguments a finite set of values. A 
fundamental aspect of these operators is the 
reordering process that associates the arguments 
with the weights. 

In this work, we provide a class of operators 
related with the ordering of the argument values. 

The paper is organized as follows: the next 
section introduces the framework for the OWA 
operator. Section 3 deals with the evaluation of 
the SMARTER approach. Section 4 examines 
the relation between OWA and SMARTER, and 
an illustrative example is given. Finally, the 
most important conclusions are outlined. 

 

2     OWA operator 
In this section we review the basic concepts 
associated with the OWA operators [12]. 
 

2.1 Definition and Properties 
An Ordered Weighted Averaging operator 
(OWA) of dimension n is a function  

nF : R R→  

that has an associated  vector    n

[ ]1 2
T

nW w ,w ,...,w=  

such that  

1.-  [ ]0 1iw ,∈

2.-  1ii
w =∑

Furthermore, ( )1 2 n j j jF a ,a ,..,a w b=∑           (1) 

where jb  is the jth largest of the  ia

If we represent the ordered arguments, the jb , 
by a vector , called ordered argument vector. 
We can express the expression (1) as: 

B

( )1 2W nF a ,a ,..,a W .B=                   (2) 

In particular, a weight is not associated with 
a specific argument but with an ordered position 
of the aggregate. This ordering operation 
essentially provides a non-linear aspect to this 
aggregation operation. 

iw

A number of properties can be associated with 
these operators. It is first noted that the OWA 
aggregation is commutative, that is the 
aggregation is indifferent to the initial indexing 
of the argument. A second characteristic 
associated with these operators is monotonic. 
Thus, if for all i, then  ii aa ≥ˆ

( ) (1 2 1 2n nˆ ˆ ˆ )F a ,a ,...,a f a ,a ,..,a≥  

Another characteristic associated with these 
operators is that of idempotency. In particular, if 
for all i, ia a=  then ( )1 2 nF a ,a ,..,a a= . 

The satisfaction of these three conditions, as 
noted by Dubois and Prade (1985), assures these 
operators of being in the class of operators 
called mean operators. It can also be shown; it 
follows from the fact that an OWA operator is a 
mean operator, that the Min and Max of the 
arguments bound the OWA aggregation. That 
for any OWA aggregation F, 

[ ]i iMin a ≤ ( )1 2 nF a ,a ,..,a ≤ [ ]i iMax a      (3) 

In Yager (1993) discusses a number of families 
of these operators. The various different mean 
operators are implemented by appropriate 
selection of the weights in the associated 
weighting vector. 

In the following, we shall look at some of these 
operators.  

The Max operator is recovered if 

[1 0 0 T*W W , ,..,= = ]

]

               (4) 

the Max OWA operator emphasizes the largest 
element in the argument bag. 

The Min operator is recovered if 

[0 0 1 T
*W W , ,..,= =                (5) 

the Min operator emphasizes solely the smallest 
element in the bag of arguments.  

An interesting class of operators is the kth largest 
argument in the aggregation. We noted that the 
Max and the Min are cases of this when the k is 
1 and  n, respectively 

The ordinary simple average is recovered if 

[ ]1 1 1
AVG

TW W / n, / n,.., / n= =      (6) 

In this case  
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( )1 2
1 1

n ii ii
F a ,a ,..,a b a

n n
= =∑ ∑          (7) 

It is noted that in this case, no reordering is 
required. 

 

2.2. Mathematical Programming Problem 
O´Hagan (1988) suggested a methodology for 
obtaining the OWA weighting vector based 
upon the use of these characterizing measures. 
This approach, which only requires the 
specification of just the α value, generates a 
class of OWA weights, which are called ME-
OWA weights. The determination of these 
weights, w1,..,wn, from α requires the solution of 
the following Mathematical Programming 
Problem (MPP). 

Maximice 

( ) i iH W w ln w= −∑  

subject to  

(1)   ( )( )
1

1 1
1

n

i
i

n w
n

α
=

= −
− ∑  

(2)    1ii
w =∑

(3)    [ ]0 1iw ,∈

In this MPP formulation, restriction (1) is the 
imposition of the condition that the desired α 
value is attained. Constraints (2) and (3) just 
assure us that the weights satisfy the basic 
requirements of the OWA weights.  

The objective function used in this approach is 
one of trying to maximize the dispersion or 
entropy, that is calculate the weights to be the 
ones which use as much information as possible 
in the aggregation. 

For α=0.75  =[0.62, 0.27, 0.11] 3w

                    =[0.52, 0.27,0.15,0.06]          (8) 4w

                   =[0.46, 0.26, 0.15, 0.08, 0.05] 5w

It can easily be shown Yager (1988) that 

1.- ( ) 1* =Worness  

2.- ( ) 0*orness W =  

3.-  ( ) 0 5AVGorness W .=

A measure of andness can be defined as  

andness (W) = ( )1 orness W−  

 

3. SMARTER method 
Multiattribute value analysis derives an overall 
value for each alternative. This is composed of 
the values of the alternatives with respect to each 
attribute and of the weights of the attributes. 

If the attributes are mutually preferentially 
independent, an additive value function can use 
to aggregate the component values (Keeney and 
Raiffa, 1976). The overall value of an alternative 
x is then 

( ) ( )
1

n

i i i
i

v x w v x
=

=∑              (9) 

where ix  is the consequence of an alternative x 
for attribute i, n is the number of attributes, and 

 is the weight of the attribute i. The sum 
up weights is normalized to one.  

0iw ≥

Edwards (1977) originally described SMART as 
the whole process of rating alternatives and 
weighting attributes. With SMART the weights 
are elicited in two steps (Edwards, 1977; von 
Winterfeldt and Edwards, 1986): 

1. Rank the importance of the changes in the 
attributes from the worst attribute levels to the 
best levels. 

2. Make ratio estimates of the relative 
importance of each attribute relative to the one 
ranked lowest in importance. 

As we have already commented, Edwards and 
Barron (1994) also presented a new version, 
SMARTER, which only uses the ranking of 
attributes to derive the weights.  

The idea is to use the centroid method of 
Solymosi and Dombi (1986) so that the weight 
of an attribute ranked to be ith is 

1 1n

i
k i

v
n k=

= ∑                    (10) 

where n is the number of attributes. 

For n=4 these values are: 

1
1 1 1 1 251
4 4 3 2 48

v ⎛ ⎞= + + + =⎜ ⎟
⎝ ⎠
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2
1 1 1 1 13
4 4 3 2 48

v ⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

 

3
1 1 1 7
4 4 3 48

v ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

4
1 1 1
4 4 16

v ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

In this way we have obtained the vector of 
weights as  

[0.5208, 0.2708, 0.1458, 0.0625] 

 

In the same form, it is possible to obtain the rest 
of the vectors for the different numbers of 
attributes. In the table 1 we present the weights 
for the values of n. 

Table 1: Weights for indicated table of attributes 

  n 

v 

2 3 4 5 6 

1v  0.7500 0.6111 0.5208 0.4567 0.4083 

2v  0.2500 0.2778 0.2708 0.2567 0.2417 

3v   0.1111 0.1458 0.1567 0.1583 

4v    0.0625 0.0900 0.1028 

5v     0.0400 0.0611 

6v      0.0278 

 

4. The Operator 
If we view the OWA weights as a column vector 
(as in table 1). We can refer to the weights with 
the low indices as weights at the top, and those 
with higher indices as weights at the bottom, 
(Yager 1996).  

Using this convention, we see that if most of the 
weights are at the top, then the aggregation is 
emphasizing the higher-valued arguments in the 
calculation of the median values. If most of the 
weights are at the bottom, then the aggregation 
is emphasizing the smaller-valued argument in 
the aggregation.  

The Min aggregation is a strong example of this 
type of aggregation. If the weights are equally 
distributed between those above the middle and 
those below the middle, we can see that the 

aggregation is not favouring the higher-valued 
element over the lower-valued element. 

Definition 1: Let { }1 2 nX x ,x ,...,x=  be a 
numeric set, that has associated an aggregation 
function F ={ }1 2 nf , f ,..., f , which is decreasing, 
that is, 1i if f +≤  ∀ i=1,2,...,n,  then  

Operator =               (11) ∑
=

n

i
ii xw

1

.

( )1i i iw w g f−= +  

Where: iw ∈  [0,1] , . 1
1

=∑
=

n

i
iw

The representation of this operator is given in 
figure 1. 
 
 
   fn 
   . 
   .                                                              .  
 
  fj 
 
   .                                                              . 
   .                                                              . 
                                                             
 f2 
 
 
 f1 
 
                    x 1         x 2    .  .  .            x n-1       x n 

x 1       x 2      x3      .  .  .              x n-1       x n

x 2     x3     .  .  .            x n-1      x n

xj  .  .  .   x n-1   x n

   xn 

Figure 1: Operator representation 

 

Definition 2: Let { }nxxxX ,...,, 21=  be an 
alternative set, that have associated an order 
between then, that is, 1i ix x +≤  i=1,2,...,n,  
and suppose that the function considered for 
aggregation is

∀

( ) 1ig f i= n ,  then  

1 1i iw w in+= +                     (12) 

and 

1
nw

n.n
=  

iw ∈  [0,1] ,  

1

1
n

i
i

w
=

=∑ . 
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1.- It is important to verify that : 1
1

=∑
=

n

i
iw

1

n

i
i

w
=

=∑ 1
n.n

+
( )

1 1
1n.n n. n

⎛ ⎞
+⎜ ⎟⎜ ⎟−⎝ ⎠

+…+

( )
1 1 1

1 2
...

n.n n. n .n
⎛ ⎞

+ + +⎜ ⎟⎜ ⎟−⎝ ⎠
+

( )
1 1 1

1 2
...

n.n n. n .n n
⎛ ⎞

+ + + +⎜ ⎟⎜ ⎟−⎝ ⎠

1  

1

n

i
i

w
=

=∑ 1n
n.n

+ ( ) ( )
11

1
n

n n
−

−
+…+ 12

2.n
+ 1

n
 

then 1. 
1

n

i
i

w
=

=∑

 

Example 1. We consider a Multiattribute 
Decision Evaluation, with four attributes and 
that the only information about the criteria is 
that . 1 2 3 4C C C C

In this context the associated weights are: 

4
1 1 3

4 4 16 48
w

.
= = =  

3
1 1 7

16 4 3 48
w

.
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

2
7 1 1
48 4 2 48

w
.

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

3  

1
13 1 25
48 4 48

w ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

with  

( )( )
1

1
1

n

i
i

n i w
n

α
=

= −
− ∑ = 1 25 13 73 2

3 48 48 48
⎛ ⎞

⎟+ +⎜
⎝ ⎠

=

3
4

= 0.75 

It is possible to see that this value coincide with 
that given in (8). 

 

Theorem 1. Let be  and [ nwwwO ,...,, 211 =

1. The semi sum of  and ´  is a new OWA 
operator with weights the semi sum of the 
corresponding component of the two vectors. 

1O 1O

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
++

+
=

+
=

2
...

22

´´
11

´
11 nn wwwwOO

O           (13) 

being  

1
2
1

2
1

2
1

2
1

22

2

1

´

11

´
1

1

1

´

=+=+=+

=
+

∑∑∑∑

∑

====

=
n

i
i

n

i
i

n

i

n

i

i

n

i

ii

ww
ww

ww

 

 

2. The orness associated with this new OWA 

operator O is , 
2

21 αα
α

+
=  

( ) ( )

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

=
−−−−

2
2

...
2

2
2

1

´
11

´
22

´
22

´
11

nnnn wwww

ww
n

ww
n

α  

= ( ) ( ) ( ) ( ) ´
1

1

1

1

1
2
11

2
1

i

n

i
i

n

i

winnwinn ∑∑
−

=

−

=

−−+−−  

= 21 2
1

2
1 αα +  

 

Corollary: If =1- , then 2α 1α 2
1

=α  

 

Example 2: Let be  = [0.5208, 0.2708, 
0.1458, 0.0625] and =0.75  

1O

1α

´ = [0.2500, 0.2500, 0.2500, 0.2500]  1O

and =1/2. 2α

Then 

O = [0.3804, 0.2604, 0.1979, 0.1563] 

being 

]
[ ]´´

2
´
1

´
1 ,...,, nwwwO =  two vectors of weights with 

associated orness  and , respectively. In 
this situation it is possible to see that, 

1α 2α

α = 1/3 (3. 0.3854 + 2. 0.2604 + 0.1979) = 
0.625 

and α =(0.75+0.50)/2=0.625 
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5.  Conclusion.  
We have shown that the weights obtained using 
the SMARTER method and obtained by an 
OWA operator, taking into account the O´Hagan 
approach, are the same when the orness 
α =0.75. 

Furthermore, we prove that the composite of 
two OWA operators is a new OWA operator 
with orness equal to the sum of the orness of the 
operator divided by 2.  
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