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Abstract

The paper presents models for the
portfolio selection problem, which
allow two kinds of uncertainty to be
tackled: that arising from the data and
that associated to the imprecise decision
maker criteria. In the first case, the
models are formulated in terms of LR-
fuzzy numbers and are solved by means
of genetic algorithms. In the second
case, some algorithms designed by the
authors for fuzzy location problems are
adapted.

Keywords: Portfolio selection, Heuristics, Soft
Computing.

1     Introduction
Among the financial products offered by
investment companies, one of the most relevant
for firms is the choice and management of the
investment portfolio it is perhaps choosing and
managing investment portfolios. Optimization is
assumed to be useful in improving financial
asset selection in a portfolio, taking into account
the risk of every possible situation.
Undoubtedly, choosing the best investment
options for a portfolio is important to the
investor in economic terms, and constitutes a
complex problem because of the following
aspects:

a) the large number of parameters involved,

b) the uncertainty in the data,

c) the fact that it is difficult to emulate
investor desires in a model.

Both stochastic and fuzzy programming have
been used in order to deal with uncertainty
Some authors have based their research on
stochastic approaches (Kall and Wallace, 1994).
However, sometimes the use of probability
distributions is not justified. Using fuzzy models
avoids unrealistic modelling and offers a chance
to reduce information costs. In Inuiguchi and
Ramík (2000), the portfolio selection problem
exemplifies the advantages and disadvantages of
different fuzzy mathematical programming
approaches.

This paper presents a summary of some
optimization schemes for managing portfolio
selection problems based on soft-computing
methods. The techniques used to solve these
models include exact optimization methods and
heuristics techniques, some of which are general
and others are adapted from fuzzy location
models.

2     Formulating the Portfolio Selection
Problem

The standard formulation of Markowitz model
(MV), is

  

€ 

Min x tQx

s.t. E(Ri)xi ≥ ρ
i=1

n

∑

xi =1
i=1

n

∑
li ≤ xi ≤ ui ,  1≤ i ≤ n

             (1)

where xi is the proportion of a total investment
fund chosen by the investor, devoted to asset ith

for n risky assets,.Ri is the return on the ith asset
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(it is assumed to be a random variable). Thus,
the vector of returns R = (R1, ..., Rn) can be
summarized by the mean vector E(R) and the
covariance matrix Q. The parameter ρ  can be
assumed to represent the minimal rate of return
required by the investor and ui (respectively li)
the maximum (minimum) amount of total funds
that can be invested in asset i.

In the model MV, the averages E(Ri) and the
elements of the covariance matrix Q can be
approximated using historical data.

Dissatisfaction with the traditional notion of
variance as a measure of risk is due to the fact
that no distinction is made between gains and
loses. In fact, Markowitz (1959) provided two
suggestions for measuring downside risk: a
semi-variance, which is the sum of the squares
of negative deviations from the mean, or a semi-
variance computed from a target return.

Moreover, different elements can be fuzzified in
the portfolio selection problem. Some authors
use possibility distributions to model the
uncertainty on returns. Tanaka and Guo focus on
the achievements of possibility theory and its
applications for operation research, in particular
to portfolio selection models. Their approach
permits expert knowledge to be incorporated by
means of possibility grading, to reflect the
degree of similarity between the future state of
stock markets and their state in previous periods
(see, for instance, Tanaka and Guo, 1999; Guo
and Tanaka, 2003). Other authors study the
portfolio selection problem using fuzzy
formulations. Watada (1997) proposed a fuzzy
portfolio selection model where fuzzy numbers
were used to represent the decision makers’
aspiration levels for the expected rate of return
and a certain degree of risk. Ortí et al (2002)
propose the incorporation of fuzzy numbers to
represent the uncertainty of the future return on
assets and set out portfolio selection as a
problem of nonlinear multi-objective program-
ming with fuzzy parameters.

Essentially, two kinds of uncertainties can be
distinguished in the portfolio selection model:

a) that arising from historical data, which
are used to estimate the volatility and
expected returns of the assets.

b) that depending on investor criteria.

We devote one section to each type of
uncertainty.

3     Modelling Uncertainty in the Data

It is a well known fact that the portfolio
selection problem has fuzzy characteristics (see
León et al., 2002). In this context, where
investors seek the minimum risk under a given
expected return, unfeasibility is caused by the
conflict between the desired return and
diversification requirements. Hence, in the
investor’s opinion, the viability of the instance
depends on how severe perturbations must be in
order to make it feasible. The fuzzy linear
programming techniques used to repair
infeasible instances with respect to the original
will of the investor as much as possible. The
uncertainty of the returns on assets is
represented as an expected interval of a fuzzy
number (Dubois and Prade, 1987) and the risk of
the portfolio is defined as the fuzzy
measurement of the mean total semi-deviation
(León et al, 2004). Moreover, decision maker
criteria are also added to the model.

3.1 Portfolio Selection Using LR-fuzzy
Numbers

Let us assume that 

€ 

˜ R i is an LR-fuzzy number
with trapezoidal possibility distribution. The
return of the ith asset is therefore denoted by

€ 

˜ R i = ali ,aui ,ci ,di( )LR
,

then, the mean of the fuzzy return of the
portfolio,

€ 

˜ c = Rixi ,
i=1

n
∑

has the following expected interval as a mean

  

€ 

E( ˜ c ) = alixi −
1
2

cixi , auixi +
1
2

dixi 
i=1

n
∑

i=1

n
∑

i=1

n
∑

i=1

n
∑
 

  
 

  
,

and the risk is:

  

€ 

g( ˜ c ) = 0, 1
2

aui + ali( )+
1
4

ci − di( )
 

 
 

 

 
 xi

i=1

n
∑

 

 
 

 

 
 .
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In order to determine the intervals of the mean
returns and risks, following the proposal from
León et al (2004), the upper bound of the
interval can be minimized and a representative
of the expected interval can be chosen. The
mathematical program is:

  

€ 

Min aui − ali +
1
2
ci + di( )

 

 
 

 

 
 xi

i=1

n
∑

s.t. 1
2
aui − ali( )+

1
4
ci + di( )

 

 
 

 

 
 xi

i=1

n
∑ ≥ ρ

xi =1
i=1

n
∑

li ≤ xi ≤ ui ,  1≤ i ≤ n

       (2)

3.2 Portfolio Selection Using Genetic
Algorithms
Formulating (MV) implies a problem with the
number of assets that can belong to the optimal
portfolio. For this reason some authors suggest
the inclusion of a maximum bound for the
number of assets to be included in a portfolio in
the formulation of the problem. Mixed binary
quadratic programming can be used to model
this with the following results:

  

€ 

Min x tQx

s.t. E(Ri)xi ≥ ρ
i=1

n
∑

xi =1
i=1

n
∑

yi ≤ Nu
i=1

n
∑

yi ∈ 0,1{ }
yili ≤ xi ≤ yiui ,  1≤ i ≤ n

        (3)

where Nu is the maximum number of assets that
can belong to a portfolio

By limiting the number of assets in the model, a
small variation in the parameters fixed by the
decision-maker (invested capital or required
return) can force a change in the composition of
the optimal portfolio which can alter risk
significantly. If z* is the optimal risk of the
model (3), the associated fuzzy model can be
represented by this non linear optimization
problem:

  

€ 

Min λ

s.t. x tQx ˜ ≤ z *

E(Ri)xi ˜ ≥ ρ
i=1

n
∑

xi =1
i=1

n
∑

yi ≤ Nu
i=1

n
∑

yi ∈ 0,1{ }
yili ≤ xi ≤ yiui ,  1≤ i ≤ n

      (4)

where λ is the level of global satisfaction of a
portfolio, defined as

€ 

λ =min µr (x,y),µ f (x,y){ }

Moreover, µr and µf represent, respectively, the
membership functions to the objective set and
the opportunity set, that is, the level of
improvement in the risk and the degree of
feasibility of the portfolio.

The model (4) makes it possible to fix the
number of assets to invest in and also to obtain a
portfolio by using genetic algorithms. This is
useful when a quick solution is required or when
the problem being tackled is large. This paper
develops the approach appearing in Bermúdez et
al. (2005, 2007), based on the basic rules of
genetic algorithms, to obtain a simple algorithm
structure.

4     Modelling Investor Preferences

The portfolio selection problem has two data
concerning decision maker preferences, namely
the capital to be invested and the risk to be
assumed. The investor can be assumed to know
with certainty the capital that he or she would
like to consider, and in fact, in the model (1) this
quantity has been normalized to the unit.
However, determining the risk to be assumed
can be more flexible. As a result, it is worth
incorporating this flexibility in a fuzzy model.

In order to do so, it is preferable to work with
the commonly called dual model of (1):
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€ 

Max E(Ri )xi
i=1

n
∑

s.t. x tQx ≤ R

xi = 1
i=1

n
∑

li ≤ xi ≤ ui,   1≤ i ≤ n

        (5)

Here the aim is to maximize the return subject to
a maximum risk R.

We are going to show that the techniques used
in the analysis of the p-median problem in
Canós et al. (1999, 2001) can be generalized to
deal with the risk fuzziness in the portfolio
selection problem. The main idea is to consider
partially feasible solutions involving slightly
greater risk than that fixed by the decision
maker, and study the possibilities that they offer
in order to improve the expected return.

When compared with the p-median case, this
problem happens to be more complicated, due to
the p-median problem being linear and the risk
constraint in the portfolio model being
quadratic. Moreover, in the p-median case, a
small reduction in covered demand affected
optimal cost in a simple linear way, whereas the
way in which the maximum expected return
depends on the accepted risk is rather more
complicated.

A fuzzy set     

€ 

˜ S  of partially feasible solutions is
defined so that portfolio selection belongs to     

€ 

˜ S 
with a degree of membership that depend on
how much it exceeds the risk R fixed by the
investor. On the other hand, a second fuzzy set
    

€ 

˜ G  is defined whose membership function
reflects the improvement of the return provided
by a partially feasible solution with respect to
the optimal crisp return z*. In practice, we
consider piecewise linear membership functions

    

€ 

µ ˜ S (x) =

1 if  r ≤ R  

1- r - R
p f

if  R < r < R+ p f

0 if  r ≥ R+ p f

 

 

 
 

 

 
 

    

€ 

µ ˜ G (x) =

0 if  z ≤ z *   
z - z *

pg
if  z* < z < z * + pg

1 if  z ≥ z * + pg

 

 

 
 

 

 
 

where r and z are the risk and the return
provided by the portfolio x (which is assumed to

satisfy the constraints of (5) except in the first
case), the parameter pf is the maximum
increment in risk that the decision maker can
accept, and pg is the increment of the return that
the decision maker would consider completely
satisfactory. From this, we can define a global
degree of satisfaction

    

€ 

λ(x) = min µ ˜ G (x),µ ˜ S (x){ } ,

which is the membership degree to the fuzzy
intersection of     

€ 

˜ S ∩ ˜ G .

The fuzzy portfolio model becomes

    

€ 

Max λ(x)
s.t. x ∈ ˜ S 

                    (6)

In order to solve (6), the optimal solution of (5)
will be calculated for each risk level R. For this,
we solve explicitly the Kuhn-Tucker conditions
for the problem. To carry out the computations
in a generic framework, we start making a
change of variables to diagonalize the risk
matrix.

As we are interested in smsall variations of R,
the variables xi that are zero in the optimal crisp
portfolio can be removed and hence assume that
non-negative conditions are not active. Standard
linear algebra theory ensures us that we can
decompose

  

€ 

S = AtDA,

where the matrix D  is a diagonal and A is
regular. Then the change of variables y = Ax
transforms the problem to

    

€ 

Max r ' y
s.t. by = 1

yT Dy = R
l ≤ A-1y ≤ u

                        (7)

where r’= rt A-1 and b = (1,1,…,1)A-1.

As the last inequalities are not active the Kuhn-
Tucker conditions for (7) are simply the
Lagrange conditions of the classical problem
resulting from removing them. These are:

    

€ 

bi yi
i
∑ = 1,

    

€ 

di yi
2

i
∑ = R,

    

€ 

r 'i−biλ −2di yiµ = 0,   1≤ i ≤ n.
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where λ, µ are the Kuhn-Tucker multipliers of
the capital and the risk constraint respectively.
We also have the sign Kuhn-Tucker condition

  

€ 

µ ≥ 0 .

Solving these equations, yi can be expressed as
functions yi( R) which makes it possible to:

a) Determine the interval in which R can
oscillate in order for the solution y(R) to
satisfy the constraints

    

€ 

l ≤ A−1y ≤ u .

If values of R  exceeding this interval
need to be considered, we should deal
with the solution of the problem
analogue to (6) for a different choice of
the variables.

b) Computing the return as a function F(R)
from which the degree of feasibility
µf(R) and the degree of improvement of
the goal µ g(R)  can be calculated as
functions of R.

The expression obtained is

€ 

F(R) = ±
2LR−1
2 Δ(R)

r 'i
2

di
−
r 'bi
di

2KLR−K ± Δ(R)
2L2R− L

 

 
 

 

 
 

i=1

n
∑ ,

where

€ 

K =
bir 'i
2di

,
i=1

n
∑

€ 

L =
bi
2

2di
,

i=1

n
∑

€ 

M =
r 'i
2

4di
,

i=1

n
∑

€ 

Δ(R) = K 2 −2ML + (4ML2 −2K 2L)R.

These expressions can be used to determine the
risk R* such that

    

€ 

µ f (R*) = µg (R*)

which is easily shown to be the risk maximizing
λ. Hence, the portfolio x(R*) corresponding to
y(R*) by the change of variables is the optimal
solution of (6).

4.1 A Numerical Example

Below is a simple example of the fuzzy portfolio
selection problem. Five assets from the

historical data introduced by Markowitz
(Markowitz, 1959) are used.

Table 1: Returns of Five Securities
Year AmT ATT USS GM ATS
1937 -0,305 -0,173 -0,318 -0,477 -0,457
1938 0,513 0,098 0,285 0,714 0,107
1940 0,055 0,2 -0,047 0,165 -0,424
1941 -0,126 0,03 0,104 -0,043 -0,189
1942 -0,003 0,067 -0,039 0,476 0,865
1943 0,428 0,3 0,149 0,225 0,313
1944 0,192 0,103 0,26 0,29 0,637
1945 0,446 0,216 0,419 0,216 0,373
1946 -0,088 -0,046 -0,078 -0,272 -0,037

We have fixed a risk level R=0.03. The optimal
crisp portfolio is formed by assets AmT, ATT,
GM and ATS providing an optimal return z* =
0.102386.

For the fuzzy model, we have fixed pf=0.02,
pg=0.02 and solved it by using Mathematica.

The optimal return for a given risk R, happens to
be

€ 

F (R) =
−0.019+1.059R + 0.081 −0.529+ 28.231R

−0.5299+ 28.2313R

Computations are valid for risks in the interval
[0.0237814, 0.0876355].

Figure 1 shows the functions µf(R) and µg(R).
They intersect at R*= 0.0412373 corresponding
to λ= 0.438133. The return of the fuzzy
portfolio is 0.111149.

Figure 1: membership functions.

We observe that the global satisfaction degree is
quite low. This means that risk has to be
increased a great deal in order to obtain a not
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very significant increase in the return on the
asset. In other words, the crisp solution seems to
be quite stable. However, it is still to be studied
how solutions depend on the chosen
membership functions by means of a suitable
sensitivity analysis, analogue to that developed
in Canós et al. (2008).

5     Conclusions

The models proposed for dealing with data
uncertainty, are a further development of those
presented by authors in previous editions of
IPMU. They improve classical portfolio
selection models in the sense that they lead to
solutions with better returns and they adjust in a
more realistic way to stock market trends (León
et al. 2004).

The models concerning fuzziness in investor
criteria, have been less studied by the literature,
and should be developed in greater detail before
combining them with the previous ones.

The task of combining both kinds of uncertainty
and developing suitable intelligent systems to
deal with them is still pending.
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