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Abstract

Many complex real-world optimiza-
tion problems are dynamic. In or-
der to approach them is necessary to
have tools that are able to adapt to
the changes that take place in the
time. In this work we propose a
strategy that jointly use a set of so-
lutions and a set of simple agents.
Implicit and explicit memory mech-
anisms are used and we analyze the
behavior of the strategy when cou-
pled with a fuzzy rule to control the
updating of the solution’s set. Tests
are performed on the moving peaks
benchmark problem under different
scenarios.

Keywords: Cooperative Meta-
heuristics, Dynamic Optimization,
Soft Computing.

1 Introduction

An intelligent system is a logical or physi-
cal system that perceives its environment and
takes actions which maximizes its chances of
success. It is flexible to changing environ-
ments and changing goals, it learns from ex-
perience, and it makes appropriate choices
given perceptual limitations and finite com-
putation.

Using some type of intelligent systems, like
metaheuristics, to solve complex problems
with a single and perfectly defined objective,
is a field where the necessity of new techniques

is debatable. Their use in these problems
is sufficiently validated, having an abundant
and easily accessible bibliography [7, 13].

On the other hand, it is assumed that the
challenge that will be to confront in the next
years, will be associate to the problems with
several objectives, that can vary with the time
and where it can have non probabilistic un-
certainty in the variables values, or the ob-
jective function is not accurately known and
it must be determined for example through a
simulation or subjective valuations of experts.
These problems are referred as name of Dy-
namic Optimization Problems [1].

A Dynamic Optimization Problem, DOP, can
be formally defined as follow:

DOP =
{

optimize f(x, t)
s.t. x ∈ F (t) ⊆ S, t ∈ T

}
where

• S ∈ Rn, S is the search space.

• t is the time.

• f : S × T → R, is the objective func-
tion that assign to each possible solution
(x ∈ S) a numerical value (f(x; t) ∈ R)
at time t

• F (t), is the set of feasible solutions x ∈
F (t) ⊆ S at time t.

The goal of the methods for dealing with DOP
is no longer to locate a stationary optimal so-
lution, but to track their progression through
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the space and time as closely as possible.
Therefore, these methods will have to be able
to incorporate theoretical and practical tools
that allow them to approach the uncertainty,
failures tolerance and inherent noise, and is
in this field where the techniques and mod-
els based on Soft Computing could help to
develop capable methods to adapt, reshape,
and repair themselves [8].

Evolutionary Algorithms (EAs) are widely
used to solve these DOP [1] because it is eas-
ier to follow the changes if a set of solutions
is available instead of just a single one. How-
ever, EAs need to specialize to be able to de-
tect the changes and to respond them. A way
is using memory schemes that work by storing
useful information, either implicitly or explic-
itly, from the current scenario and reusing it
later in a new one.

An implicit memory scheme [9, 12] is an al-
gorithm that uses representations containing
more information than necessary and basi-
cally has some memory where good (par-
tial) solutions may be stored and reused later
as necessary. An explicitly memory scheme
[10,11] is an algorithm that uses an extra stor-
age space with explicit rules for storing and
retrieving information.

Departing from the strategy presented in [14],
we propose here a simple information shar-
ing scheme based on a fuzzy rule, that can be
understood as a cooperation strategy among
agents and as a dynamic resampling of the
population of solutions. The proposal is
tested on the moving-peaks problem [1], a
classical DOP benchmark.

The contribution is organized as follows: Sec-
tion 2 describes in detail the proposed strat-
egy, the use of memory and introduce the co-
operation scheme proposed. Then, the pro-
posal is tested on the moving peaks bench-
mark and the experimental results are pre-
sented in Section 4. The paper concludes with
a summary and some suggestions for future
work.

2 Description of the Proposal

It is well known that better problem solving
strategies may be obtained through cooper-
ation among solvers. Also, cooperation al-
lows to obtain improvement in robustness and
quality of the solutions [5].

The strategy proposed in this paper is based
on the jointly use of two populations and a
centralized information repository [14,15].

The first population is composed by a set of
solutions arranged in a matrix or “world” M
with certain dimensions. Each cell M(i, j)
contains:

• a solution to the problem at hand, refer-
eed to as M(i, j).V ;

• and the cost of this solution M(i, j).C.

There is no topological relation between the
positions of the solutions in the matrix and
their corresponding costs.

The second population is made by a set of
“agents” A = {a1, a2, . . . , ak} and we assume
that the world M is larger than the number
of agents. Each agent is represented by a 4-
tuple: ai = {move?, (x, y), currentSol, cost},
where move? ∈ {True, False} states if ai is
free to move or not, (x, y) indicates the posi-
tion where it lies and currentSol is the cur-
rent solution being manipulated by ai. The
objective value of currentSol is stored in the
variable cost. We will refer to the each com-
ponent of a particular agent ai using the “dot”
notation, so ai.cost will stand for the cost of
the solution that ai stores.

The last element is a centralized informa-
tion repository (CIR). In its simplest form,
it stores the cost and the best solution seen
so far in the system. We will come back to
CIR later.

The global strategy is described in Alg. 1.
After a random initialization of solutions and
agents positions, several processes are ap-
plied. On Move Agents, each agent free
to move (in terms of its control variable)
“jumps” to a random neighboring cell in cer-
tain radius.
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Method Change Solutions is applied for
every agent as follows: first step is to
copy the cell solution into the agent:
ai.currentSol := M(ai.x, ai.y).V and
ai.cost := M(ai.x, ai.y).C. Then, ai selects
randomly a variable xi ∈ currentSol and it
is perturbed by this way: xi + N(0, 1), where
N(0, 1) is a random number generated from
a normal distribution with mean 0 and vari-
ance 1. Finally, the modified ai.currentSol is
evaluated and the cost stored into ai.cost.

Now, this new solution ai.currentSol may
improve M(ai.x, ai.y).V or not and actions
should be taken for each option. These ac-
tions are encapsulated within the Update-and-
Cooperate stage, which is fully described in
Alg. 2.

The procedure UpdateMemory will be de-
scribed later. The other initial steps are clear:
if the new solution obtained by the agent is
better than the one stored in the cell, then
the cell’s solution and its cost are updated. If
the new solution is the ever best seen, then
we put it in the CIR.

Algorithm 1 Main Program
Initialize Matrix of Solutions randomly
Set Agents in the Matrix
while (!END) do

Move Agents
Change Solutions
Evaluate Solutions
Update-and-Cooperate
if (conditions OK) then

Modify Problem
Evaluate Solutions

end if
end while

Up to this point, we have a set of agents be-
having as hill-climbers, while keeping record
of the best solution ever seen.

The proposed strategy has a straight imple-
mentation under the NetLogo [16] software
package. NetLogo is a multi-agent program-
ming language and integrated modeling en-
vironment. It is particularly well suited for
modeling complex systems developing over
time.

Algorithm 2 Update-and-Cooperate
Method (maximizing)

for each Agent ai do
UpdateMemory(ai.currentSol,ai.cost)
if (ai.tmpSol is better than M(ai.x, ai.y).V )
then

M(ai.x, ai.y).V := ai.currentSol
M(ai.x, ai.y).C := ai.cost
if (ai.currentSol is better than the one
stored in CIR) then

update CIR with ai.currentSol, ai.cost
end if

else
applyRule

end if
end for

Under NetLogo’s terminology, the cells of our
matrix M translates into “patches” and the
agents into “turtles”. Patches and turtles may
store any kind of information and communica-
tion among them is straightforward. The CIR
component is modeled as a global variable and
the same approach was taken for Mem.

The execution of agents/turtles is asyn-
chronous, thus allowing the simulation of par-
allelism on a single processor computer.

2.1 Memory and Cooperation
Mechanisms

Now, we need to define what happens when a
solution is not improved and it is here where
cooperation should be defined. In this work,
we understand cooperation as a mechanism
for information sharing among the entities of
the system.

The population of solutions has two purposes:
first, to serve as an implicit memory that is
evolved through the action of the agents, and
second, as a communication channel for them,
because the value of a particular cell is the
result of the accumulated changes made by
the agents during the run. So, we have here
an implicit cooperation mechanism.

We propose here an explicit cooperation mech-
anism that is based on a very simple idea:
the best solution stored in CIR is copied
into those cells whose corresponding solutions
were not improved.
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This mechanism is not always triggered. This
“broadcasting” of the best solution is con-
trolled by a fuzzy-set based rule indicated in
Alg. 2 in the procedure applyRule

The idea of this rule is to change the not im-
proved solution if it is “bad” with respect to
a reference set of values. This reference set of
values is, in fact, an explicit memory imple-
mented as a fixed length vector Mem that is
stored in CIR. Each time the procedure Up-
dateMemory is executed, the current agent’s
solution and its cost are sent to Mem which
is updated in a first-in first-out manner when
becomes full. The length of Mem is fixed on
2× k (being k the number of agents). In this
way, the last two solutions values obtained by
the agents are recorded.

So, the fuzzy rule analyzes the quality of the
solution obtained by the agent (ai.cost) in
terms of the history of values stored in Mem:

IF the quality of the solution obtained
by agenti is low
THEN agenti gets the best solution from
CIR and replace the one in its cell

The label low is defined as follows:

µ(x) =


0.0 if x > β

(β − x)/(β − α) if α ≤ x ≤ β

1.0 if x < α

where x ∈ [0, 100] is the percentile rank of
a cost in the samples stored in Mem. Also,
α = 20 and β = 30. The best solution is
the one stored in CIR. In short, what the rule
says is: if the reported values by an agent
are among the worse in the memory, then re-
place the corresponding solution in the cell
where the agent is. This is implemented as
M(ai.x, ai.y).V := best solution from CIR,
and M(ai.x, ai.y).V := best cost from CIR.

If the rule is executed, then the agent will not
move in the next iteration (we set ai.move? :=
False).

3 Moving Peaks Problem

In the context of dynamic environments one
of the most widely used benchmark problem
is the moving peaks problem [1]. The idea is
to have an artificial multi-dimensional land-
scape consisting of several peaks, where the
height, width and position of each peak is al-
tered slightly every time a change in the en-
vironment occurs.

The cost function for n dimensions and m
peaks, has the following form:

F (
→
x, t) = max

i=1,...m

Hi(t)

1 + Wi(t)
n∑

j=1
(xj −Xij(t))2

where −→x ∈ <n is a particular solution, X ∈
<m×n is the set of m peaks locations (we need
n values for locating a peak) and H, W ∈ <m

are the height and width of each peak. The
cost of a solution is how far it is from the
closest peak.

The coordinates, the height H and the width
W of each peak are randomly initialized.
Then, every ∆e evaluations the height and
width of every peak are changed by adding
a random Gaussian variable. The location of
every peak is moved by a vector ~v of fixed
length s in a random direction for α = 0 or a
direction depending on the previous direction
for α > 0. Thus α is a correlation coefficient
allowing to control whether the changes ex-
hibit a trend or not.

More formally, given σ ∈ N(0, 1) a change can
be described as:

Hi(t) = Hi(t− 1) + 7× σ

Wi(t) = Wi(t− 1) + 0.01× σ

~Xi(t) = ~Xi(t) + ~v

Many techniques are being applied to solve this
kind of problems. The interested reader may refer
to the following compilations [2, 4, 17] for current
lines of research on the topic.

When comparing different methods in dynamic
environments it is not useful to report just sim-
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Table 1: Experiment 1: Problem Settings
Parameter Setting

Number of peaks p 10
Number of dimensions d 10

Peak heights ∈ [30, 70]
Peak widths ∈ [1, 12]

Evals between changes ∆e 500, 1000, 1500, 2000
Change severity s 1.0

Correlation coefficient α 1

ple values like the best solution achieved as in the
static problems counterpart. One quite accepted
measure is the off-line error [1] or accuracy, which
is the running average of the difference between
the optimum values and the best solution encoun-
tered so far at any time. This measure is always
greater or equal to zero.

offline error =
1
T

T∑
t=1

(optimum− bestSolution)

4 Computational Experiments

The main goal of the experiments is to assess the
behavior of rule that may trigger the explicit co-
operation mechanism proposed.

Firstly, we analyze how the performance of the
system vary when different settings for the rule are
used. Besides, we explore how the performance is
affected when the problem change’s frequency ∆e
is modified.

Secondly, we made a further analysis trying to
gain knowledge about the dynamic behavior of the
strategy.

In this contribution, the world has size M15×15

and 15 agents are used. When an agent moves,
it chooses a random direction and go forward a
random number of steps between 1 and 3.

There are 100 changes for every run, so each run
finishes when 100×∆e evaluations were done. We
perform 30 repetitions for each setting.

4.1 Rule settings and Performance

In this experiment we analyze different settings for
the rule under the problem’s parameters summa-
rized in Table 1.

The parameter that govern the triggering of the
rule is a λ value representing a threshold for the
membership values of Eq. 2.1. In fact, the rule

Table 2: Average and std. deviation values
for offline error (over 30 runs).

∆e Fuzzy(λ = 0, 5) Fuzzy(λ = 0, 7)
500 31,12 (1,58) 32,05 (1,75)
1000 19,84 (1,63) 20,96 (1,26)
1500 14,64 (1,29) 15,20 (1,22)
2000 11,02 (1,01) 11,74 (1,03)

Table 3: Minimum offline error values.
∆e Fuzzy(λ = 0, 5) Fuzzy(λ = 0, 7)
500 28,20 28,44
1000 16,20 17,08
1500 12,37 13,06
2000 9,15 9,82

will be triggered if µ(x) ≥ λ, being x a percentile
rank associated with a particular fitness value.

The potential values are λ = {0.5, 0, 7}. The
higher the value of λ, the worst the fitness should
be in Mem to fire the rule.

Table 2 displays the average and standard devia-
tion values with the fuzzy rule for λ = 0, 5 and 0, 7.
It can be seen a slightly advantage on the average
offline error using λ = 0, 5 over λ = 0, 7. Although
small, differences have statistical significance (U
Mann-Whitney test). Also, as ∆e increases, the
offline average error improves.

The minimum offline error ever achieved are
shown in Table 3. Again, the values are lower
as ∆e increases, and using λ = 0, 5 leads to better
results than when λ = 0, 7 is used.

4.2 On the Dynamical Behavior of
the Strategy

Although the average offline error taken at the end
of the run is a good indicator of the strategy’s
performance, it does not shed any light regarding
how the different settings lead to different runtime
behavior.

So, we performed several runs to gather informa-
tion about the dynamic behavior of the system.
These runs were restricted to ∆e = 1000 and 50
problem changes were done. Then, for each value
of λ = 0.5, 0.7, we did 20 runs. For every run,
we recorded the average offline error, number of
failures and number of replacements done before
each peak change, leading to 50 samples per run.
The sequences of peak changes was fixed among
the runs, but the initialization of solutions and
agents locations was randomly generated.
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Table 4: Experiment 2: Parameter settings of
the problem

Parameter Setting
Number of peaks p 10

Number of dimensions d 5
Peak heights ∈ [30, 70]
Peak widths ∈ [1, 12]

Evals between changes 4e 5000
Change severity s 1.0

Correlation coefficient α 0

The behavior for the fuzzy rule for the different
settings are shown in Fig. 1. Plot is slightly
zoomed in for visualization purposes so less than
50 points are shown. Each point represents the
average over 20 runs.

We can see that both values for λ produced quite
similar results but, in general, the use of λ = 0, 5
allows a better tracking of the optimum line.
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Figure 1: Average best fitness before each
problem change for every setting.

4.3 Comparison with another
algorithm

In this section we will compare our strategy
against those recently published in [3], where the
moving peak problem is defined with the settings
summarized in Table 4. Such work may be con-
sidered as a state-of-art algorithm for dealing with
the moving peak problem.

We should remark that measuring performance of
algorithms on dynamic optimization problems is
a hard task because of a lack of widely accepted
criteria and standard formulations [6]. Moreover,
although statistical testing is not possible because
neither the data and the source code from Ref. [3]
are available, it will serve us as a clear indication
on the benefit of our proposal.

Table 5: Comparison between a multiswarm
approach and our strategy
swarms mCPSO mQSO agents λ = 0, 5

5(10+10) 3,74(0,14) 3,71(0,15) 5 1,57(0,07)
10(5+5) 2,05(0.07) 1,75(0,06) 10 1,87(0,15)
14(4+3) 2,29(0,07) 1,93(0,06) 14 2,05(0,18)
20(3+2) 2,89(0,07) 2,35(0.07) 20 2,31(0,22)
25(2+2) 3,27(0,08) 2,69(0,07) 25 2,47(0,23)

In Ref [3], Blackwell and Branke use a multiswarm
approach composed of either neutral and charged
particles or neutral and quantum particles. Sev-
eral configurations are tested and they are defined
as M(N1 + N2), where M is the total number of
swarms in the multiswarm, N1 is the numbers of
neutral particles and N2 is the number of charged
particles in the case of mCPSO (multi-Charged
Particle Swarm Optimization) algorithm or quan-
tum particles for mQSO (multi-Quantum Swarm
Optimization) algorithm.

The results of both approaches appear in Table
5. The average offline error is clearly lower when
our strategy use 5 agents, while a higher number
of agents leads to similar or better results than
certain configurations of mCPSO and mQSO.

In our strategy, as the number of agents increases,
the offline error also increases. Recall that the
problem change is made after certain number of
evaluations. Within such period, we may assume
we are dealing with a static problem. In this situ-
ation, the result implies that it is better to have a
few agents doing several changes than more agents
allowed to perform just a few modifications.

Looking at mCPSo and mQSO, it is not clear
what may affect more the results: if the number
of swarms available or their composition. In our
case, we just deal with a single “entity” (agent) so
we may claim, in principle, that our approach is
simpler while obtaining competitive results.

5 Conclusions and Future Work

In this contribution we propose a scheme for up-
dating the set of solutions in the context of a strat-
egy that jointly use of a population of solutions
and a set of simple optimizer agents.

The scheme is based on memory and a fuzzy rule
that makes use of a history of previously seen costs
to decide on the quality of solutions. This simple
scheme, when used to update the pool of solutions,
leaded to a successful optimization strategy.

The computational experiments clearly showed
that the strategy obtained similar or better re-
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sults than a multiswarm approach considered as a
state-of-art algorithm for dealing with the moving
peak problem.

Now, several lines of research are open. Among
them, we wish to emphasize other alternatives for
fusing Soft Computing’ methodologies with com-
putational strategies oriented to solve DOP. In
this line and regarding DOP, the potential oc-
currence of uncertainties, dynamism and noise in
the restrictions, parameters, cost function, etc,
clearly recommends the use of concepts from the
fuzzy sets and systems area to improve the mod-
eling of the problem. Once this improved model is
available, maybe new solving strategies could be
needed, and here, the fields of multi-agent or co-
operative heuristics, either centralized or descen-
tralized, and governed by simple fuzzy rule bases,
are going to be key elements in the quest for suc-
cessful strategies for solving DOP.
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