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Abstract

We introduce the use of a vari-
able smoothing kernel, whose width
is driven by a fuzzy controller, to
regularise a deformation field in
the context of image registration.
Our experiments show that such a
technique outperforms the classical
fixed-width regularisation, being ca-
pable of removing irregularities in
the deformation field while main-
taining an adequate adaptive be-
haviour for localised deformations,
thus preserving fine details.
Keywords: Image registration, reg-
ularisation, fuzzy.

1 Introduction

Elastic registration is an important and chal-
lenging issue in medical imaging [1], which
implies the alignment of a moving image or
scene with a fixed image or model by means
of a free-form deformation. Its applications on
real world problems comprise the compensa-
tion of brain-shift on neurosurgery interven-
tions, free-hand US volumes compounding,
and practically any situation where imaging
of soft tissues is needed. The more general
form in which a free-form deformation may
be represented is a displacement field defined
for every voxel in the image [2, 3]. Neverthe-
less, this technique requires an adequate reg-
ularisation in order to achieve visually accept-
able results and to eliminate discontinuities in
the registered image, due to the uncertainty

int the estimation of deformations. However,
an excessive regularisation hinders a proper
match of the model in zones of localised de-
formations, so a trade-off is necessary.

There exist quite diverse techniques to regu-
larise the deformation field. The most stan-
dard one is the convolution with Gaussian
kernels [2, 3], whose variance should be large
enough to avoid singularities, but at the same
time small enough to preserve details. In [4]
the authors proposed to model the images as
a deformable material, whose elastic proper-
ties are taken into account to regularise the
deformation by means of the Navier-Stokes
equations. This approach is reformulated in
[5] to model the images as viscous fluids, ap-
plying the Navier-Stokes equations to the ve-
locity field instead of the deformation field.
The problem with this approaches is that they
consider a physical model that does not ap-
ply to the problem at hand, since the images
are neither elastic bodies nor viscous fluids.
Besides, the computational complexity grows
with this method, since a partial derivatives
equation must be solved. Although this diffi-
culty may be overcome with the use of trun-
cated impulse responses [6], this in fact results
in a convolution with a smoothing kernel, in
quite a similar way to the Gaussian smooth-
ing. Finally, in [7] it is proposed to project
the deformation in a more restrictive trans-
formation space, so the deformation is smooth
due to the restrictions of such a space. Evi-
dently, the power of the algorithm to recover
irregular deformations is then reduced. In this
paper, the use of a variable width smoothing
kernel is introduced, so that the regularisa-
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tion is more aggressive in homogeneous or uni-
formly deformed regions, meanwhile preserv-
ing the local details where needed. In such
a way, the smoothing is no longer a convo-
lution with a Gaussian kernel or a truncated
impulse response, but a locally adaptive non-
linear operator. This way, the expected qual-
itative behaviour is translated into semantic
descriptions which are further used to design
a fuzzy controller, whose output manages the
width of the kernel based on local properties
of both the images to register and the defor-
mation field itself.

The remainder of the paper is organised as
follows: in Section 2 we briefly introduce the
registration algorithm to be used, based on
Thirion’s demons. In section 3 we explain in
detail the fuzzy system designed for adaptive
regularisation. Section 4 show some signif-
icant results that demonstrate the potential
of the technique here presented. Finally, in
Section 5 we give some final remarks and con-
clude.

2 The demons algorithm

The demons algorithm was first introduced in
[2] by Thirion. It aims to align the isocontours
of the images to register by iteratively esti-
mating the displacement field between them
by means of the optical flow equation:

f(x, y) =
(m − s)∇s

‖∇s‖2 + (m− s)2
(1)

where m and s are respectively the grey values
of the model and the scene at a given location
(x, y), and f is the correction for the displace-
ment field d at the current iteration. If we
pay attention to Fig. 1, the interpretation of
eq. (1) is immediate: the isocontours we have
depicted are supposed to correspond to equal
grey levels in S and M , and we are suppos-
ing as well that inside these isocontours the
grey level values are higher than those outside
them, so that the gradient of S points inside.
In P1, the difference m−s is then positive (be-
cause s is outside the contour, and therefore
s < m), so P1 is pushed in the direction of ∇s,
which is, insides. On the contrary, in P2 the

Figure 1: Two corresponding isocontours in
the fixed (S) and moving (M) images. We
assume that the grey level is greater inside
the isocontour, so the gradient points in this
direction. The isocontour M is pushed so that
it tends to be aligned with that of S.

difference m− s is negative, and P2 is pushed
outsides. Moreover, the larger the error (the
value of |m − s|) is, the greater correction to
the displacement field is applied. When this
process is iteratively repeated, the isocontours
of both the images are aligned, and therefore
the images are coregistered.

The main problem with this formulation is
that it requires that the grey levels of corre-
sponding pixels are the same, which makes it
too sensitive to noise and not able to deal with
changes in contrast. To overcome this diffi-
culty, a generalisation of the algorithm was in-
troduced in [3]; the key is that eq. (1) may be
seen as a Levenberg-Marquardt optimisation
of the mean squared error (MSE) between the
images, and so this similarity measure is sub-
stituted in [3] by a local normalised correla-
tion coefficient (NCC). This implies that the
grey level of corresponding pixels has not to
be the same in both the images, but instead it
is enough that a linear relation between them,
at least in a local sense, holds. This is espe-
cially useful in the case of MRI imaging, since
the illumination conditions may severely vary
across the image. Whether we use the orig-
inal formulation of eq. (1) or the improved
estimation introduced in [3], a regularisation
step is needed for the deformation to be phys-
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(a) (b) (c) (d)

Figure 2: An example of the behaviour of the demons algorithm for a T1-MRI coronal view
of a human brain: (a) the original image; (b) the deformed image, following eq. (2); (c) the
recovered image using Gaussian convolution-based regularisation, using σ = 0.6, and (d) using
σ = 1.8. All images are 232 × 232 pixels in size.

ically acceptable since the estimation of the
displacement field is an ill-posed problem, due
to the enormous degrees of freedom of the so-
lution [2]. The entire registration algorithm
may be summarised in the following steps,
comprised in every single iteration1:

1. Initialise the deformation field to null dis-
placements at every location (x, y).

2. For the given scene S and the currently
deformed model M , use eq. (1) (or its
NCC-based analogous) to compute the
update of the displacement field (f).

3. Update the displacement field d by
adding the correction computed in the
previous step, f .

4. Regularise the so obtained deformation
field to compute the current displace-
ments at each image location (x, y).

5. If the predefined maximum number of it-
erations has not been reached, return to
step 2 and continue.

This procedure is common to all of the regis-
tration algorithms of this kind, and therefore
we do not give more details for the shake of
brevity, except for the step 4, which is the fo-
cus of our paper. To stress the importance

1In practise, this iterations are usually enclosed in a
multi-resolution scheme, and at the end of each of this
levels the obtained displacement field is interpolated
to double its resolution. In our paper, we have used 5
resolution levels in all cases.

of an adequate regularisation, let us fix our
attention in Fig. 2. We have used a coronal
view of a synthetic MRI volume as the fixed
image or scene, and scaled it in order to ob-
tain an image 232 × 232 pixels in size. This
phantom is available in the public BrainWeb
database2 [8]. As the moving image to regis-
ter, and like in [3], we have taken a deformed
version of this same 2-D view, obtained from
a synthetic deformation field that obeys the
following equation:

di(x, y) = δ cos
(

6 · 2πx

X

)
cos

(
6 · 2πy

Y

)
(2)

where di(x, y), with i = {x, y}, are the dis-
placements at pixel (x, y) in directions x and
y, respectively, X = Y = 232, and δ = 3. At
the sight of Fig. 2, it remains evident that an
excessive regularisation, as in case (d), results
in the algorithm being incapable of recov-
ering the irregular deformation given by eq.
(2); the deformation field in this case varies
too fast, so the cut-off frequency of the low-
pass filter given by the Gaussian filter with
σ = 1.8 is inadequate. On the contrary, with
σ = 0.6, the corresponding cut-off frequency
is one third of that with σ = 1.8, and the local
behaviour of the deformation field is well ac-
counted. It is clear that in large homogeneous
regions with a constant grey level , such as the
background of the image, or the grey matter
of the brain, the regularisation may be more

2http://www.bic.mni.mcgill.ca/brainweb/
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aggressive than in pixels near the edges be-
cause relevant details of the scene will not be
lost; moreover, such a regularisation may be
preferable, since in homogeneous zones there
are no meaningful structures and therefore a
reliable estimation of the displacement could
not be possible. This uncertainty in the esti-
mation may be partially palliated by assum-
ing that the deformation is smooth enough,
and therefore we can use a wider Gaussian
kernel to reduce the larger amount of noise.
In a similar way, it would be desirable to use
a coarser regularisation where the deforma-
tions are locally smooth, and vice-versa. This
two issues are exploited in the next section
to design a regularisation technique based on
Gaussian kernels of variable width, depending
on local characteristics of both the image and
the deformation field.

3 Regularisation of the
deformation field

Two desirable properties for our regularisa-
tion scheme arise from the example of Fig. 2:

1. If the local variability near a pixel of the
scene is small, the width of the Gaussian
kernel should be larger due to the lack of
reliability in the estimation.

2. If the variability of the displacement field
at a given point is far larger compared
to the variability of its neighbouring pix-
els, the Gaussian kernel should be larger,
since this corresponds to a weak estima-
tion of the displacement and not to a lo-
cal property of the field, and vice-versa.

The regularisation step cannot be seen this
way as a Gaussian convolution, since our sys-
tem is no longer shift-invariant. Therefore, we
substitute the standard sum (d ∗ gσ)(x, y) =∑

u,v d(u, v)gσ(x − u, y − v) with:

d̃(x, y) =
∑
u,v

d(u, v)gσ(x,y)(x − u, y − v) (3)

where the term σ(x, y) accounts for the adap-
tivity of the Gaussian kernel g, whose width
has to be fixed for each location (x, y) by

Figure 3: The local variability of the scene,
for the example of Fig. 2.

means of a fuzzy system, whose design is de-
scribed in what follows.

3.1 Local variability of the scene

This parameter is characterised with a sim-
ple gradient-based technique: after smooth-
ing the image with a homogeneous Gaussian
kernel with σ = 1, we compute both the
components of the gradient as centred differ-
ences. The magnitude of the gradient is then
smoothed with a Gaussian kernel with σ = 3,
and the resulting image is log-compressed and
converted to the interval [0, 1]. All these
stages, as well as the involved parameters,
have been validated using the same example
as in Fig. 2, whose result is shown in Fig.
3. It is worth noticeable that this parame-
ter is calculated on the scene (fixed image),
so its computation is required only once (or
once per resolution level). Without the log-
compression and range scaling, the first input
to the fuzzy system is:

V (x, y) = ‖∇ (s ∗ g1) (x, y)‖ ∗ g3(x, y) (4)

3.2 Local smoothness of deformations

In this case, we compute a local average of
the displacement field as a convolution with
a Gaussian kernel with fixed σ = 1.4, which
is useful to compute the local deviation of the
displacement with respect to its neighbours:
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Figure 4: The local irregularity of the dis-
placement field for the example in Fig. 2.

∆(x, y) = ‖d(x, y)− (d ∗ g1.4) (x, y)‖ (5)

If this value is large, it may be because the
displacement field is irregular near the loca-
tion (x, y), and in this case the parameter
∆ should be equally large for the neighbour-
ing pixels as well; on the other hand, if this
large deviation is due to an outlier, neighbour-
ing pixels will not show such an irregular be-
haviour, so we compare the deviation in (x, y)
with the average deviation on its vicinity:

I(x, y) =
∆(x, y)

(∆ ∗ gσ)(x, y)
(6)

This value is clipped to the range [−0.5, 1],
which has been empirically tested to be
adequate in our example, and then log-
compressed to obtain the second input to the
system. An example of the result of this pro-
cedure may be seen in Fig. 4.

When the value of I(x, y) is large, it means
that the pixel shows a highly irregular be-
haviour with respect to its neighbours, so it is
probably an outlier; when it is not the case,
it may be because the deformation field is lo-
cally smooth, if ∆(x, y) is small, or because
we have a fine detail on the deformation, when
∆(x, y) is larger.

3.3 Inputs to the fuzzy controller

The local variability of the scene and the lo-
cal irregularity of the deformation are trans-
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Figure 5: The membership functions of the
fuzzy variables I and V.

lated into two fuzzy variables I and V whose
universes are the ranges of variation of the
parameters we have previously introduced, Ī
and V̄ , so adopting the notation Al = log10 A:

Ī(x, y) =
Il(x, y)−minx,y Il(x, y)

maxx,y Il(x, y)−minx,y Il(x, y)
V̄ (x, y) = max {min {Vl(x, y), 1} ,−0.5} (7)

and therefore the universe of I is UI = [0, 1] ⊂
R and the universe of V is UV = [−0.5, 1] ⊂
R. The membership functions are depicted in
Fig. 5. We have defined three fuzzy sets in
both cases, corresponding to low (L), medium
(M) or high (H) values of each linguistic vari-
able. The shape of the fuzzy sets, as well as
the rest of the system, have been designed and
optimised for the example in Fig. 2.

3.4 Output of the fuzzy controller

The output of the system is a fuzzy variable
O that controls the width of the Gaussian
kernel, which may be low (L), medium (M),
or high (H); the universe of this variable is
UO = [0, 1] ⊂ R, with 0 corresponding to the
minimum σ and 1 to the maximum. Since we
use a standard additive model (SAM), there
is no need to define the shape of the output
sets [9], but it is enough instead to determine
their centroids and areas; we use 0, 0.5, and
1 as centroids for the respective L, M, and H
sets, and equal areas for all of them.
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In practise, the defuzzyfied output is further
discretised into seven integer values, which is,
i = ⌈7 · o⌉, with o the defuzzyfied value of the
output variable O and ⌈x⌉ the minor integer
greater than x. Then we use i as an index in
the vector C = {0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8}:
the displacement field is regularised with
seven Gaussian kernels gσi , σi ∈ C, and at
each (x, y) we choose the i-th output as the
deformation field for the location (x, y).

3.5 Rule base of the fuzzy controller

Seven rules are enough to implement the two
qualitative requirements we have reasoned in
the first part of Section 3 (see Table 1). With
a low local variability (I = L), there are
no significant structures, so the estimations
are not robust and a strong regularisation is
needed in all cases (O = H). On the con-
trary, when I = H the estimations are more
robust, so the regularisation may be very lo-
calised (O = L), although it depends on the
irregularity of the deformation: if V = M,H,
the displacement is most likely to be an out-
lier, and thus we should perform a stronger
regularisation (O = M). With an intermedi-
ate local variability (I = M), the situation is
almost the same, but since the structures in
this case are not so reliable, a greater regular-
isation is needed (O = H instead of O = M).

4 Results

To test the algorithm, we have to use a dif-
ferent image from that used for the design
step. We choose an axial view of the same
T1-MRI BrainWeb phantom [8], with a size
of 210×252 pixels, as shown in Fig. 6. This is
the fixed image or scene; to obtain the model
or moving image, we use a synthetic deforma-
tion similar to that of eq. (2), with X = 210,
Y = 252, and a varying δ ranging from 0.4

Table 1: Rule base for the fuzzy controller.

I V O I V O I V O
L ∗ H M L L H L L

M M M H M M
M H H H H M

Figure 6: We use a 210 × 252 axial view of a
phantom T1-MRI volume to validate the reg-
ularisation technique.

to 5.0 which is used to parametrise the ex-
tent of the deformation. For each value of
δ, we perform eight registration experiments,
using (1) a fixed-width Gaussian regularisa-
tion with each of the values σi ∈ C (seven
experiments), and (2) adaptive regularisation
based on our fuzzy controller. As the perfor-
mance measure, we use the MSE. We do so
instead of using the euclidean error in the es-
timation of the displacements, because in ho-
mogeneous zones the estimation is not robust,
and this could bias the results; moreover, in
these zones the accuracy of the estimation is
not so relevant, since for the majority of clin-
ical applications the requirement is that cor-
responding tissues are aligned, and it is still
met even if the displacement is not precisely
determined. We present the results in Fig. 7.

Figure 7: MSE vs. δ for each regularisation
technique. We present the original MSE as
well for comparison purposes.
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As can be seen in the figure, and espe-
cially in the zoom over the crossing point
of the curves, for small δ (more regular de-
formations), a stronger regularisation is pre-
ferred, meanwhile as δ grows a more localised
smoothing yields better results. The cross-
ing point is near δ = 1.5, and from this value
he fuzzy regularisation is always better than
any fixed Gaussian kernel, although the kernel
with σ = 0.8 shows a similar behaviour. For
larger deformations an smaller kernel is pre-
ferred (note the difference between σ = 0.8
and σ = 1.8), but even so the fuzzy regu-
larisation, that combines kernels as wide as
σ = 1.8 with smaller ones (like σ = 0.6,
with a clearly worse isolated behaviour), is
able to yield better results. For smoother de-
formations a more aggressive regularisation is
better, but once again the fuzzy regularisa-
tion reaches a compromise (note the difference
with σ = 0.6 in this case). Summarising, the
fuzzy technique is able to give a trade-off over
a wide range of possible deformations. Given
the similar behaviour with the case of fixed
σ = 0.8, a question arises about the need to
use a variable Gaussian kernel; to justify it,
we introduce Fig. 8, where the experiments
in Fig. 7 are repeated, but in this case we
use C′ = {0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4} in the
fuzzy controller. For large deformations we
achieve more accurate results, with a more
noticeable difference with fixed kernels, but
at the expense of a worsening for smaller de-
formations. Nevertheless, there still exists a
compromise (flatter response) over the entire

Figure 8: MSE vs. δ for each regularisation
technique. In this case the fuzzy controller
uses narrower kernels.

range of δ. It is worth notice that we have not
changed the fuzzy system at all, but only the
interpretation of its output.

As a final result, we give in Fig. 9 a glance
of the performance of the fuzzy system at a
given iteration, where we show the inputs, the
activation of each rule, and the output that
controls the width of the corresponding Gaus-
sian kernel. As can be seen from the output,
all variances σ2

i are used at some point, which
partially guarantees the consistency of our ap-
proach, since it proves that the combined use
of several Gaussian kernels (as shown in the
final picture of Fig. 9) yields better results
(as shown in Figs. 7 and 8) than the isolated
use of each of them.

5 Conclusion

We have showed that the combined use of
Gaussian kernels with different widths is an
efficient way to adaptively regularise a defor-
mation field in the context of image registra-
tion. We have considered two design issues:
first, in homogeneous regions the estimations
are not robust, and therefore more regulari-
sation is needed. Besides, a great local vari-
ation of the deformation field may be due to
a variety of factors, and we must distinguish
between the presence of outliers and the ac-
tual existence of highly irregular local defor-
mations. The implementation and validation
of a fuzzy controller based on these two quali-
tative criteria demonstrates their usefulness.
Regarding the fuzzy controller, it has been
proved that the same design may be adapted,
only by changing the range of the output,
so that it yields a better performance either
for large, irregular deformations, or for small,
smoother ones. This makes of our fuzzy sys-
tem a very powerful tool if a priori knowledge
of the extent of the deformations may be re-
trieved for a given problem. The main draw-
back of this technique is its computational
overload; we perform seven convolutions per
iteration instead of a single one in order to
exploit the matrix-based computation of Mat-
Lab, in whose language we have programmed
the entire algorithm, but more conservative
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Figure 9: A glance of the fuzzy system at a given iteration; from left to right, the first two
images are the two fuzzy inputs with the sets L, M, H coded as the R, G B, channels. The
remaining 3 images of the upper row and the four images at the left in the second row are the
seven rules described in Table 1, coded in pseudo-colour. The final image is the pseudo-colour
representation of the output.

solutions could be found.
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