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Abstract

In this paper, a joint solution to
the problem of finding appropriate
abstract representations for visual
polytopes is given. By using support
from convex and stochastic geome-
try, collecting information of views
from different viewpoints, percep-
tual grouping of 3D point-cloud im-
age points into halfplanes with prob-
abilistic robust fitting and the seg-
mentation of edges and corners by
intersecting halfplanes yields an ag-
gregation of visual primitives into
object prototypes by Bayes’ belief
networks. In order to build ob-
ject prototypes, a n-gram model is
trained by edge and corner primi-
tives, derived from Monte-Carlo sim-
ulations and processing of real 3D
point-clouds. Finally, we use per-
plexity to find out the best perform-
ing network and define a Dirichlet
distribution model of the n-grams.

Keywords: Bayesian Belief Nets,
Grammatical Inference, n-grams,
Dirichlet distribution.

1 Introduction

Within two recently proposed approaches, the
cognitive vision framework [3] and the mod-
eling of semantic aggregation of object pro-
totypes from visual primitives [2], we utilized

∗This work was supported by project S9101 ”Cog-
nitive Vision” of the Austrian Science Foundation.

predefined recipes, however, in this paper we
explain construction and learning of recipes
by a stochastic grammar approach.

The paper is organized as follows: the re-
mainder of this section presents required req-
uisites to the methods used herein. Section
2 shows related work to our proposed ap-
proach; Section 3 explains grammatical infer-
ence by deriving the n-gram model, and Sec-
tion 4 presents its realization by a Bayes net-
work; we conclude in Section 5 together with
an outlook on further work.

1.1 Grammatical Inference

Grammatical inference (GI) aims at learning
regular language from examples, i.e. by deter-
mining the structure of a finite state automa-
ton and by estimating its inter junction tran-
sition probabilities into a statistical model
[5, 2], which is represented by a family of
probability distributions P = {Pθ | θ ∈ Θ}.
Here, θ is a parameter vector, (Θ ⊆ Rn) a
parameter space, and Pθ is a probability dis-
tribution function. Hence, to each entity con-
sidered, a random variable is assigned and Pθ

represents their joint probability distribution.
Given random observations X = (x1, . . . , xn),
the posterior distribution on θ is calculated by
Bayes’ formula P (θ|X) = P (X|θ) P (θ)

P (X) , where
the uncertainty about θ is interpreted by the
subjective probability P (θ) as the prior and
P (X|θ) as the likelihood of the samples, when
given θ. In practice, three principal method-
ologies are used: (i) discriminative1, which

1e.g. Support Vector Machines, traditional neural
networks, or conditional random fields
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directly model the posterior distribution; (ii)
generative2, which model both, the likelihood
and the prior by sampling from a distribution;
and (iii) hybrid, as a mixture of i) and ii).

The bigger the model, the more it appears too
complex for finding a solution by discrimina-
tive methods, and therefore, the distributions
are better factorized into manageable parts
by the support of a generative model, such
as: (i) the naive Bayes method - which as-
sumes strongly naive independence between
random variables; (ii) hidden Markov mod-
els - which are Markov processes with un-
observable parameters determined from the
observed ones; (iii) probabilistic context free
grammars - which are context-free grammars,
in which each production is augmented with
an explicit probability, or (iv) n-grams - which
model symbol sequences, using state transi-
tion probabilities.

Therefore, the most widely and practically
used statistical model in language recogni-
tion is the n-gram model, in which an es-
timate of the likelihood of a word is made
solely on the identity of the preceding n − 1
words of an expression, firstly proposed by
Jelinek and Mercer [6] as a naive Markov
model. Thus, given n, it is to assign a prob-
ability P(W ) to a conceivable word sequence
W = {wt=1, wt=2, . . . , wt=m} of length m, at
observation time step t = {1 . . . m} yielding

P(W ) =
m∏

i=n

p(wi|wi−1, . . . , wi−n+1) (1)

where p(wi|wi−1, wi−2, . . . , wi−n+1) is the
probability3 that word wi will be spoken,
given the words wi−1 . . . wi−n+1.

1.2 Perceptual Grouping and Convex
Groups

Perceptual grouping (PG) focuses on the ex-
traction of relations based solely on low-level
image features – i.e. points, lines and sur-
faces – without applying any knowledge con-
cerning the image structure. These relations
are then used to group features together in

2i.e graphical models akin Bayes nets
3t starts at n in order to satisfy causality

order to obtain a semantic structure map,
like humans do. The grouping rules are: (i)
similarity, (ii) proximity, (iii) common fate,
(iv) collinearity, (v) good continuation, and
(vi) past experience according to Gestalt the-
ory [10]. Since we are concerned with the
understanding of the topology of visual ob-
jects, for the sake of simplicity we have re-
stricted ourselves to convex polyhedral ob-
jects. Thus, analysis of random polytopes re-
quires a combination of two fields of research
– convex and stochastic geometry. Convex ge-
ometry, is positioned between geometry, anal-
ysis and discrete mathematics; it dates back
to the ancient Greeks, and was systematically
developed by Minkowski (1864–1909) within
his theorem on mixed volumes. Minkowski
considered the determination of convex poly-
topes by the areas and exterior normal vec-
tors of their facets [4]. Stochastic geometry is
concerned with random geometric structures,
ranging from simple points or line segments
to arbitrary closed sets.

Hence, modeling the topology of polytopes
in the limit can be seen from three different
points of view: (i) using convex hulls of ran-
dom points – by utilizing volume approxima-
tion when the number of generating points
tends to infinity; (ii) random projections of
higher-dimensional polytopes – by using com-
binatorial properties of cross-polytopes that
are projected into lower dimensional random
subspaces; and (iii) intersections of random
halfspaces – by assuming the polytopes at
hand are large enough in size.

Figure 1 show the grouping of point clouds by
random halfspaces, which were grouped by a
RANSAC method [16] that groups triangles
in order to get halfplanes. In Figure 2 the re-
sulting intersection lines are shown, which are
completed by lines extracted between the ob-
ject border and object shadow. The method
delivers line primitive lists in 3D.

2 Related Work

There exists a vast literature on PG in vi-
sion, see for a survey e.g. [15]. Early work
in PG dates back to Marr [13], who was the
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Figure 1: Halfplanes
group the point clouds;
the plane intersections
give the convex extrema
of the object.

Figure 2: The
outlines of a cube
are given by the
intersection lines
and border lines.
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Figure 3: Junction to junction transitions that
appear at object corners, for instance as bigram
p(W |Y ), p(W |L); trigram p(L|W,W ); and 4-
gram p(W |L, Y, L), p(Y |W,W,W ) probabilities.

first to suggest incorporating grouping based
on curvilinearity into larger structures by his
primal sketch approach; Witkin and Tenen-
baum [17] postulated non-accidentalness for
spatiotemporal coherence; Lowe [12] derived
an expectation estimate for accidental oc-
currences by assuming a uniform distribu-
tion to line segments; Sarkar and Boyer [15]
developed a Bayesian network method for
geometric knowledge-based representation;
Zucker [19] introduced closure as more global
feature to better deal with occlusions; and
Ackermann et al [1] introduced a Markov
random field grouping approach with learn-
ing from hand-labeled trainings sets; however,
and many more.

More recent work of Procter [14] investigated
grouping of edge-triple features, to recognize
polyhedrons from 2D image projections, how-
ever, the method turned out to be too sensi-
tive to noise and thus failed practical demon-
stration. Levinshtein et al [11] proposed re-
covering a Marr-like abstraction hierarchy [13]
from a set of examples by applying a multi-
scale blob and ridge detector for feature ex-
traction, here drawbacks arise from the fact
that positional information of the blobs is lost
during graph embedding and that a vast num-
ber of parameters are to be defined.

Zillich [18] focused on issues concerning com-
plexity and robustness by proposing an in-
cremental processing scheme for the PG of
edges in indoor scenes. He proposed using
Gestalt principles to support PG and success-
fully implemented a Markov random field ap-
proach in order to deal with real-world ob-

jects. Although, in an abstract sense, the ap-
proach relates very closely to our approach,
Zillich’s self-criticism is that he unfortunately
relied too much on getting clean edges by local
edge detectors, which degraded system per-
formance in complexer setups. The main dif-
ference to our approach is that we focus on
robustness by applying multiresolution meth-
ods [3] and using more global approaches
rather than localized ones. We intend to first
get only a coarse representation of an object
at hand and then only refine the representa-
tion afterwards when more information is re-
quired.

3 The Graphical Model

Objects, seen from a very abstract level, can
be represented by graphs. These graphs are
representations of the connections between
structural elements, such as (i) corners; (ii)
edges; and (iii) boundaries, where two areas
meet: in a fold4, or in a blade5, or in a face6.
Structural elements and their connections are
defined by relations between image primitives.
Image primitives are composed by groupings
of image features that are extracted from im-
age points. Depending on the viewpoint, cor-
ners may appear very differently (see Fig-
ure 5, left column). In our approach, we clas-
sify corners into four junction types, such as:
(L)-type which means an occluding line and
denotes a blade that is an object region in
front of the background; (Y)-type means a 3-

4when both areas are from the same object
5separating object and background
6when one area appears closed
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Figure 4: Example of building a planar graph
in 3D space: A) line primitives are assumed to
be given; B) proximit-balls at the line endings
group together up to three lines; C) search
for candidates of correspondence; D) deter-
mine true edges by A* search within collinear-
ity hulls a and within a halfplane; E) look
for similar correspondences b at parallel half-
planes; F) continue search c within halfplanes;
G) connect halfplanes by correspondences d;
H) label corners with junction types.

junction, where three surfaces intersect with
the angles between each pair are < 180 de-
gree; (T)-type means a 3-junction with one of
the angles has exactly 180 degrees; and (W)-
type means a 3-junction with one angle > 180
degrees, see Figure 3 for examples of several
conditional junction/junction groupings.

Figure 4 shows the object graph builder algo-
rithm for the construction of a cube. It starts
with assuming the presence of line primitives
in 3D space, which can be skew to each other
(A). Thus, either at the intersection or in the
middle of the perpendicular shortest distance
between such two lines, proximity-balls (B) at
the line endings group pairwise together con-
current lines. A search for corresponding can-
didates (C) find shortest paths by A* search
within collinearity hulls (D) within a half-
plane. Then, looking for similar correspon-
dences (E) at parallel halfplanes and contin-
uing search (F) within halfplanes, connecting

is supported by correspondences (G). Finally,
labeling of corners with junction types gener-
ates a planar graph (I) [2].

3.1 The Statistical Language n-gram
Model

Statistical language models are used for the
modeling of sequences of symbols under the
assumption that the underlying generation
process is an approximate Markov-chain pro-
cess, where the approximate Markovian prop-
erty of an order n process is that the con-
ditional probability of future states depends
only upon the past n− 1 states, what means
that the process is conditionally independent
of the > n− 1 past states. Thus, a statistical
language model, in general, defines a proba-
bility distribution over the set of symbols sam-
pled from a finite alphabet. Its representation
by a Markov chain appears as a simple, but
high performing concept [8].

A certain n-tuple of symbols is called a n-
gram and is denoted n − G := yz where
y = [y1, y2, . . . , yn−1] is the context length and
z is the predicted symbol [8]. The maximal
context symbol length n− 1 is also called the
symbols history, where lengths with n = 1 de-
note unigram, n = 2 bigram, n = 3 trigram,
and n > 3 generally n-gram models.

A n-gram model is a Markov-chain model,
giving the probability definition for non-
terminating symbols with a maximal context
length of n − 1 predecessors by Bayes’ chain
rule

p(ω) ≈
T∏

t=1

p(ωt|ωt−n+1, . . . , ωt−1︸ ︷︷ ︸
n−1 symbols history

) (2)

When one is able to make sure that the train-
ing data contain all objects’ data that should
be learned, n-gram models have the advan-
tage over hidden Markov language models to
allow the calculation of optimum parameters
directly from training data. In our present
approach, the naive straight ahead solution
to the learning problem is to count the ab-
solute frequency c(ω1, . . . , ωN ) of all symbol
tuples and all possible contexts ω1, . . . , ωN to
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define all conditional probabilities by relative
frequencies.

3.1.1 Experimental Setup

In order to get a satisfying set of sample
data, we have tested 4-gram, trigram and
bigram modeling by data from real cube-
point-clouds with different viewpoints and
also Monte-Carlo (MC) 2-manifold projection
simulations of polyhedron objects with 4/4,
8/6, and 20/12 vertices/faces that are tetrahe-
dron, hexahedron, and dodecahedron views,
respectively. Figure 5-left, shows a sequence
of projections a)...d) of a polyhedron with
n = 8 vertices, a cube, where the data was
generated by MC simulations; at the mid-
dle, the respective planar graphs are given,
as described in [2]; and at the right, derived
Bayes’ networks are shown that will be dis-
cussed in Section 4. Four bigram transition
matrices of MC-samples of Figure 5 are cal-
culated with the observed counts of junction-
type to junction-type transitions that are cu-
mulated into training counts for Ni,j | i, j :
{L,W, Y, T}, as shown at the left of Table 1.

A problem is that the probability for unseen
events is per definition zero, and in the case
of presenting unseen events to the model, the
n-gram model runs into empirical holes or
singularities of its distribution. Therefore, a
post-processing step for smoothing [8] in order
to overcome the problem is indicated. The
simplest one would be to apply the Adding-
one7 method to all elements in the matrices.
Hence, this would overestimate the probabil-
ity of the unseen events, since we are gaining
only few counts per sample.

Thus, we apply smoothing that better deals
with low counts by a modified8 Good-Turing
discounting (1953) method before normaliz-
ing into probabilities, we estimate the prob-
ability for n-grams with zero counts and oc-
currence NC=0 by looking on the number of
n-grams that occurred with a global min-
imum count NCmin>0 and calculate counts
Nunseen = NCmin>0/NC=0.

7also referred to as Laplace’s Law
8The modification is to use the minimum count not

equal zero rather than a count equal 1 [8]

The smoothed counts yield ωi,j = (∀Ni,j = 0 :
Nunseen) ∪ Ni,j , and therefore, the transition
probabilities τ for the full bigram yields

τ(2) = p̂(ωi,j) = ωi,j/

4∑
k=1

ωi,k | i, j = {1 . . . 4}
(3)

Similarly to the calculation of the (4 by
4) bigram transition matrix τ(2), both, a
(4 by 4 by 4) trigram transition matrix
τ(3), defining threefoldjunction/junction-type
conditional probabilities, and a (4 by 4
by 4 by 4) 4-gram transition matrix τ(4),
defining fourfoldjunction/junction-type con-
ditional probabilities, are calculated.

However, in order to model object prototypes
by data of the transition matrices, we defined
to have recipes of object prototypes realized
by a probabilistic finite state automaton, de-
fined according to [9, 2] {Q,Σ, δ, τ, S0, F, ϕ},
with Q as a finite set of states, Σ the Alpha-
bet, δ : Q × Σ 7→ Q the transition function,
τ : Q× Σ 7→]0, 1] the transition probabilities,
S0 the initial state, F ⊂ Q is a subset of final
states from the set Q and ϕ : Q × Σ 7→]0, 1]
the probability for a state to be final.

In Section 4, we define the states of the au-
tomaton of an object at hand, by Bayes’ belief
nets with the probabilities calculated so far.

4 Belief Networks

Belief networks model firstly the indepen-
dence relationships between groups of random
variables and secondly reflect their topology
graphically in a directed acyclic graph (DAG).
The edges of the DAG show the condition-
ing variables in their expansions and represent
the recipes for object construction. As in our
approach the network starts in S0 at an ar-
bitrary junction, and the DAG gets assigned
directions only in order to satisfy Bayes chain
rule, it may end in an also arbitrary final state
FTerminate. Thus, it gets possible to remodel
the belief network for optimization purposes.

In Figure 5, four results of MC simulations
of a cube are given: in the first and sec-
ond column, the views and their plane graphs
are shown; the belief nets with coloring the

Proceedings of IPMU’08 1211



Table 1: Bigram transitions according to a Monte-Carlo single run sampling of Figure 5.
Typ Training Counts Ni,j Smoothed Counts ωi,j Transition Probabilities τ(2) = p̂(ωi,j)

L W Y T L W Y T L W Y T

Te L 3 6 0 2 L 3 6 0.143 2 L 0.269 0.538 0.013 0.179
tra W 6 5 3 0 W 6 5 3 0.143 W 0.424 0.354 0.212 0.010
hed Y 0 3 0 0 Y 0.143 3 0.143 0.143 Y 0.042 0.875 0.042 0.042
ron T 2 1 0 0 T 2 1 0.143 0.143 T 0.609 0.304 0.044 0.044

Cu L 4 12 0 8 L 4 12 0.125 8 L 0.166 0.497 0.005 0.332
be W 12 0 6 0 W 12 0.125 6 0.125 W 0.658 0.007 0.329 0.007

Y 0 6 0 0 Y 0.125 6 0.125 0.125 Y 0.020 0.941 0.020 0.020
T 8 0 0 2 T 8 0.125 0.125 2 T 0.780 0.012 0.012 0.195

Dod L 12 30 0 4 L 12 30 0.600 4 L 0.258 0.644 0.013 0.086
eca W 30 2 16 0 W 30 2 16 0.600 W 0.617 0.041 0.329 0.012
hed Y 0 16 18 2 Y 0.600 16 18 2 Y 0.016 0.437 0.492 0.055
ron T 4 0 2 0 T 4 0.600 2 0.600 T 0.556 0.083 0.278 0.083

nodes by its costs9 are shown in column three.
When it turns out that there is a trigram
used by the network, we use perplexity to
test if we can minimize the order of the n-
grams by recreating the network with chang-
ing link directions and preserving joint prob-
ability (see Figure 5-column four). Perplexity
is a related measure of the uncertainty of a
language event. The perplexity of a language
model is the reciprocal of the geometric av-
erage of the symbol probabilities of a test set
Ω = {ω1, ω2, . . . , ωN} of the predictions [8]:

PP (Ω) =

 |Ω|∏
i=1

p (ωi|ω1 . . . ωi−1)

− 1
|Ω|

. (4)

Thus, the higher the conditional probability
of the symbol sequence, the lower the perplex-
ity, and therefore, minimizing the perplexity
is the optimization criteria used.

4.1 Training of the Model

For training the model, we split given data
in three disjoint sets: (i) the training set T,
used for stepwise learning; (ii) the validation
set V, used to verify an order change of the
model; and (iii) the test set A, used to assess
the performance of the model.

Hence, in every MC training step, we firstly
select a training object t randomly from the
training set T. Secondly, we repeat for i =
1 . . . N times a random selection of viewpoint
positions PP (x,y,z)(t) around each test object
t, and calculate transition counts for bigrams,

9The computationally costs are increasing from us-
ing bigrams, to trigrams and 4-grams for conditioning.

trigrams, and 4-grams of the junction to junc-
tion connectivity from the set of junctions
J = 〈W,L, Y, T 〉 as defined as in Section 3.1.
Thirdly, we apply smoothing and calculate
the transition probability matrices τ(2), τ(3),
and τ(4) that are used to define the belief
network of the new recipe candidate r, rep-
resenting the conditional probabilities of the
dependencies between all junctions of the ob-
ject given. Finally, it is checked if a variant
recipe can be found that provides the same or
lower perplexity with using lower ordered n-
grams, which is then selected for replacement
of the recipe at hand. This new order n-gram
recipe candidate is verified with the validation
set V by the verification step in order to pre-
serve performance, and the selection result is
stored as a new recipe r to the set R of known
recipes.

The inference step is designated to find the
best recipe r ∈ R that fits to a given obser-
vation O. We find a solution by calculating
the likelihood p(O, r) and classifying the ob-
servation O into a class that maximizes the
posterior probability

p(r∗, O) = maxi
p(O, ri)p(ri)

p(O)
(5)

Since p(O) is independent from r, we only
have to consider the nominator of Equ.5 to
find the optimum

r∗ = argmax p(r|O) = argmax p(O|r)p(r)
(6)

Despite to common use of dropping p(r), we
though use p(r) to ensure high selectivity in
cases where the observation O is only partly
given. The inference step is validated by the
test set A within an confidence of 95%.

1212 Proceedings of IPMU’08
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Figure 5: A viewpoint sequence a)..d) of a training simula-
tion. From left to right: a) the projective views are given;
b) the planar graphs; c) the Bayes’ belief networks, showing
trigram-realizations and their bigram replacements.
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sian prior for the base measure
G0; b) sampling from G0 yields
the discrete G. Bottom: the 4-
simplex shows the n-gram parti-
tioning of the DP process.

4.2 Defining a Dirichlet Process

The n-gram modeling of the polytopes results
in a bag of distributions, hence, with one for
every polytope type observed. Thus inference,
such as given by (6), can be generalized by
modeling the resulting bag of distributions by
a distribution of distributions.

Hence, given a space Ω, a σ-field of subsets B,
forming a measurable space (Ω, B) – then a
stochastic process P , partitioned by elements
Ai ∈ B is termed a Dirichlet process (DP) on
(Ω, B) [7]. It is the distribution of a random
probability measure G(Ω,B) such that for any
finite partition (A1, ..., AK) ⊆ Ω we write G ∼
DP (α, G0), where G0 is the base measure of
G and α is a scaling parameter.

Figure 6-top a) shows an example for choos-
ing a base distribution; b) sampling from the
distribution; and at the bottom the m=4 sim-

plex, where the DP yields a clustering effect
on (Ω, B) with G ∼ DP (α,G0), a resulting
n-grams clustering of the experimental setup.

5 Conclusions and Future Work

We have shown the aggregation of structural
information by perceptual grouping; we de-
fined a n-gram graphical model and used be-
lief networks to model object reconstruction
recipes with Monte-Carlo simulation training
and real data. Thus, we have developed fur-
ther our past approaches [3, 2], which have
used so far predefined recipes, by implement-
ing statistical learning of object recipes, and
a Dirichlet process was defined to cover the
bag of distributions learned by one construct.

Moreover, from this work, it follows that the
combination of both, the planar graph rep-
resentation proposed in [2], and the statisti-
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cal approach of grammatical inference by the
n-gram model of this work, performs better
than the subgraph matching approach pro-
posed therein, when they are compared in
terms of runtime complexity and learning ef-
ficiency. However, as simple as humans may
investigate an unknown object in order to un-
derstand its topology, the approach supports
such an investigation by combining a sequence
of images from different viewpoints for learn-
ing of implicit object topology.

The next step will be to feed a self-organizing
map by the outcomes of the belief net in or-
der to implement associative neural categori-
cal object learning.
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