
A Vector Based Fuzzy Filter for Colour Image Sequences

Tom Mélange, Mike Nachtegael and Etienne E. Kerre
Department of Applied Mathematics and Computer Science,

Fuzziness and Uncertainty Modelling Research Unit,
Krijgslaan 281 (Building S9), 9000 Gent, Belgium

Tom.Melange@UGent.be
http://www.fuzzy.ugent.be

Abstract

This paper introduces a new vector
based filter for the removal of addi-
tive gaussian noise in colour image
sequences. The proposed method
consists of two subfilters of which
the first is a colour extension of
our previously presented fuzzy logic
based motion and detail adaptive fil-
ter (FMDAF) for greyscale image se-
quences. The additional second sub-
filter is a 3D adaptation of the colour
restorating subfilter from a recent
fuzzy noise reduction method for
colour images. Experimental results
show that in terms of average PSNR
and NCD, the proposed colour ex-
tension outperforms the usual colour
extension in which the Y component
in the Y UV transform is filtered
with the original greyscale method.
However, better objective measures
need to be found for correspondence
to visual observations.

Keywords: Video, colour, noise,
Gaussian.

1 Introduction

In today’s world image sequences can be
found in almost all kind of areas. A few exam-
ples are e.g. broadcasting, video-phone, inter-
net applications (chat, skype, YouTube, . . .),
traffic observations, surveillance systems, au-
tonomous navigation and so on.

The used sequences are however often affected
by noise due to bad acquisition, transmission,
recording and/or compression. In many ap-
plications, the noise can be modelled by an
additive white Gaussian noise model of zero
mean and variance σ2:

In,i = Io,i + ǫi, i = 1, . . . , P

where In,i and Io,i denote the i-th pixel from
the noisy and the original frame respectively,
ǫi ∼ N(0, σ2) and P is the total number of
pixels per frame. In this paper we concentrate
on this noise model.

Two goals can be aimed at by noise filtering,
namely: (i) a visual improvement and (ii) an
improvement in the further analysis or coding
of the sequences. To reach these purposes, it
is important to find a good balance between
noise removal and preservation of fine details.

In literature, several filtering methods for
greyscale image sequences can be found, e.g.
[1, 3, 4, 5, 6, 7, 9, 11]. A first straightfor-
ward way to extend a given greyscale method
to colour image sequences modelled in the
RGB colour space, is to filter each of the
colour bands R, G and B separately. Ap-
plying this approach, colour artefacts are in-
troduced because of the neglected correlation
between the different colour bands. There-
fore, usually a second approach is applied. In
this approach only the luminance component
Y of the Y UV -transform is filtered with the
given greyscale method, possibly with an ad-
ditional averaging of the chrominance com-
ponents U and V . In the first subfilter of
the proposed framework, we opt for a vector
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based approach in which each pixel is treated
as a colour vector and none of its components
are used separately. In this first subfilter our
previous work (FMDAF filter) presented in
[6] is extended to handle such colour vectors.
The filter from [6] is inspired by the ideas be-
hind the multiple class averaging filter [11],
but uses them in a fuzzy logic framework.
Fuzzy set theory and fuzzy logic replace bi-
nary decisions by gradual transitions, which
are much more appropriate for handling com-
plex systems and for the processing of hu-
man knowledge in the form of fuzzy if-then
rules. The underlying ideas are: (i) use only
pixels from the current frame in the case of
motion detection to prevent spatio-temporal
blur; (ii) filter less in the case that large spa-
tial activity (image details) is detected. This
means that more noise will be left in such ar-
eas. However, the human eye is less sensitive
for the high spatial frequencies corresponding
to large spatial activity [2]. When no image
details are detected, a strong filtering can be
performed to remove as much noise as possi-
ble.

Additionally to the first subfilter, a 3D exten-
sion of the colour restorating second subfilter
from [8] is applied.

The experimental results show that the pro-
posed colour video denoising framework per-
forms very well in terms of average PSNR and
NCD. It is however also discussed that these
measures, which are still used on a wide scale
as standard measures for image comparison,
do not always correspond to visual observa-
tions and that better measures are needed.

The structure of the paper is as follows: The
proposed filtering framework for the denois-
ing of colour video is explained in Section 2.
Additionally, in Section 3 the experimental re-
sults are presented. Finally, the paper is con-
cluded in Section 4.

2 The Proposed Denoising
Framework

In this section, the proposed filtering frame-
work is explained. The framework consists
of two subfilters which are defined in Subsec-

tion 2.1 and Subsection 2.2 respectively. In
this paper we assume the frames of the image
sequence to be modelled in the RGB colour
space, as it is the case in most image and video
processing applications. In this colour space,
colours are the results of adding together the
primary components red, green and blue in
different proportions (each given by a value in
[0, 255]). A colour can thus be represented by
a 3D vector, where the first, second and third
component respectively indicate the amount
of red, green and blue in the given colour.

2.1 First Subfilter

The first subfilter makes use of a 3 × 3 × 2
sliding window, consisting of 3 × 3 pixels in
the current frame and 3× 3 pixels in the pre-
vious frame as shown Fig. 1. This window is
moved through the frame step by step from
top left to bottom right. In each step the
current central position in the window is fil-
tered by averaging the noise over neighbour-
ing pixels that are similar and thus probably
belong to the same object. The central posi-
tion in the window is denoted by (r, t), with
r = (x, y) the spatial position of the pixel in
the frame and t the temporal position of the
frame in the sequence. Additionally, (r’, t′),
with r’ = (x + k, y + l), (−1 ≤ k, l ≤ 1) and
t′ = t or t′ = t− 1, denotes an arbitrary pixel
position in the filtering window. We further
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Figure 1: The 3× 3× 2 filtering window con-
sisting of 3×3 pixels in the current frame and
3× 3 pixels in the previous frame.

denote the noisy input sequence and the out-
put of the first fuzzy subfilter by In and If
respectively.

The filtered value If (r, t) of the first subfilter
for the central pixel in the window is defined
as a weighted mean of the pixels in the 3×3×2
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window:

If (r, t) =
∑

r’

∑t
t′=t−1W (r’, t′, r, t)In(r’, t′)∑
r’

∑t
t′=t−1W (r’, t′, r, t)

,

(1)

where the weights W (r’, t′, r, t) correspond
to the activation degree of one of the Fuzzy
Rules 2 and 3 given below in Subsection 2.1.2.
These fuzzy rules are based on a detail value
d(r, t), a difference value ∆(r’, t′, r, t) and a
motion value m(r, t). These values are vector
extensions of the values used in [6] which we
adopted from [11].

• The detail value d(r, t) is equal to the
standard deviation of the 3 × 3 pixels of
the sliding window belonging to the cur-
rent frame:

Iav(r, t) =
1
9

∑
r’

In(r’, t).

d(r, t) =
(1
9

∑
r’

‖In(r’, t)− Iav(r, t)‖2
2

) 1
2 .

• The difference value ∆(r’, t′, r, t) in the
fuzzy rules is defined as:

∆(r’, t′, r, t) =
∥∥In(r’, t′)− In(r, t)

∥∥
2
.

• The motion value m(r, t) used for the fil-
tering is finally determined as:

m(r, t) = ‖In(r, t)− In(r, t− 1)‖2 .

2.1.1 Fuzzy Sets and Fuzzy Rules

To be able to express whether the above de-
fined values are “large”, we introduce fuzzy
sets. A fuzzy set F in a universe X is char-
acterized by a X 7→ [0, 1] mapping µF , called
the membership function. This mapping as-
sociates with every element x ∈ X a member-
ship degree µF (x) of x in F . For the above
introduced values, we respectively introduce
a fuzzy set “large detail value”, “large differ-
ence” and “large motion value”. A member-
ship degree equal to one for e.g. d(r, t) in the
fuzzy set “large detail value” means that this
detail value is large for sure. A membership

degree equal to zero means that we are cer-
tain that the detail value is not large. Mem-
bership degrees between zero and one make
it possible to have a gradual transition be-
tween those two cases and give an indication
of whether the detail value is rather large or
not. The membership functions of the three
above fuzzy sets are respectively denoted by
µd, µ∆ and µm and are depicted in Fig. 2,
3 and 4. The parameters thr1, thr2, T1,
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Figure 2: The membership function µd of the
fuzzy set “large detail value”.
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Figure 3: The membership function µ∆ of the
fuzzy set “large difference”.
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Figure 4: The membership function µm of the
fuzzy set “large motion value”.

T2, t1 and t2 that define the exact form of
these functions are experimentally optimized
in terms of PSNR, by letting them vary over
an interval of values, for different sequences
with different characteristics and for differ-
ent noise levels. These results indicated linear
relationships between the optimal parameter
values and the noise level. The best fitting
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lines through the observations can be found in
Table 1. In this table, σn stands for the stan-

Table 1: Optimized parameter values for the
membership functions.

parameter optimal value
thr1 0.22σn − 1.8
thr2 2.585σn − 4.875
T1 1.03σn − 7.9
T2 3.34σn + 3.65
t1 0.12σn − 1.2
t2 3.665σn − 2.225

dard deviation of the Gaussian noise which is
assumed equal in the three colour bands.

As mentioned earlier, the weights
W (r’, t′, r, t) in (1) are defined as the
activation degree of a fuzzy rule. Such a
fuzzy rule has the general form “IF A THEN
B”. A is called the premise (or antecedent)
and B the consequent. Both A and B are
(collections of) propositions containing lin-
guistic variables (e.g. “large”). Propositions
can be connected by AND and OR operators
or preceeded by NOT operators, correspond-
ing to respectively the intersection and union
of two fuzzy sets and the complement of a
fuzzy set.

To determine the membership degree of an el-
ement y in the intersection of two fuzzy sets
F1 and F2 in Y , a triangular norm T [10] is
used in fuzzy logic. This norm T maps the
membership degrees of the element y in the
fuzzy sets F1 and F2 onto its membership de-
gree in the fuzzy set F1 ∩ F2: µ(F1∩F2)(y) =
T (µF1(y), µF2(y)), ∀y ∈ Y .

To obtain the membership degree of an ele-
ment y in the union of F1 and F2 from the
membership degrees in F1 and F2 in fuzzy
logic a triangular conorm S [10] is used:
µ(F1∪F2)(y) = S(µF1(y), µF2(y)),∀y ∈ Y .

Finally, the membership degree of an ele-
ment y in the complement of a fuzzy set F
in Y , given its membership degree in F , is
determined using an involutive negator [10]:
µ(co(F ))(y) = N(µF (y)), ∀y ∈ Y .

For the results in this paper, we have cho-

sen for the algebraic product and the prob-
abilistic sum as triangular norm and conorm
respectively and for the well-known standard
negator Ns(x) = 1 − x, ∀x ∈ [0, 1]. There
is however no remarkable difference to the re-
sults obtained by using other norms (e.g. the
minimum) and conorms (e.g. the maximum).

As an example, we consider the following
fuzzy rule:

Fuzzy Rule 1 IF (u is U AND v is V ) OR
w is NOT W THEN z is Z.

The membership degree µZ(z) of z in Z, cor-
responding to the activation degree of the
rule, is then calculated as:

µZ(z) = (µU (u) · µV (v)) + (1− µW (w))−
(µU (u) · µV (v)) · (1− µW (w)).

2.1.2 Weight Determination

Depending on whether the window pixel at
position (r’, t′) lies in the current (t′ = t) or
in the previous (t′ = t− 1) frame, the weight
W (r’, t′, r, t) in (1) is determined as the acti-
vation degree of one of the fuzzy rules given
below. The rules remain the same as in our
previous work [6], but with adapted detail,
difference and motion values and they are now
used to assign weights to colour vectors in-
stead of grey values.

Fuzzy Rule 2 Determining the membership
degree in the fuzzy set “large weight” of the
weight W (r’, t′, r, t) for the pixel at position
r’ in the current frame (t′ = t) of the window
with central pixel position (r, t):

IF (the detail value d(r, t) is LARGE AND

∆(r’, t′, r, t) is NOT LARGE)

OR (the detail value d(r, t) is NOT LARGE)

THEN the pixel at position r’ has a LARGE

weight W (r’, t′, r, t) in (1).

Fuzzy Rule 3 Determining the membership
degree in the fuzzy set “large weight” of the
weight W (r’, t′, r, t) for the pixel at position
r’ in the previous frame (t′ = t − 1) of the
window with central pixel position (r, t):

IF
(
(the detail value d(r, t) is LARGE AND
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∆(r’, t′, r, t) is NOT LARGE)

OR (the detail value d(r, t) is NOT LARGE)
)

AND the motion value m(r, t) is NOT LARGE

THEN the pixel at position r’ has a LARGE

weight W (r’, t′, r, t) in (1).

The weight W (r’, t′, r, t) (corresponding to
the activation degree of one of the two rules)
is thus equal to its membership degree in
a fuzzy set “large weight”, determined by
the membership function depicted in Fig. 5.
This membership degree or thus the weight

LARGE
WEIGHT

0

1

Membership degree

W( ,t)r1

W( ,t)r
w

Figure 5: The membership function µw of the
fuzzy set “large weight”.

W (r’, t′, r, t) in (1) is more precisely given by

ω · (1− θ) + (1− ω)− ω · (1− θ) · (1− ω),

for pixel positions in the window belonging to
the current frame and by(
ω·(1−θ)+(1−ω)−ω·(1−θ)·(1−ω)

)
·(1−ψ),

for pixel positions in the window belonging to
the previous frame, where

ω = µd(d(r, t)),
θ = µ∆(∆(r’, t′, r, t)),
ψ = µm(m(r, t)).

2.2 Second Subfilter

Additional to the first subfilter explained in
Subsection 2.1 a second subfilter is applied,
which is a 3D extension of the second subfil-
ter from [8]. This filter further improves the
proposed method by reducing the noise in the
colour component differences and is based on
the simplified assumption that the difference
between two neighbouring pixels is approxi-
mately the same in all three colour compo-

nents. The central pixel in the window is es-
timated by combining corrected local differ-
ences in a spatio-temporal neighbourhood of
each colour band.

The same 3×3×2 sliding window as in the first
subfilter is used (Fig. 1), which is again moved
through the frame, each time filtering the cen-
tral window pixel at position (r, t). For the
filtering of this central pixel, local differences
(gradients) are calculated in each colour band
separately and for each pixel in the sliding
window. For the red, green and blue colour
band these differences are denoted by respec-
tively LDR, LDG and LDB .

For the window pixels belonging to the cur-
rent frame (t′ = t), the differences are calcu-
lated on the output of the first subfilter:

LDR(r’, t) = If (r’, t, 1) − If (r, t, 1),
LDG(r’, t) = If (r’, t, 2) − If (r, t, 2),
LDB(r’, t) = If (r’, t, 3) − If (r, t, 3).

For the window pixels belonging to the previ-
ous frame (t′ = t − 1), we use the already
present output of the second subfilter, de-
noted by Out:

LDR(r’, t′) = Out(r’, t′, 1) − If (r, t, 1),
LDG(r’, t′) = Out(r’, t′, 2) − If (r, t, 2),
LDB(r’, t′) = Out(r’, t′, 3) − If (r, t, 3).

These local differences are used to calculate
one correction term ǫ(r’, t′) for each pixel in
the filtering window. This correction term is
the arithmetic mean of the local differences
in the red, green and blue component of the
considered pixel:

1
3

(
LDR(r’, t′) + LDG(r’, t′) + LDB(r’, t′)

)
.

To avoid the influence of pixels from the pre-
vious frame, belonging to another object, each
pixel in the window is given a weight WT r,t

r’,t′ ,
based on the motion value m(r, t) already
computed in the first subfilter:

WT r,t
r’,t′ =

{
1, t′ = t

1−m(r, t), t′ = t− 1
.
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The output of the second subfilter for the cen-
tral window pixel is then determined as:

Out(r, t, 1) =∑
r’WT r,t

r’,t

(
If (r’, t, 1)− ǫ(r’, t)

)
∑

r’

∑
t′ WT r,t

r’,t′
+

∑
r’WT r,t

r’,t−1

(
Out(r’, t− 1, 1)− ǫ(r’, t− 1)

)
∑

r’

∑
t′ WT r,t

r’,t′
,

where ǫ(r’, t′) is the correction term for the
components of the neighbouring pixel at po-
sition (r’, t′) and Out(r, t, 1) is the red com-
ponent of the output. The green (Out(r, t, 2))
and blue (Out(r, t, 3)) colour component of
the output are determined analogously.

3 Experimental Results

In this section some experimental results are
presented. In these experiments we have
applied the proposed colour video denois-
ing technique on four different test sequences
(“Salesman”, “Tennis”, “Chair” and “Flow-
ers”) corrupted with additive Gaussian noise
of zero mean and standard deviation σn =
5, 10, 15, 20, 25.

As measures of objective similarity and dis-
similarity between the original and the filtered
frames, the peak signal to noise ratio (PSNR)
and the normalized colour difference (NCD)
are used. The PSNR value for colour images
modelled in the RGB colour space is defined
as:

MSE(I0, If ) =
3∑

c=1

m∑
i=1

n∑
j=1

(Io(i, j, c) − If (i, j, c))2

3 · n ·m ,

PSNR(I0, If ) = 10 · log10

S2

MSE(I0, If )
,

where Io(i, j, 1), Io(i, j, 2), Io(i, j, 3) and
If (i, j, 1), If (i, j, 2), If (i, j, 3) respectively de-
note the red, green and blue component of the
pixel at spatial position (i, j) in respectively
the original and the filtered frame, each con-
taining m rows and n columns of pixel posi-
tions. S denotes the maximum possible value

of a pixel component (here S = 255). The
NCD is defined as:

NCD(Io, If ) =

∑m
i=1

∑n
j=1 ‖∆ELAB‖∑m

i=1

∑n
j=1

∥∥E∗
LAB

∥∥ ,

where Io and If still stand for the original and
the filtered frame respectively,

‖∆ELAB‖ =
(
(Io,L∗ − If,L∗)2+

(Io,a∗ − If,a∗)2 + (Io,b∗ − If,b∗)2
) 1

2

and

‖E∗
LAB‖ =

(
(Io,L∗)2 + (Io,a∗)2 + (Io,b∗)2

) 1
2 ,

where Io,L∗ ,If,L∗ ,Io,a∗ ,If,a∗ ,Io,b∗ and If,b∗ re-
spectively denote the L∗-, a∗- and b∗-
component of the L∗a∗b∗-transform of the
original and the filtered frame.

We have compared the proposed filtering
framework (FMDAF-RGB-vector) to the
filtering approach that denoises the Y com-
ponent of the Y UV transform with the
wavelet extension of the original greyscale
method [6] (which outperforms other
greyscale methods of a similar complexity as
shown in [6]) combined with an additional
averaging (3× 3 window) of the chrominance
components U and V (FMDAF-YUV).
Tables 2 and 3 show for different noise
levels the average PSNR and NCD values
for the test sequences processed by the two
approaches. It can be concluded that, both
in terms of PSNR and NCD, the proposed
filtering framework is a better alternative
for the usually applied filtering of the Y -
component. This conclusion is however
not fully confirmed visually. The original
and noisy (σn = 10) “Salesman” sequence
together with the filtered result obtained by
respectively the FMDAF-RGB-vector and
the FMDAF-YUV method are available on
http://users.ugent.be/∼tmelange/IPMU.
When looking carefully to e.g. the left side
of the phone, we see that some red and
green shine (colour artefacts) is visible in the
result of the FMDAF-YUV method. This
is much less the case in the result of the
FMDAF-RGB-vector method, which might
explain the good PSNR and NCD values.
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Table 2: The average PSNR value for the processed test sequences.
Sequence noise FMDAF-RGB-vector WRFMDAF-YUV

level
“Salesman” 5 38.29 37.37

10 34.44 33.64
15 32.20 31.20
20 30.61 29.35
25 29.38 27.88

“Tennis” 5 34.44 33.40
10 31.92 29.83
15 30.08 27.92
20 28.71 26.68
25 27.59 25.59

“Chair” 5 40.22 39.92
10 36.41 35.67
15 34.27 32.99
20 32.63 30.89
25 31.24 29.16

“Flower garden” 5 29.72 29.03
10 28.38 26.39
15 26.93 24.98
20 25.57 23.67
25 24.37 22.44

Table 3: The average NCD value for the processed test sequences.
Sequence noise FMDAF-RGB-vector WRFMDAF-YUV

level
“Salesman” 5 0.0450 0.0531

10 0.0607 0.0829
15 0.0736 0.1121
20 0.0861 0.1397
25 0.0985 0.1652

“Tennis” 5 0.0319 0.0339
10 0.0393 0.0475
15 0.0457 0.0601
20 0.0516 0.0724
25 0.0576 0.0848

“Chair” 5 0.0112 0.0122
10 0.0164 0.0215
15 0.0205 0.0309
20 0.0243 0.0404
25 0.0281 0.0498

“Flower garden” 5 0.0774 0.0792
10 0.0858 0.0945
15 0.0952 0.1064
20 0.1046 0.1190
25 0.1138 0.1319
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We see however also that the wavelet domain
method has removed more noise and pro-
duces a smoother result. Further, it should
also be noticed that in an average over the
frames of PSNR and NCD values, temporal
discontinuities between successive frames are
not taken into account. It can be concluded
that better objective measures are needed for
colour images and image sequences.

4 Conclusion

In this paper we have presented a new fuzzy
video filter for the removal of white gaussian
noise in colour image sequences. We have ex-
tended the fuzzy logic framework from our
previous work [6] to colour videos through a
vector based approach and combined it with
a 3D extension of the colour restorating sub-
filter from [8].

Experimental results show that the proposed
colour video denoising method performs very
well in terms of average PSNR and NCD. It
should however also be concluded that bet-
ter objective measures are needed for colour
images and image sequences.
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