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Abstract

In this paper we present our ongo-
ing work for getting the discrimi-
nation power of the Fuzzy Texture
Spectrum encoding. The model we
propose provides the classes encoded
by the spectrum having outstand-
ing power for getting homogeneous,
granulated and structured texture
image characterization. Moreover,
we provide the membership func-
tions allowing getting the degrees to
which an image (or image part) is
homogeneous, structured and micro-
granulated.

Keywords: Texture analysis, Tex-
ture Spectrum, Texture characteri-
zation, Fuzzy Sets.

1 Introduction

The visual perception of textures has been
an area of interest spanning a wide variety
of disciplines from art to computer science.
The fields of computer vision, perception, and
graphics have made significant contributions
to the overall understanding of texture per-
ception and representation, although in quite
different ways.
From the computer vision point of view, re-
search into texture models ([1, 2]) seeks to find
a compact, and if possible complete, represen-
tation of textures commonly seen in images.
The objective is to use these models for tasks
as texture classification, segmenting the parts

of an image with different textures, or detect-
ing flaws or anomalies in textures.

The literature distinguishes between stochas-
tic and structural models of texture. A ma-
jor group of stochastic models is the Prob-
ability Density Function (PDF), that model
a texture as a random field and a statisti-
cal PDF model is fitted to the spatial dis-
tribution of intensities in the texture. Typi-
cally, these methods measure the interactions
of small numbers of pixels.

Probability Density Function methods are di-
vided into parametric and non-parametric.
The distinction between both methods re-
flects the distinction made in statistics be-
tween parametric and non-parametric PDF
modelling techniques. Examples of non-
parametric PDF models are: Gray-Level
Co-occurrence Matrices (GLCM), Gray-Level
Difference Methods (GLD) and Texture Spec-
trum Methods. The latest use PDF models
that are sensitive to high order interactions.

Texture Spectrum coding (TS) [3], and Lo-
cal Binary Patterns method (LBP) [4] are the
most known non-parametric PDF techniques.
From its introduction, these models have been
applied for texture analysis classification and
characterization, as well as texture-based im-
age segmentation ([3], [5, 6, 7, 8, 9]). More-
over, some authors have explored these meth-
ods for developing new texture feature extrac-
tion models that allow capturing different as-
pects of the image texture ([10, 11, 12]). How-
ever both methods suffer of some drawbacks.
Besides the large range of possible values, an-
other problem of the TS is that, due to the
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way the spectrum is obtained, in natural im-
ages it doesn’t reflect the human perception
of homogeneity. On the other hand, although
the LBP reduce the range of possible val-
ues, it discards important pattern information
(as for homogeneity, due to rules the equality
out), and lost the spatial distribution infor-
mation of the patterns.

Since the upcoming of Soft Computing, in-
telligent techniques have been introduced to
apply the feature classification approach to a
growing class of textures [13, 14]. Fuzzy-based
methods have been used in texture analy-
sis tasks, particularly for image segmentation,
[13]. Some of these methods are based on the
TS encoding ([14, 15, 16]), and have been used
for texture analysis and classification.

In [17] we introduced the Fuzzy Texture Spec-
trum (FTS) that, although based on the TS
encoding, makes use of the fuzzy techniques to
alleviate its drawbacks and problems. Later
on, [18], we explored its potential for homo-
geneous texture characterization proving its
superior performance and robustness with re-
gard the TS encoding.
Following our work on the analysis of the FTS
coding for extracting texture characterization
[19], this work outlines further advances for
getting the classes encoded by the Reduced
FTS (RFTS) allowing determine the degrees
to which the image is homogeneous, granu-
lated and structured.

The paper is structured as follows: Sections
2 and 3 outline the principles of the TS and
FTS, as well as the process followed for ob-
taining the granulated and homogeneous rel-
evant classes and membership functions. Af-
terwards, the process followed for getting the
classes allowing detect the presence of some
structure within an image is presented. Sec-
tion 4 sketch some experimental results. We
finish with some Conclusions.

2 Reduced Fuzzy Texture
Spectrum

The definition of Texture Spectrum, intro-
duced by He and Wang [3, 5], employs the
determination of the Texture Feature Vec-

tor (TFV), and the Texture Unit Number
(NTFV) values. TFVs characterize the local
texture information for a given pixel and its
neighbors in a 3x3 window, and the statistics
of all the TFVs over the whole image reveal
the global texture aspects.
This technique compares the gray-level of the
seed pixel, V0, with those of its neighbors, Vi

(1≤ i≤ 8), and records three logical relation-
ships: smaller -0-, equal -1- and greater -2-.
So, each image pixel generates an 8-D Texture
Feature Vector (E1, E2, · · · , E7, E8) that can
be one of the 38 = 6561 possible vectors. The
TFVs have associated Texture Unit Numbers,
NTFV =

∑
1≤i≤8 Ei · 3i−1, that are the labels

of the TFVs, and their occurrence frequency
function give the Texture Spectrum.

2.1 Fuzzy Texture Spectrum

As in the case of the TS, the start point of
the FTS is the set of pixels’ intensity val-
ues of a 3x3 window centered in the pixel.
However, unlike the TS, in the Fuzzy Texture
Spectrum encoding (FTS) [17, 18] three val-
ues are assigned to a component of the feature
vector, each showing the degree to which the
gray-levels of surrounding pixels are lighter,
µ0, similar, µ1, or darker, µ2 than the cen-
tral pixel gray-level. So, if di = Vi − V0 oc-
cupies the same position than pixel i, and
µi

0 = µ0(di), µi
1 = µ1(di), µi

2 = µ2(di) are the
degrees to which di is 0, 1, and 2 respectively,
the Fuzzy Texture Feature Vector (FTFV)
associated to the seed pixel of the raster
window is given by FTFV = (Fi)1≤i≤8 =
((0µi

0
, 1µi

1
, 2µi

2
))1≤i≤8 with

∑
j=0,1,2 µi

1 = 1.

So, while the TS assigns a unique Tex-
ture Unit Number to the central pixel,
the FTS method assigns a set of Fuzzy
Texture Unit Numbers, {NFTFVk

}l
k=1=

{(NTFVk
, µNTF Vk

)}l
k=1 which corresponds to

the possible combinations obtained from the
FTFVs, when µi

j 6= 0; j = 0, 1, 2, and their
membership degrees are obtained multiplying
the corresponding membership degrees.

2.2 Reduced FTS

Although the FTS has proved to reflect tex-
ture image characteristics better than the TS
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[17, 18], a drawback of both methods is the
high number of possible TFVs. Some efforts
have been carried out for reducing the com-
plexity of the original TS encoding [20].
In the case of the FTS, we modified its coding
scheme grouping in the same class all Texture
Feature Vectors differing from rotations mul-
tiples of 45 degrees [18]. It allowed reducing
spectrum dimensions to 834 classes without
losing texture characterization power but im-
proving FTS efficiency.

3 Granulated and Homogeneous
Relevant Classes Detection

Accordingly to human beings inspection, it
seems clear that not all the Fuzzy Texture
Spectrum Classes (FTSC) are equally signifi-
cant for texture characterization and discrim-
ination. This why, as a first step, in [19] we
developed an heuristic analysis that allowed
us to get the classes having outstanding rele-
vance for determining the degree to which an
image part is granulated and homogeneous.
To do it, starting from a 512x512 homoge-
neous synthetic image of grey-level equal to
128, H0, we corrupted it with white noise of
sigma values varying from 1 to 15, with gaps
of two units (Fig.1), Hσ, σ = 1+2k, 1 ≤ k ≤ 7,
till getting a fine-grained-tipped image, H15.

H1 H3 H5 H7

H9 H11 H13 H15

Figure 1: Images considered for obtaining the
Fuzzy Texture Spectrum Classes having Gran-
ulated/Homogeneous discrimination degree.

Then, we analyzed the spectrums obtained
using the membership functions of equations
(2), (1), and (3), for detecting the classes pro-
viding granulated and homogeneous texture
information, as well as the degree to which a
given image is granulated and homogeneous.

µ1(di) =


0 if | di |≥ 8

8− | di |
5 if 3 <| di |< 8
1 if | di |≤ 8

(1)

µ0(di) =
{

0 if di ≥ 0
1− µ1(di) if di < 0

(2)

µ2(di) =
{

0 if di ≤ 0
1− µ1(di) if di > 0

(3)

After detecting the classes accomplishing
aforementioned condition, and considering
that images go from super-homogeneous, H1,
to granulated, H15, we grouped in the same
over-class the classes behaving equal for all
images. This way we found four over-classes:
O7 =

{
01111111, 11111112

}
, O8 =

{
11111111

}
,

Z8 =
{
00000000, 22222222

}
, and

Z7 =
{
00000001, 12222222

}
.

3.1 Defining Granulated and
Homogeneous Membership
Functions

Taking into consideration the appearance of
the ”relevant classes” within the synthetic im-
ages we obtained the membership functions
allowing to get the degrees to which an im-
age (or image region) is Granulated, µG, and
Homogeneous, µH . Noting by fO7, fO8, fZ7,
and fZ8 the frequencies of appearance of the
corresponding over-classes, if N is the images
size, the membership functions were defined
by:

µG = max

{
0, min

{
1,

1
2
− 2 · o + 2 · z

}}
(4)

µH = max

{
0,min

{
1,

1
2
(1 + o − z)

}}
(5)

where o = fO7
+fO8
N and z = fZ7

+fZ8
N .

The results obtained by the set of synthetic
images were validated considering two addi-
tional sets of images obtained in the same way,
but starting from synthetic images of grey-
levels equal to 60 and 200 respectively. Fur-
thermore, using discriminatory and entropy
measures, it was proved the robustness of the
FTS for describing homogeneous textures as
well as its superior performance with regard
the original encoding.

4 Structured Classes Obtaining

In accordance with Haralick [1], besides ho-
mogeneous and granulated, image texture can
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be qualitatively evaluated as having other
properties that depend on tonal primitives
and spatial interaction between them, and
that we can group within a unique named
Structured according to next definition.

Definition. An image part presents some
kind of Structure if within it appears a uni-
form/repetitive pattern (object), as a geomet-
ric shape, or something irregular, but in a
repetitive way, as stones or any kind of natu-
ral object.

So, due to the FTSCs are obtained consid-
ering not only pixels grey-levels, but also
their relative variations within the surround-
ings, it seems clear that only considering some
Classes it would be enough to provide infor-
mation, at some degree, of the presence of
Structure, as it happens for Homogeneous and
Granulated properties.

4.1 Classes Identification

The FTSCs having outstanding relevance for
determining the degree to which an image
part has some kind of macro-texture or Struc-
ture have been obtained through a three-steps
process based on the analysis of structured
synthetic images.

4.1.1 First Step

This step is divided into two parts:
A.- Structured synthetic images design,
and B.- Obtainment of the images’ FTSs,
and Relevant classes detection.

A.- Structured synthetic images design. For
getting the set of training synthetic images
OI={C, T, B, R}we drawn four A4 Word docu-
ments made up by homogeneously distributed
basic structures: one with 12 circles, C, other
with 15 equilateral triangles, T , and the oth-
ers with 6 bands, B, and 9 rectangles, R, re-
spectively (Fig. 2).

Then, after reducing grey-levels differences
between background and objets, we printed
the documents and scanned in them at differ-
ent orientations, except for the circles, and at
two resolutions (pixels/cm): l and h. Specif-
ically, bands and rectangles were scanned in

C T B R

Figure 2: Original synthetic images
OI={C, T, B, R} used for obtaining the
structured relevant Classes

at 0, 10, 30, 60, and 90 degrees; and triangles
at 0, 10, 30, and 60 degrees. On the other
hand, for example, circles dimensions at res-
olutions l and h were of 60x60 and 130x130
pixels, respectively.

Finally, as we were interested in considering
structure and images’ spectrum modifications
on account of noise, we processed previous im-
ages adding white noise of sigma values 1, 3,
and 12, so obtaining 90 images.

B.- Obtainment of the images’ RFTSs and
Relevant classes detection. After obtaining
the reduced FTSs of previous images we an-
alyzed them looking for the prominent struc-
tured over-classes. This analysis was based
on the comparison of the spectrums obtained
for the training images with those of the im-
age H0 to which we added the same noise
level. i.e. if C(r,o,σ) notes the image of circles,
scanned in at resolution r and orientation o,
and processed adding σ white noise, we com-
pared its FTS with that of Hσ.

Finally we got the set of classes ex-
pressed in the RFTSs of the training
images I1= {C(r,o,i), T(r,o,i), B(r,o,i), R(r,o,i)} ;
r=l, h; o=0, 10, 30, 60, 90; i=1, 3, 12; with
frequencies higher than in those of the Hi.

4.1.2 Second Step

Considering that in a Structured image the
repetitive patterns can appear with different
densities, we designed a second training set of
synthetic images, 3OId={3Cd, 3Td, 3Bd, 3Rd},
based on OI but with greater density of el-
ements. To do it, after drawing the set of im-
ages OId={Cd, Td, Bd, Rd} (see Fig. 3−a), each
obtained from the corresponding image of OI
reducing the space among objects proportion-
ally to their dimensions, we put together three
of these images to form the images of 3OId.
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Table 1: Classes having outstanding relevance for getting the degrees to which an image is
Homogeneous, Structured and Granulated.

Homogeneous O8 =
{
11111111

}
; O7 =

{
01111111, 11111112

}
;

O5 =
{
00011111, 11111222

}
; Z5 =

{
00000222, 00022222

}
;

Structured O4 =
{
00011121, 00011211, 00012111, 01222111, 01122211, 01112221

}
;

O3 =
{
00011221, 00012211, 00122211, 00112221

}
; O2 =

{
00012221

}
;

O1 =
{
00001222, 00002221, 00022221, 00012222

}
; Z4 =

{
00002222

}
Granulated Z8 =

{
00000000, 22222222

}
; Z7 =

{
00000001, 12222222

}

Figure 3 −b depicts the case of image 3Cd,
rotated 90 degrees.

a) Cd Td Ld Rd

b) 3Cd rotated

Figure 3: Original synthetic images
OId={Cd, Td, Ld, Rd} used for obtaining
the structured relevant Classes

Then, starting from 3OId, the process carried
out for getting the new training set, and de-
tecting the Relevant classes, was the same as
at first step, but scanning the A4 documents
in at three different resolutions, l, h, and
vh, given a total of 135 training images I2=
{Cd(r,o,i) , Td(r,o,i) , Bd(r,o,i) , Rd(r,o,i)} ; r = l, h, vh;
o=0, 10, 30, 60, 90; i=1, 3, 12. As a con-
sequence of this step, besides confirming the
relevance of the classes detected at first step,
we made a first approach to the way those
classes might be considered for getting the de-
grees to which an image part is Homogeneous,
Granulated and Structured.

4.1.3 Third Step

With the aim of obtaining more intermedi-
ate data we processed the images obtained
at previous step at noise levels of σ values 6
and 24; I3= {Cd(r,o,i) , Td(r,o,i) , Bd(r,o,i) , Rd(r,o,i)} ;
r = l, h, vh; o=0, 10, 30, 60, 90; i=6, 24. The
new 90 training images provided us with much
more intermediate values and results. Then

we obtained the results that are presented at
next section.

5 Experimental Results

Table 1 depicts the final set of relevant over
classes having outstanding relevance for de-
termining if an image part is Homogeneous,
Structured and micro-Granulated at some de-
gree. In order to be minority respectful,
classes having equivalent window behavior
have been grouped.

5.1 Relevant Classes

Although other classes were also expressed,
they wasn’t considered because their behav-
ior was equivalent at the synthetic images
and at the corresponding Hσ, for the different
noise levels. So, in the cases of Homogeneous
and micro-Granulated, although other classes
were selected at first step, and seemed to be
confirmed at second one, were rejected be-
cause, at third step, it was proved that the in-
formation provided by those classes were the
same that the supplied by O8 and O7 in the
case of Homogeneous, and by Z8 and Z7 in
the case of micro-Granulated.

For determining the classes having Structured
relevance, due to the images we are work-
ing with are macro-structured, we selected
the classes having clear macro-Structure
meaning, and rejected those whose behav-
ior doesn’t provide additional relevant in-
formation. So, we rejected the classes ex-
pressed with higher frequencies for images of
I = {I1, I2, I3} than for those of Hσ, but whose
increasing/decreasing behavior was similar.

For each training image we obtained the rel-
ative frequencies of the relevant over-classes,
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fO8, fO7, fZ5 , fZ4, fO5, fO4, fO3 , fO2, fO1, fZ8 ,
and fZ7. After an analysis of these frequen-
cies, for all the images of I, we found that
the quantities related to homogeneity, H,
Granularity, G, and Structure, S, of an image
can be given by:
H=fO8 + fO7, G=4 · (fZ8 + fZ7), and
S=fZ5 + fZ4 + fO5 + fO4 + fO3 + fO2 + fO1.

For getting the value of G we have multiplied
for 4 the value of G = fZ8 + fZ7 because, in
the case of σ = 24 for which the image Hσ is
granulated, that value only arrives to 24.674.

Table 2 depicts the values obtained for the im-
age of triangles scanned at low resolution, for
different noise levels, and the corresponding
frequencies for images Hσ.
As it was expected, with noise σ = 24
the classes expressed are mainly Z8 and Z7,
what means that images are basically micro-
Granulated, while for noise σ = 1 the ex-
pressed classes are associated to Homogene-
ity and to the Structure marked by the fron-
tier among elements and background. Hav-
ing a look at the values of Structure, row
thirteenth (S), it can be appreciated that,
for 3 ≤ σ ≤ 12, this quantity is around a
25% smaller for the Hσ than for the synthetic
Structured images. Similar results have been
obtained for all the images of I.
It has been also observed that Structured im-
ages constituted by small objects are less de-
tected than if are constituted by big objects,
except in the cases of high density.

5.2 Membership Functions Obtaining

For obtaining the membership functions we
have analyzed the influence of noise and reso-
lution changes within the values of H, S, and
G obtained for the images of I. As an example,
table 3 depicts the results obtained in the case
of the images of triangles scanned at 0 (col. 2
and 3), 30 (col. 4 and 5), and 60 (col. 6 and
7) degrees, for resolutions h (col. 2, 4, 6) and
l (col. 3, 5, 7), and noise levels 1 (rows 2-4),
3 (rows 6-8), 6 (rows 10-12), 12 (rows 14-16),
and 24 (rows 18-20).

Having a look at table 3 can be appreciated
that, except for the case of G, the values ob-

tained are greater for high (col. 2, 4, and 6)
than for low resolution (col. 3, 5, and 7). Be-
sides, this characteristic is strongest for low
sigma values than for high ones. The case
of resolution vh doesn’t appear at the table
because the values are very similar to the ob-
tained for resolution h.

Looking at the values of H and G, it can be
appreciated that, they vary within different
ranges for different σ values. So, given the
values of H and G for a given image, it is pos-
sible to deduce the noise-level of such image.
This fact must be considered for defining the
membership functions.

Making a comparative study of the tables ob-
tained for all the images of I, we have observed
that:

• Structure is better detected if it is con-
stituted by big elements, except if there
is high density.

• Membership functions must boost S
when H is high.

• Values of S within [0, 2.25], are noisy gen-
erated, but out of this interval the value
of S begins to be real.

From previous conditions, and analyzing the
results for the synthetic images, we con-
structed three linear functions ηH , ηS , and
ηG going through the points (x, ηH(x)),
(x, ηS(x)), and (x, ηG(x)) of table 4.

Table 4: Points considered for obtaining lineal
functions approaching the membership func-
tions

H S G η∗(X ), X=H, S , G

0 0 0 0
0.05 2.25 0.08 0.2
10 10 45 0.4
50 17 64 0.6
85 60 88 0.8
100 100 100 1

Then, the membership functions were ob-
tained approaching functions ηH , ηS , and
ηG by parabolic functions that minimize the
minimum quadratic error, what provided the
membership functions:
µH(x) = 0.0640 + 0.0165 · x− 0.00007127 · x2

µS(x) = 0.1579 + 0.0182 · x− 0.00009768 · x2

µG(x) = 0.1021 + 0.0055 · x + 0.00003753 · x2
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Table 2: Frequencies of appearance of classes of Table 1 for images T(l ,0,σ), and its comparison
with the frequencies for images Hσ.

Freq. T(l,0,1) H1 T(l,0,3) H3 T(l,0,6) H6 T(l,0,12) H12 T(l,0,24) H24

fO8 70.315 52.493 16.45 20.431 0.715 0.89 0.006 0.009 0 0

fO7 10.036 28.567 24,054 27.968 4.032 4.839 0.118 0.129 0.001 0.003

H 80.351 81.060 40.504 48.399 4.747 5.729 0.124 0.138 0.001 0.003

µH 0.930 0.933 0.615 0.696 0.141 0.156 0.066 0.066 0.064 0.064

fO5 3.033 0.628 2.712 1.644 1.437 1.431 0.205 0.218 0.018 0.012

fO4 0.498 0.001 0.663 0.053 0.868 0.62 0.404 0.401 0.051 0.067

fO3 0.219 0 0.233 0.001 0.278 0.083 0.226 0.188 0.058 0.082

fO2 1.306 0 0.867 0 0.455 0.006 0.201 0.04 0.057 0.04

fO1 1.595 0 1.853 0 1.909 0.007 1.588 0.183 0.89 0.464

fZ5 0.366 0 0.564 0 1.048 0.003 1.734 0.111 2.03 0.662

fZ4 2.411 0 2.341 0 2.117 0.001 1.672 0.04 1.059 0.25

S 9.428 0.629 9.233 1.698 8.112 2.151 6.03 1.181 4.163 1.577

µS 0.321 0.169 0.318 0.188 0.299 0.197 0.264 0.179 0.232 0.186

fZ8 0.052 0.032 0.508 0.531 3.859 4.166 9.689 10.375 12.695 15.547

fZ7 0.135 0.128 1.273 1.321 6.13 6.605 9.51 10.499 11.361 9.127

fZ7 + fZ8 0.187 0.160 1.781 1.852 9.989 10.771 20.199 20.874 24.056 24.674

G 0.748 0.64 7.124 7.408 39.956 43.084 80.796 83.496 96.224 98.696

µG 0.106 0.106 0.147 0.145 0.382 0.409 0.791 0.823 0.979 1

Rows 5, 14, and 18 of table 2 show the Ho-
mogeneous, Structured and micro-Granulated
membership values for images T(l,0,σ) and
Hσ obtained using previous membership func-
tions.

6 Conclusions

From the results presented at previous sec-
tion it can be observed that it is no neces-
sary analyze the whole Spectrum for homoge-
neous, granulated and structured texture im-
age characterization, but just the information
provided by 27 Texture Numbers is enough
for getting useful information. The next step,
that is our current work, consists in applying
this study to real images for getting their ho-
mogeneous, structured and micro-granulated
texture information.
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T(h,0,6) T(l,0,6) T(h,30,6) T(l,30,6) T(h,60,6) T(l,60,6) H6
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