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Abstract

We show that on the basis of pre-
serving monotonicity an improved
algorithm of image compression and
reconstruction can be proposed.
The algorithm is based on parti-
tioning the range of the function fI

which corresponds to an image I.
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1 Introduction

After the first successful series of publications
[4, 3, 5], the technique of fuzzy transforms (F-
transforms) was investigated on monotonous
functions and functions fulfilling the Lipschitz
condition. It was conjectured that each prop-
erty (monotonicity and Lipschitz continuity)
will be preserved via the direct and inverse F-
transforms. The conjecture was confirmed [6]
and the theory pushes the authors into appli-
cations in image processing.

Since F-transform has already proved its abil-
ity to be used in image compression and re-
construction (see [3, 1]), there is always a
room to improve quality of compressed and
reconstructed images. In this contribution,
we will show that on the basis of preserving
monotonicity an improved algorithm of image
compression and reconstruction can be pro-
posed. Its advantage (over the one proposed
in [3]) consists in keeping sharpness of an orig-
inal image.

The structure of the contribution is the follow-
ing. In Section 2, the fuzzy partition of the
universe is recalled. In Section 3, the tech-
nique of the direct and inverse fuzzy trans-
form is introduced. In Section 4, we discuss
the discrete fuzzy transform. In Section 5,
we show that the property of monotonicity is
invariant with respect to direct and inverse
fuzzy transforms. In Section 6, principles of
image compression by the fuzzy transform are
reminded and a new advanced image compres-
sion method is proposed.

2 Fuzzy Partition of the Universe

The key idea of the technique proposed in this
paper is a fuzzy partition of the universe into
fuzzy subsets (factors, clusters, granules etc.).
Let us recall the Zadeh’s paper [8] where the
notion of a granule has been introduced and
used in fuzzy logic based human reasoning. In
the theory of fuzzy transforms, we show that
for a sufficient representation of a function it
is sufficient to know the function’s average val-
ues over fuzzy subsets from the fuzzy partition
of its domain. Then, the function can be as-
sociated with a mapping from the set of fuzzy
subsets to the set of its average values. In
brief, this is an idea of direct fuzzy transform
of a function.

We take an interval [a, b] as a universe. That
is, all (real-valued) functions considered in
this contribution have this interval as a com-
mon domain.

Definition 1
Let x1 < . . . < xn be fixed nodes within [a, b],
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such that x1 = a, xn = b and n ≥ 3. We
say that fuzzy sets A1, . . . , An, identified with
their membership functions A1(x), . . . , An(x)
defined on [a, b], form a fuzzy partition of [a, b]
if they fulfil the following conditions for k =
1, . . . , n:

1. Ak : [a, b] −→ [0, 1], Ak(xk) = 1;

2. Ak(x) = 0 if x 6∈ (xk−1, xk+1) where
for the uniformity of denotation, we put
x0 = a and xn+1 = b;

3. Ak(x) is continuous;

4. Ak(x), k = 2, . . . , n, strictly increases on
[xk−1, xk] and Ak(x), k = 1, . . . , n − 1,
strictly decreases on [xk, xk+1];

5. for all x ∈ [a, b],
∑n

k=1 Ak(x) = 1.

The membership functions A1, . . . , An are
called basic functions.

Let us remark that basic functions are spec-
ified by a set of nodes x1 < . . . < xn and
the properties 1–5. The shape of basic func-
tions is not predetermined and therefore, it
can be chosen additionally according to fur-
ther requirements. As the example, we give a
formal representation of triangular member-
ship functions:

A1(x) =

{
1− (x−x1)

h1
, x ∈ [x1, x2],

0, otherwise,

Ak(x) =


(x−xk−1)

hk−1
, x ∈ [xk−1, xk],

1− (x−xk)
hk

, x ∈ [xk, xk+1],
0, otherwise,

An(x) =

{
(x−xn−1)

hn−1
, x ∈ [xn−1, xn],

0, otherwise.

where k = 2, . . . n− 1, and hk = xk+1 − xk.

Let a fuzzy partition of [a, b] be given by fuzzy
sets A1, . . . , An, n ≥ 3, in the sense of Def-
inition 1. We say that it is uniform if the
nodes x1, . . . , xn, n ≥ 3, are equidistant. This
means that xk = a + h(k − 1), k = 1, . . . , n,
where h = (b − a)/(n − 1). Moreover, two
additional properties are required:

6. Ak(xk−x) = Ak(xk+x), for all x ∈ [0, h],
k = 2, . . . , n− 1,

7. Ak(x) = Ak−1(x − h), for all k =
2, . . . , n− 1 and x ∈ [xk, xk+1], and
Ak+1(x) = Ak(x − h), for all k =
2, . . . , n− 1 and x ∈ [xk, xk+1].

In the case of a uniform partition, h is the
length of each subinterval [xk, xk+1], k =
1, . . . , n − 1. Moreover, the value of h is un-
ambiguously determined by the number n of
basic functions. We will further refer a uni-
form partition with subintervals of the length
h as to a h-uniform partition.

3 Fuzzy transform

In this section, we recall ([7, 4]) the no-
tion of fuzzy transform Fn[f ] of a continu-
ous function f on [a, b]. We will further use
the short name F-transform instead of fuzzy
transform. We will also recall some approxi-
mation properties of the both direct and in-
verse F-transforms.

3.1 Direct fuzzy transform

Let us fix an interval [a, b] and nodes x1 <
. . . < xn, such that x1 = a, xn = b and n ≥ 3.
Let A1, . . . , An be some fixed basic functions
which constitute a fuzzy partition of [a, b].

Denote C([a, b]) the set of continuous func-
tions on the interval [a, b]. The following def-
inition (see also [4]) introduces the (direct)
fuzzy transform of a function f ∈ C([a, b]).

Definition 2
Let A1, . . . , An be basic functions which con-
stitute a fuzzy partition of [a, b] and f be any
function from C([a, b]). We say that the n-
tuple of real numbers [F1, . . . , Fn] given by

Fk =

∫ b
a f(x)Ak(x)dx∫ b

a Ak(x)dx
, k = 1, . . . , n, (1)

is the (direct integral) F-transform of f with
respect to A1, . . . , An.

Denote the F-transform of a function f with
respect to A1, . . . , An by Fn[f ]. Then

Fn[f ] = [F1, . . . , Fn]. (2)
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The elements F1, . . . , Fn are called compo-
nents of the F-transform.

3.2 Inverse F-transform

The inverse F-transform is given by the in-
version formula and approximates the original
function in such a way that a universal con-
vergence can be established. Moreover, the
quality of approximation is given in the The-
orem 1.

Definition 3 ([4])
Let A1, . . . , An be basic functions which form
a fuzzy partition of [a, b] and f be a function
from C([a, b]). Let Fn[f ] = [F1, . . . , Fn] be
the integral F-transform of f with respect to
A1, . . . , An. Then the function

fF,n(x) =
n∑

k=1

FkAk(x) (3)

is called the inverse F-transform.

The theorem and its corollary below show
that the inverse F-transform fF,n can approx-
imate the original continuous function f with
an arbitrary precision. The proof can be
found in [4].

Theorem 1
Let f be a continuous function on [a, b]. Then
for any h-uniform fuzzy partition A1, . . . , An

of [a, b] (where n ≥ 3 and h = b−a
n−1) and for

all x ∈ [a, b],

|f(t)− fF,n(t)| ≤ 2ω(h, f) (4)

where fF,n is the inverse F-transform of f with
respect to the fuzzy partition A1, . . . , An and

ω(h, f) = max
|δ|≤h

max
x∈[a,b−δ]

|f(x + δ)− f(x)|

is the modulus of continuity of f on [a, b].

Corollary 1
Let the assumptions of Theorem 1 be fulfilled.
Then the sequence of inverse F-transforms
{fF,n} uniformly converges to f .

4 Discrete F-Transform

Let us specially consider the discrete case,
when an original function f is known (may
be computed) only at some points p1, . . . , pl ∈
[a, b] where p1 < · · · < pl. Let a fuzzy parti-
tion of [a, b] be given by fuzzy sets A1, . . . , An,
n ≥ 3, n < l, in the sense of Definition 1. The
nodes x1, . . . , xn are not necessarily among
the points p1, . . . , pl. We assume that the set
P = {p1, . . . , pl} is sufficiently dense with re-
spect to the fixed partition, i.e.

(∀k)(∃j)Ak(pj) > 0. (5)

Then the (direct) discrete F-transform of f is
introduced as follows.

Definition 4
Let a function f be given at points p1, . . . , pl ∈
[a, b] and A1, . . . , An, n < l, be basic func-
tions which constitute a fuzzy partition of
[a, b]. We say that the n-tuple of real num-
bers [F1, . . . , Fn] is the (direct) discrete F-
transform of f with respect to A1, . . . , An if

Fk =

∑l
j=1 f(pj)Ak(pj)∑l

j=1 Ak(pj)
. (6)

In the discrete case, we define the inverse
F-transform by the same inversion formula
(3) and consider that function only at points
where the original function is given.

5 Preserving Monotonicity

In this section we will consider the class
M [a, b] of bounded monotonous functions, de-
fined on [a, b], and show that for any uni-
form fuzzy partition of [a, b] the inverse F-
transform of a function from M [a, b] belongs
to the same class.

Let M [a, b] be a class of bounded monotonous
functions defined on [a, b]. Then functions
from M [a, b] are integrable on [a, b] and their
direct and inverse F-transforms exist. Let us
choose some natural number n ≥ 3 and con-
sider a h-uniform partition of [a, b] by n basic
functions A1, . . . , An.
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Lemma 1
Let f ∈ M [a, b] be a monotonically increasing
function and A1, . . . , An establish a h-uniform
partition of [a, b]. Let F1, . . . , Fn be the F-
transform components of f with respect to
A1, . . . , An. Then for each k = 2, . . . , n − 2,
Fk ≤ Fk+1 so that F2 ≤ F3 · · · ≤ Fn−1.

proof: Let k be one of 2, . . . , n − 2. Then
we can write

h(Fk+1 − Fk) =
∫ xk+2

xk

f(x)Ak+1(x)dx−∫ xk+1

xk−1

f(x)Ak(x)dx =∫ xk+2

xk

f(x)Ak+1(x)dx−∫ xk+2

xk

f(y − h)Ak+1(y)dy =∫ xk+2

xk

(f(x)− f(x− h))Ak+1(x)dx ≥ 0.

In the equalities above, we have used the
following property of a h-uniform partition:
Ak(y − h) = Ak+1(y) where y ∈ [xk, xk+2]. 2

Remark 1
Let the assumptions of Lemma 1 hold true.
It may happen that the F-transform com-
ponents F1 and Fn of f break monotonicity
between all components, i.e. that F1 ≤ F2

and/or Fn−1 ≤ Fn do not hold. This is caused
by the different way of computing F1 and Fn

in comparison with F2, . . . , Fn−1. In order to
remove this difference we will extend the func-
tion f to a function fex, A1 to Aex

1 and An to
Aex

n so that the extended functions are defined
as follows on domains [a−h, b+h], [a−h, a+h]
and [b− h, b + h] respectively:

fex(x) =



f(a− x) = 2f(a)− f(a + x),
if x ∈ [0, h],

f(x), if x ∈ [a, b],
f(b + x) = 2f(b)− f(b− x),

if x ∈ [0, h],

Aex
1 (x) =


A1(a− x) = A1(a + x),

if x ∈ [0, h],
A1(x), if x ∈ [a, a + h],

Aex
n (x) =


An(x), if x ∈ [b− h, b],
An(b + x) = An(b− x),

if x ∈ [0, h].

Note that fex monotonically increases on [a−
h, b + h]. If we replace the F-transform com-
ponents F1 and Fn by

F ex
1 =

1
h

∫ a+h

a−h
f(x)Aex

1 (x)dx,

F ex
n =

1
h

∫ b+h

b−h
f(x)Aex

n (x)dx

respectively then the inverse F-transform will
be changed to

fex
F,n(x) = F ex

1 Aex
1 (x)+

n−1∑
k=2

(FkAk(x)) + F ex
n Aex

n (x).

It is worth to notice that the inverse F-
transforms of f and fex coincide on [x2, xn−1].

Let the partition of [a − h, b + h] be
given by Aex

1 , A2, . . . , An−1, A
ex
n and

F ex
1 , F2, . . . , Fn−1, F

ex
n be the F-transform

components of fex with respect to
Aex

1 , A2, . . . , An−1, A
ex
n . Then by the proof of

Lemma 1, F ex
1 ≤ F2 ≤ · · · ≤ Fn−1 ≤ F ex

n .

Theorem 2
Let f ∈ M [a, b] be a monotonically increas-
ing function and A1, . . . , An establish a h-
uniform partition of [a, b]. Then the in-
verse F-transform fF,n of f with respect to
A1, . . . , An monotonically increases on the in-
terval [a + h, b− h].

proof: Let F1, . . . , Fn be the F-transform
components of f with respect to A1, . . . , An

and fF,n be the inverse F-transform. Let
x, y ∈ [a + h, b − h] be such that x < y. We
will prove that fF,n(x) ≤ fF,n(y). The proof
will be based on Lemma 1 and split in a num-
ber of cases according to positions of x, y with
respect to the nodes x2, . . . , xn−1 of the parti-
tion. Below, we will consider only one possible
case and refer to [6] for all others.

Assume that for some k = 2, . . . , n− 2, x, y ∈
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[xk, xk+1]. Then

fF,n(y)− fF,n(x) =
n∑

j=1

FjAj(y)−
n∑

j=1

FjAj(x) =

Fk(Ak(y)−Ak(x))+
Fk+1(Ak+1(y)−Ak+1(x)) =

Fk(Ak(y)−Ak(x))+
Fk+1(1−Ak(y)− 1 + Ak(x)) =

(Ak(x)−Ak(y))(Fk+1 − Fk) ≥ 0.

The last inequality is due to the fact that
Ak monotonically decreases on [xk, xk+1] and
Fk ≤ Fk+1. 2

Corollary 2
Let f ∈ M [a, b] be a monotonically increasing
function and A1, . . . , An establish a h-uniform
partition of [a, b]. Let fex extend f (see Re-
mark 1) and the partition of [a − h, b + h]
be given by Aex

1 , A2, . . . , An−1, A
ex
n (see Re-

mark 1). Then the inverse F-transform fex
F,n

of fex monotonically increases on the interval
[a, b].

6 Application to Image
Compression

A method of lossy image compression and re-
construction on the basis of fuzzy transforms
has been proposed in [4] and then analyzed
and compared with other compression tech-
niques in [3, 1].

Below, after reminding the principles of im-
age compression and reconstruction by direct
and inverse F-transforms, we will explain how
preserving monotonicity can improve quality
of the reconstructed image.

6.1 Principles of Image Compression
by the F-Transform

Let an image I of the size N × M pixels be
represented by a function of two variables (a
fuzzy relation) fI : N × N −→ [0, 1] partially
defined at nodes (i, j) ∈ [1, N ] × [1,M ]. The
value fI(i, j) represents an intensity range of
each pixel. A compression of the image I is

represented by the n × m matrix Fnm[fI ] of
the discrete F-transform components of fI :

Fnm[fI ] =

 F11 . . . F1m
...

...
...

Fn1 . . . Fnm


where

Fkl =

∑M
j=1

∑N
i=1 fI(i, j)Ak(i)Bl(j)∑M

j=1

∑N
i=1 Ak(i)Bl(j)

,

k = 1, . . . , n; l = 1, . . . ,m. Basic functions
A1, . . . , An and B1, . . . , Bm establish fuzzy
partitions of [1, N ] and [1,M ] respectively,
and n < N , m < M . The value ρ =
(nm)/(NM) is called the compression ratio.

A reconstruction of the image I (function
fI) is given by the inverse F-transform of fI

adapted to the domain [1, N ]× [1,M ]:

fF,nm(i, j) =
n∑

k=1

m∑
l=1

FklAk(i)Bl(j).

Two quality indices PSNR (Peak Signal to
Noise Ratio) and RMSE (Root Mean Square
Error) of the reconstructed image are given
by

PSNR = 20 lg
255

RMSE

where

RMSE =√∑N
i=1

∑M
j=1(fI(i, j)− fF,nm(i, j))2

NM
.

A comparison of PSNR and RMSE for three
techniques: F-transform, fuzzy relation com-
pression [2] and JPEG has been attempted
in [1]. It has been shown that the technique
of F-transform is better than the technique
of fuzzy relation compression, but it is worse
than the technique of JPEG. However, a com-
plexity of the F-transform based compression
is (in many cases) less than the complexity of
JPEG.
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6.2 Advanced Image Compression

The following standard trick allows to
improve the effectiveness of a compres-
sion/reconstruction technique: divide a whole
image into blocks and apply the technique
to each block separately. Instead of this, we
propose another trick which takes advantage
of preserving monotonicity. The details and
some examples are discussed below.

Aiming to increase the quality of F-transform
based compression and reconstruction, we
propose to divide the image I into a finite
number of layers by partitioning the range
of its corresponding representing function fI .
Each layer will be compressed and then recon-
structed with the help of F-transform. The re-
sulting inverse F-transforms of layers will be
then combined into one function which repre-
sents the final reconstructed image of I. The
detailed description will be given below for
the fixed number (four) of layers.

Step 1. Partition the interval [0, 1] into four
subintervals: [0, .25], [.25, .5], [.5, .75]
and [.75, 1].

Step 2. “Divide” the function fI into four
auxiliary functions (layers) f l

I(i, j),
l = 1, 2, 3, 4, so that they are as fol-
lows:

f l
I(i, j) ={

fI(i, j) if fI(i, j) ∈ Sl,

1− 0.25l otherwise.

and Sl = {y | 1 − 0.25l ≤ y ≤ 1 −
0.25(l − 1), }.

Step 3. Compress each function f l
I(i, j), l =

1, 2, 3, 4, and then reconstruct each of
them with the help of direct and in-
verse F-transforms, respectively.

Step 4. Combine the resulting inverse F-
transforms f1

F,nm(i, j), . . . , f4
F,nm(i, j)

into one function ff
F,nm(i, j) which

represents the final reconstructed im-
age of I.

Let us stress that the ranges of the com-
pressed and reconstructed functions will be
preserved due to the preserving monotonic-
ity. Therefore, the combination of the four in-
verse F-transforms f1

F,nm(i, j), . . . , f4
F,nm(i, j)

into one does not lead to a collision.

We claim that the quality (measured by
PSNR and/or RMSE) of F-transform based
compression and reconstruction of each layer
f l

I(i, j), l = 1, 2, 3, 4, is better than the qual-
ity of the reconstructed function fF,nm. The
justification of this claim is based on Theo-
rem 1. Indeed, the above mentioned quality
is measured with the help of difference be-
tween the original image and its reconstruc-
tion. By (4), this difference is estimated
from above by the “modulus of continuity” of
the original image. The latter is represented
by a discrete function which may have big
“jumps”. On the other hand, the layers of the
image have restrictive “jumps” and by this,
the quality of their reconstructions is better.
Let us illustrate this explanation by two pic-
tures (Figure 1 and Figure 2), both show in-
verse F-transforms of two functions 5∗sign(x)
and max(5 ∗ sign(x), 3) defined on the in-
terval [−2, 2]. Both functions have “jumps”
at the point x = 0, however, the “jump”
of the second function max(5 ∗ sign(x), 3) is
smaller. Therefore, the inverse F-transform
of max(5 ∗ sign(x), 3) on the interval (0, 2] is
closer to the original function. This is justified
by values of two different inverse F-transforms
at point x = .04.

Figure 1: The functions 5 ∗ sign(x) and its
inverse F-transform. At point x = .04, 5 ∗
sign(x) = 1, and the value of the inverse F-
transform is 3.65.
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Figure 2: The functions max(5 ∗ sign(x), 3)
and its inverse F-transform. At point x = .04,
max(5 ∗ sign(x), 3) = 1, and the value of the
inverse F-transform is 4.74.

Let us illustrate the proposed technique on
the picture “Cameraman” which is taken from
the Corel Galery. Below, we show four pic-
tures with the original image (Fig. 3), its in-
verse F-transform applied to the whole im-
age (Fig. 4), four layers (Fig. 5) and finally,
their combination into one reconstructed im-
age (Fig. 6).

Figure 3: Original image “Cameraman”

Figure 4: Reconstructed image “Cameraman”
after applying F-transform.

7 Conclusion

The theory of fuzzy transforms proved to be
successful in application to image compression
and reconstruction. However, the respective
reconstruction is lossy. The aim of this con-
tribution is to show that the quality of re-
construction can be improved if we take into
account the monotonicity property.
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