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Abstract

A wrapper-type evolutionary feature
selection algorithm, able to use fuzzy
data, is proposed. In the con-
text of Genetic Learning of Fuzzy
Rule-based Classifier Systems (FR-
BCS), this new algorithm has been
applied to a particular kind of in-
stances, comprising fuzzy discretized
data (FDD). This data is obtained
when passing crisp data through the
fuzzification interface of the FRBCS
under study.

We have compared the properties
of the algorithm proposed here to
other approaches, over FDD and
crisp data. In case the preprocessed
data is intended to be used by a Ge-
netic Learning FRBCS, we can con-
clude that those algorithms able to
use FDD are preferred over the crisp
ones, even though there is not fuzzi-
ness in the training data being used.
Besides, they also are the only al-
ternative when the datasets are im-
precise, although this last case is not
elaborated in this study.

Keywords: Genetic Fuzzy Sys-
tems, Fuzzy Data, Feature Selection.

1 Introduction

The selection of a subset of features for clas-
sification problems can be solved either with
wrapper or filter methods. Wrappers consider

that the classification algorithm is a black
box, used by the search algorithm to evalu-
ate each feature subset. Instead, filter meth-
ods are independent of the classifier and select
features based on properties that good feature
sets are supposed to have. Filter methods
can produce wrong results, because they do
not have into account the learning algorithm.
In contrast, the main problem with wrappers
is the computing time. If the learning algo-
rithm is fast, binary coded genetic algorithms
can be used to search subsets of features with
good results [14]. Otherwise, the genetic algo-
rithm can be combined with a different clas-
sifier which is faster to learn, but then some
of the advantages of the wrapper algorithms
over filters are lost. Both approaches have
also been combined. For instance, in [1, 20]
genetic search and filters are put together.

Most of the feature selection algorithms used
in the design of FRBCS are suitable for pre-
cise, numerical data, without observation er-
ror neither missing values. However, many
real-world datasets are coarsely measured.
Also, missing values, or incomplete inputs,
can appear in otherwise precise data. Lastly,
the fuzzification interface of a FRBCS con-
verts crisp data into fuzzy subsets of the
set of linguistic labels. For example, a
crisp value “20” can be converted into the
fuzzy subset 0.8/COLD+0.2/HOT of the set
{COLD,HOT}. We will call this last kind of
data “fuzzy discretized data” (FDD).

In previous works, we have advocated the
adoption of of fuzzy techniques [9], and, im-
portantly, the use of fuzzy fitness functions,
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for extracting rules from different types of
data, including FDD, in classification and re-
gression problems [8, 11]. This is because the
same algorithms that can process imprecise
data can handle FDD, and this fact allows us
to exploit the advantages of these fuzzy tech-
niques on crisp problems. We have also stud-
ied how to preprocess imprecise databases
[10, 12]. In these last works, we proposed a
filter-type evolutionary algorithm, that used
a mutual information measure to perform fea-
ture selection from vague data. Conversely, in
this work we will propose a wrapper-type evo-
lutionary feature selection algorithm for vague
data, and we will analyze how well it is suited
to FDD. As we will show in Section 2, the
new proposal is based on our own extension
to the fuzzy case of the k-NN classification
algorithm, thus in this sense our algorithm
can be regarded as a fuzzy generalization of
the SSGA algorithm [1], and therefore it is
named Fuzzy-SSGA (FSSGA). Indeed, there
are many recent works dealing with feature
selection procedures that use fuzzy techniques
[17, 15] or are designed to be used in combina-
tion with fuzzy systems [19, 18]. However (to
the best of our knowledge) other than ours,
the only paper where the feature selection of
fuzzified continuous data has been studied is
[6], where a filter method, based on a similar-
ity function, was used. We are not aware of
other works where wrapper-type algorithms
have been proposed.

This paper is organized as follows: In Section
2 we introduce our extension of the k-NN al-
gorithm for fuzzy data, that will be wrapped
in the GA that performs the selection. In Sec-
tion 3 we describe this genetic search of the
set of features, and in Section 4 we include
some benchmarks. The paper finishes with
the concluding remarks and the future work.

2 Use of the k-NN in a wrapper
algorithm with uncertain data

The most frequent use of the term “fuzzy k-
NN” is described in [3]. In that paper, a mem-
bership value for each crisp example in the
training dataset is introduced, and the class of
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Figure 1: Interval-valued data: The small-
est ball centered in x that contains for sure
one object has non-null intersection with two
other objects. Therefore, P (1|x) ∈ [0, 2/3]
and P (2|x) ∈ [1/3, 1] and we can not label x
(i.e., we assign the set of labels {1, 2} to x).

the object is assigned to the class with higher
certainty, in a procedure similar to a statis-
tical kernel classifier. Many publications ex-
tend this definition or apply it to practical
problems [16]. Even though some of these ex-
tensions use a fuzzy set for defining the class
of an object [13], we could not find publica-
tions where a k-NN algorithm making use of
imprecise data is defined.

2.1 An extended definition of the
k-NN criterion for fuzzy data

From an statistical point of view, the k-NN
rule can be derived from the Bayes rule. Let
us assume that each object ω is of class(ω).
We want to define a decision rule that maps
any set of measurements X(ω) to class(ω),
with the lowest number of errors. This rule
is known to be

c(x) = arg max
i=1...,M

P (class(ω) = i | X(ω) = x) (1)

where M is the number of classes. Let us
suppose we are given a sample of size N ,
where Ni elements belong to the i-th class,
and N =

∑
i=1,...,M Ni. For estimating P (i|x)

from data, we rewrite eq. (1) first,

P (i|x) =
f(x|i)p(i)
f(x)

(2)

then estimate both density functions from the
sample. Let V be the smallest ball that
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Figure 2: Fuzzy data: The smallest volume
centered in 7 that completely contains one
object is the interval V = [4, 10]. For α-
cuts lower than 0.5, the estimations of P (1|x)
and P (2|x) intersect. For α > 0.5, P (2|x) >
P (1|x). Therefore, the class of x is the fuzzy
set 0.5/1 + 1/2.

contains k objects of the sample. Let ni,
k =

∑
i=1,...,M ni be the number of objects

of the i-th class contained in V . If V is small
enough, then

f(x|i)p(i)
f(x)

≈
ni
NiV

Ni
N

k
NV

=
ni
k
. (3)

Hence, eq. (1) reduces to the k-NN rule: we
label x as the class that appears the most in
the smallest ball, centered in x, that contains
k objects in the sample.

Let us suppose now that we can not pre-
cisely observe x, but an interval that con-
tains it. For example, consider the situation
in Figure 1: the smallest volume V that con-
tains one element of the sample also intersects
two other objects, but it does not completely
contain them. In this example, the appli-
cation of eq. (1) requires deciding whether
[0, 2/3] ≷ [1/3, 1], and we do not have infor-
mation enough to know the response, thus we
will label the example x with the whole set
{1, 2}.
The fuzzy case is an extension of the interval
case. Let us consider the data displayed in
Figure 2. We have a one-dimensional prob-
lem, where we want to label the point x = 7,
according to the nearest neighbor rule. We
have three imprecisely measured objects sur-
rounding x: two of them, the triangular fuzzy

numbers (1; 3; 5) and (9; 11; 13), belong to
class 1. A third one, (4; 6; 8), belong to class
2. The smallest volume, centered in 7, that
contains one element of the sample, is the in-
terval [4, 10]. Now observe that each α-cut of
these three sets forms an interval-valued clas-
sification problem. For α ≤ 0.5, V intersects
with the three objects. For levels greater than
0.5, the only object in V is that of class 2.
Therefore, our knowledge about the class of
the point x is given by the fuzzy set

0.5/1 + 1/2. (4)

Summarizing, in case we are given a sam-
ple (S1, c1), . . . , (SN , cN ) of classified objects,
where the measurements taken over each ob-
ject are crisp sets Si and the class of each
object is an element of the set {1, . . . ,M}, we
define first the values P̂∗(c|x) and P̂ ∗(c|x) as
the minimum and maximum of the set

∑
cj=c aj∑

aj
: aj ∈

 {0} Sj ∩ V = ∅
{1} Sj ⊆ V
{0, 1} else

 (5)

where V is the smallest sphere, centered in
x, that completely contains k objects of the
sample. Our extended k-NN rule assigns to
each point x a subset C of {1, . . . ,M}, defined
as follows:

C(x) = {i : P̂ ∗(i|x) ≥ P̂∗(c|x), ∀c 6= i}. (6)

In case the measurements are fuzzy sets X̃i,
the extended k-NN rule assigns to the point
x a fuzzy set of classes. Let us define the
level cut α of the sample as the interval-valued
dataset ([X̃1]α, c1), . . . , ([X̃N ]α, cN ). If we ap-
plied the preceding rule for classifying x on
the basis of a level cut α of the sample, we
would obtain a (crisp) set of classes Cα(x).
We propose that the class of x is a fuzzy sub-
set µx of {1, . . . ,M} defined by the member-
ship functions

µx(i) = sup{α : i ∈ Cα(x)}. (7)

It is emphasized that, for classifying either a
crisp or a fuzzy set instead of a point, we have
to make sure that the volume V completely
contains k elements of the sample but also
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that it contains the whole area being classi-
fied. However, we have a certain freedom in
the definition of some of the properties of V
(for instance, that of V being centered in the
point being classified) as soon as V is small
enough for the approximation in eq. (3) mak-
ing sense.

2.2 Symbolic data

The expression (2) holds when x is a vector of
real numbers. Instead, when x is an element
in a finite space, we have to assume some de-
gree of smoothness in p(x|c), or else we cannot
estimate its value in points which do not ap-
pear in the sample. Usually, we admit that eq.
(3) still holds when the volume V is defined
wrt a certain distance. The most common
distance is the count of features that match,
although there are more complex approaches
based on distance tables between features [2].

We will process FDD and, in particular, we
are interested in the case where all the sets
of linguistic labels form Ruspini’s fuzzy parti-
tions. For example, the fuzzification stage can
convert a numerical value of 45 degrees into a
fuzzy subset like {0.0/COLD + 0.2/WARM +
0.8/HOT}. Observe that rule based-systems
could also manage subsets like {0.1/COLD +
0.3/WARM + 0.9/HOT} or {0.5/COLD +
0.5/WARM + 0.5/HOT}, that do not match
any numerical value. Because of space rea-
sons, in this paper we will not include experi-
ments related to these last two cases, however
we have included the treatment of such kind
of data in the definition of our algorithm.

2.2.1 FDD from crisp instances

We will interpret that the memberships of
each crisp piece of data to the elements of the
Ruspini’s partition define a probability distri-
bution over the set of linguistic labels, thus
the fuzzified data is a fuzzy random variable
(frv). Let X̃ and Ỹ be two of such fuzzified
measurements of crisp vectors. Each measure-
ment has n coordinates: X̃ = (X̃1, . . . , X̃n)
and Ỹ = (Ỹ1, . . . , Ỹn). We propose that the
distance between X̃ and Ỹ is the euclidean

distance

d(X̃, Ỹ ) =

(
n⊕
i=1

d(X̃i, Ỹi)2
)0.5

(8)

The distance d(X̃i, Ỹi) between each compo-
nent depends, in turn, of the probabilities
that each label was assigned in the fuzzifica-
tion. Let us name (p1, . . . , pl) and (q1, . . . , ql)
to the probabilities of the l values of the lin-
guistic variable defined for the i-th coordi-
nate. We propose that the distance between
them is the distance between both probability
distributions:

d(X̃i, Ỹi) =
l∑

j=1

(pj − qj)2. (9)

This distance generalizes the count of features
that match. It is emphasized that, when this
last distance is used, if two different input val-
ues are assigned the same set of memberships
in the fuzzification interface, then the distance
between them is zero nonetheless.

2.2.2 FDD from instances with
missing values and vague data

The memberships of either a missing value or
an imprecisely measured data can be under-
stood as a family of probability distributions.
We can determine a lower and an upper bound
of the distances between these pieces of infor-
mation as the interval

d(xi, yi) =
{√∑l

j=1(pj − qj)2 :

pj ∈ [pj∗, p∗j ], qj ∈ [qj∗, q∗j ]
} (10)

Note that, in this case, the situation is equiv-
alent to the case studied in the preceding sec-
tion, when the data was imprecisely measured
and the imprecision was defined by means of
crisp sets. Let us call r to the radius of the
volume V in the preceding section. We can
define P̂∗(c|x) and P̂ ∗(c|x) as the minimum
and maximum of the set
∑

cj=c aj∑
aj

: aj ∈
 {0} min{d(Sj , x)} > r
{1} max{d(Sj , x)} < r
{0, 1} else


(11)

and use the rule in eq. (6) to obtain the set
of classes that the object is assigned.
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2.3 Measurement of the error rate of
a classifier with imprecise data

For computing the error rate of the classifier
over a dataset we want to count the number of
misclassifications. However, since the output
of the classifier is a set of classes, it is not
always possible to decide whether the point is
being correctly classified. Generally speaking,
the error rate will also be a fuzzy set.

Let us assume that the output of the fuzzy
classifier for the j-th element of the dataset
is the vector (µc1 , . . . , µcM ). Let q be the in-
dex of the modal point of this set, and let b
the index of the second highest membership.
According to our proposal in [9], this classifi-
cation contributes to the total error as much
as

Ej =
{

1/0 + µcb/1 if cj = cq
µcj/0 + 1/1 else

(12)

i.e., the number of errors is the sum, with
fuzzy arithmetic, of the values Ej .

3 Genetic Search of the best
subset of features

When the data is interval-valued, fuzzy or
crisp with missing values, the fitness function
is a fuzzy number, and we will need a spe-
cially crafted multicriteria genetic algorithm
[8] in order to solve the problem. Otherwise,
a conventional GA could be used. We give a
brief explanation of some parts of these algo-
rithms in the remainder of this section.

3.1 Representation and Genetic
Operators

We have used the same representation and
operators proposed in [1]. The subsets have
fixed cardinality, and we use integer coding for
representing the subset of features, because it
is more efficient in space than using a binary
representation. The length of a chromosome
is therefore the number of features, and each
allele represents one variable.

Two different crossover operators are used:
partial complementary crossover [7] and two

point crossover with repair operation (i.e., re-
peated features are replaced by a non-selected
variable, selected at random).

Our mutation operator consists in changing
one allele, chosen at random, by another ran-
dom value that is not repeated.

3.2 Fitness function

The quality of a given subset is given by the
average error rate in the test set of the k-NN
classifier. Five 50% training-test partitions
are used in this evaluation. The fitness value
is a fuzzy number: the sum (by means of fuzzy
arithmetic operators) of the costs Ej of each
test data, as defined in eq. (12).

3.3 Generational scheme

As described in [8], we have used a gen-
erational approach with the multiobjective
NSGA-II replacement strategy, binary tour-
nament selection based on rank and crowding
distance, and a precedence operator that as-
sumes a uniform prior. The nondominated
sorting depends on the product of the so-
obtained probabilities of precedence. Lastly,
the crowding is based on the Hausdorff dis-
tance.

4 Numerical analysis of FDD from
crisp data

In this section we will show that, when design-
ing GFS, a feature selection algorithm that
can use vague data is better than a conven-
tional one, even when our training data is
crisp. We have claimed this result before, in
[10, 12], where we shown that the relevance
of the input variables was dependent on the
fuzzy definition of the antecedents of the rules.
That is to say, we want to detect the features
where the fuzzy discretization of the inputs
has lost relevant information, and not to use
them. In order to do this, we have to fuzzify
the inputs first, and then use a feature selec-
tion algorithm that can work with the fuzzi-
fied data.

We limit ourselves to FDD from crisp data
in the numerical experimentation. The com-
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pared performance of both FSSGA, and our
former algorithm FMIFS [10][12], over coarse
data and data with missing values, are left for
future works.

Thirteen different fuzzy rule learning algo-
rithms have been considered, both heuristic
and genetic algorithms-based. The heuris-
tic classifiers are described in [4]: no weights
(HEU1), same weight as the confidence
(HEU2), differences between the confidences
(HEU3, HEU4, HEU5), weights tuned by
reward-punishment (REWP) and analytical
learning (ANAL). The genetic classifiers are:
Selection of rules (GENS), Michigan learning
(MICH) –with population size 25 and 1000
generations–, Pittsburgh learning (PITT) –
with population size 50, 25 rules each in-
dividual and 50 generations–, and Hybrid
learning (HYBR) –same parameters than
PITT, macromutation with probability 0.8–
[4]. Lastly, two iterative rule learning algo-
rithms are studied: Fuzzy Ababoost (ADAB)
–25 rules of type I, fuzzy inference by sum
of votes– and Fuzzy Logitboost (LOGI) –10
rules of type III, fuzzy inference by sum of
votes– [10]. All the experiments have been
repeated ten times for different permutations
of the datasets.

In Table 1 we have compared the results
of the new algorithm FMIFS, for five crisp
datasets, to those of the original MIFS algo-
rithm, RELIEF [5] and the evolutionary algo-
rithm SSGA [1]. The results of the filter-type,
fuzzy feature selection FMIFS [10, 12] are also
included. If a fuzzy method (either FMIFS
or FSSGA) improves all the crisp methods,
the corresponding number is boldfaced. In
all cases, a uniform partition of size 3 was
used for all the variables, and 5 input vari-
ables were selected. Observe that:

• There exist problems (ION, SONAR)
where the use of a fuzzy feature selection
improves the results for all the fuzzy clas-
sifiers that have been tested. This means
that some highly informative crisp vari-
ables are not anymore relevant after pass-
ing through the fuzzification interface.

• The advantages of the FMIFS and

FSSGA are clearer in heuristic classifiers
than they are in GFS. In particular, Log-
itboost and Adaboost, which are based
on a sum-product based inference, seem
to be less influenced by the loss of infor-
mation in the fuzzification.

• FMIFS consistently outperforms MIFS,
and FSSGA outperforms SSGA in
PIMA, ION and SONAR. However, in
general, FMIFS seems to be slightly more
efficient than FSSGA, thus there does
not seem to be a definite advantage of
wrappers over filters over FDD (remem-
ber that wrappers are also slower than
filters).

• Any fuzzy algorithm can be safely ap-
plied to crisp data (FDD). If the problem
is not best suited for a fuzzy algorithm,
the results will not be too different than
those obtained by a crisp algorithm, as
we can see in PIMA, WINE and GER-
MAN, but the performance will not be
degraded.

To sum up, there exist datasets for which,
given a certain fuzzy partition, a feature selec-
tion algorithm able to use FDD improves sig-
nificantly the results. Otherwise, in case the
GFS optimizes the partition, or the training
data is homogeneously distributed, the gain is
not relevant.

5 Concluding remarks

The preprocessing of databases with impre-
cise data is hardly found in the literature.
In this paper we have proposed a wrapper-
type evolutionary feature selection algorithm,
that equals or outperforms other filter and
wrapper algorithms. However, there is not
evidence that it improves our own fuzzy mu-
tual information based algorithms. In addi-
tion, we have shown that there are problems
where we obtain an uniform improvement for
the whole catalog of learning algorithms that
were tested. Intuitively, the method proposed
here should be applied when the input parti-
tion has few elements or it has not been opti-
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mized, but further work is needed to charac-
terize this family of problems.
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